Pectinatella magnifica is a freshwater bryozoan, which has become a subject of scientific interest because of its invasive expansion worldwide. To obtain a comprehensive overview of its influence on environments, information on associated bacteria is needed. In this study, cultivable bacteria associated with P. magnifica were investigated. In total, 253 isolates were selected for preliminary identification by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and clustered based on repetitive extragenic palindromic-PCR profiles. Among these, 169 strains were selected and identified using 16S rRNA gene comparative analyses. The sequences were grouped into 76 phylotypes and affiliated with 67 species. The majority of isolated bacteria belonged to Gammaproteobacteria, followed by Betaproteobacteria, Firmicutes, Bacteroidetes and Actinobacteria. Most strains within the Betaproteobacteria were isolated exclusively from bryozoan colonies. Aeromonas was the genus predominantly isolated from both P. magnifica and the water samples. Based on 16S rDNA similarity values, 15 putative new species belonging to the genera Aeromonas, Aquitalea, Clostridium, Herbaspirillum, Chromobacterium, Chryseobacterium, Morganella, Paludibacterium, Pectobacterium, Rahnella, Rhodoferax and Serratia, and putative new genera belonging to families Clostridiaceae and Sporomusaceae were revealed. The majority of the detected bacteria were species widely distributed in the environments; nevertheless, a possible symbiotic association of two new putative species with P. magnifica cannot be excluded.
- MeSH
- Betaproteobacteria classification genetics growth & development isolation & purification MeSH
- Bryozoa microbiology MeSH
- Firmicutes classification genetics growth & development isolation & purification MeSH
- Phylogeny MeSH
- Gammaproteobacteria classification genetics growth & development isolation & purification MeSH
- Fresh Water microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Strain CS-1T, a novel facultative anaerobic bacterium, was isolated from the larval gastrointestinal tract of the biting midge, Culicoides sonorensis, a vector of the epizootic haemorrhagic disease virus and the bluetongue virus. Cells were Gram-stain-positive, non-motile, non-spore-forming, pleomorphic rods. Optimal growth occurred at pH 7.5 and 37 °C. The G+C content of the genomic DNA was 38.3 mol%, estimated by using HPLC. The dominant cellular fatty acids were C14 : 0 (45.9 %) and C16 : 0 (26.6 %). The polar lipid profile comprised glycolipids, diphosphatidylglycerol, phospholipids and phosphoglycolipids. Respiratory quinones were not detected. Strain CS-1T had very low 16S rRNA gene similarity to members of the phylum Firmicutes: Macrococcus canis KM45013T (85 % similarity) and Turicibacter sanguinis MOL361T (88 % similarity). Phylogenetic analysis based on 16S rRNA, rpoB, gyrB genes, and conserved protein sequences of the whole genome revealed that strain CS-1T was related to members of the classes Bacilli and Erysipelotrichia within the phylum Firmicutes. Furthermore, average nucleotide identity and digital DNA-DNA hybridization analyses of the whole genome revealed very low sequence similarity to species of Bacilli and Erysipelotrichaceae (Macrococcus canis KM45013T and Turicibacter sp. H121). These results indicate that strain CS-1T belongs to the phylum Firmicutes and represents a new species of a novel genus, family, order and class. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic characteristics, we propose the novel taxon Culicoidibacter larvae gen. nov., sp. nov. with the type strain CS-1T (=CCUG 71726T=DSM 106607T) within the hereby new proposed novel family Culicoidibacteraceae fam. nov., new order Culicoidibacaterales ord. nov. and new class Culicoidibacteria classis nov. in the phylum Firmicutes.
- MeSH
- Ceratopogonidae microbiology MeSH
- DNA, Bacterial genetics MeSH
- Species Specificity MeSH
- Firmicutes classification genetics MeSH
- Phylogeny * MeSH
- Gastrointestinal Tract microbiology MeSH
- Larva microbiology MeSH
- Fatty Acids chemistry MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Bacterial Typing Techniques MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Epilepsy as a chronic neurological disorder is characterized by recurrent, unprovoked epileptic seizures. In about half of the people who suffer from epilepsy, the root cause of the disorder is unknown. In the other cases, different factors can cause the onset of epilepsy. In recent years, the role of gut microbiota has been recognized in many neurological disorders, including epilepsy. These data are based on studies of the gut microbiota-brain axis, a relationship starting by a dysbiosis followed by an alteration of brain functions. Interestingly, epileptic patients may show signs of dysbiosis, therefore the normalization of the gut microbiota may lead to improvement of epilepsy and to greater efficacy of anticonvulsant drugs. In this descriptive review, we analyze the evidences for the role of gut microbiota in epilepsy and hypothesize a mechanism of action of these microorganisms in the pathogenesis and treatment of the disease. Human studies revealed an increased prevalence of Firmicutes in patients with refractory epilepsy. Exposure to various compounds can change microbiota composition, decreasing or exacerbating epileptic seizures. These include antibiotics, epileptic drugs, probiotics and ketogenic diet. Finally, we hypothesize that physical activity may play a role in epilepsy through the modulation of the gut microbiota.
- MeSH
- Dysbiosis * MeSH
- Epilepsy * metabolism microbiology physiopathology MeSH
- Firmicutes * classification metabolism MeSH
- Humans MeSH
- Brain physiopathology MeSH
- Gastrointestinal Microbiome * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Only a few studies dealt with the occurrence of endospore-forming clostridia in the microbiota of infants without obvious health complications. METHODS: A methodology pipeline was developed to determine the occurrence of endospore formers in infant feces. Twenty-four fecal samples (FS) were collected from one infant in monthly intervals and were subjected to variable chemical and heat treatment in combination with culture-dependent analysis. Isolates were identified by MALDI-TOF mass spectrometry, 16S rRNA gene sequencing, and characterized with biochemical assays. RESULTS: More than 800 isolates were obtained, and a total of 21 Eubacteriales taxa belonging to the Clostridiaceae, Lachnospiraceae, Oscillospiraceae, and Peptostreptococcaceae families were detected. Clostridium perfringens, C. paraputrificum, C. tertium, C. symbiosum, C. butyricum, and C. ramosum were the most frequently identified species compared to the rarely detected Enterocloster bolteae, C. baratii, and C. jeddahense. Furthermore, the methodology enabled the subsequent cultivation of less frequently detectable gut taxa such as Flavonifractor plautii, Intestinibacter bartlettii, Eisenbergiella tayi, and Eubacterium tenue. The isolates showed phenotypic variability regarding enzymatic activity, fermentation profiles, and butyrate production. CONCLUSIONS: Taken together, this approach suggests and challenges a cultivation-based pipeline that allows the investigation of the population of endospore formers in complex ecosystems such as the human gastrointestinal tract.
- MeSH
- Clostridium * genetics MeSH
- Feces microbiology MeSH
- Firmicutes genetics MeSH
- Infant MeSH
- Humans MeSH
- Microbiota * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Diet MeSH
- Firmicutes MeSH
- Weight Loss MeSH
- Humans MeSH
- Microbiota MeSH
- Obesity diet therapy immunology MeSH
- Gastrointestinal Microbiome * immunology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
Abscesses are often clinically manifested as local necrotic tissues in various organs or systems of the human body, which is commonly caused by microbial infection. Rapid and accurate identification of pathogens from clinical abscetic samples would greatly guide a clinician to make the precise choices of the antimicrobial treatment. Here, this study aimed to investigate the application of metagenomic next-generation sequencing (mNGS) in the microbial detection of clinical samples of abscess fluids from various organs or systems. Nine patients with abscess from various organs or systems were enrolled in this study. The pathogenic bacteria in abscess fluid were detected and compared by the conventional bacterial culture and mNGS respectively. The dominant pathogens of abscess fluids in 8 cases can be found directly from mNGS, dominating over 80% of the total reads abundance of the microbiome. Although the pathogens from 6 cases detected by mNGS were consistent with that from the conventional bacteria culture method, the fastidious obligate anaerobic bacteria in 2 cases additionally detected by mNGS were not found by the conventional culture method. Moreover, complex polymicrobial infection containing Parvimonas micra in one case negatively with conventional bacterial culture were demonstrated by the mNGS method. And the mNGS method can directly reflect the diversity of microbial ecology in the abscess fluids from the different parts of the human body. Conclusively, mNGS can be used as a supplemental method for the pathogen detection of clinically abscess fluids.
- MeSH
- Abscess * diagnosis MeSH
- Firmicutes MeSH
- Humans MeSH
- Metagenomics * MeSH
- Sensitivity and Specificity MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Industrial synthetic dyes cause health and environmental problems. This work describes the isolation of 84 bacterial strains from the midgut of the Lasius niger ant and the evaluation of their potential application in dye bioremediation. Strains were identified and classified as judged by rRNA 16S. The most abundant isolates were found to belong to Actinobacteria (49%) and Firmicutes (47.2%). We analyzed the content in laccase, azoreductase and peroxidase activities and their ability to degrade three known dyes (azo, thiazine and anthraquinone) with different chemical structures. Strain Ln26 (identified as Brevibacterium permense) strongly decolorized the three dyes tested at different conditions. Strain Ln78 (Streptomyces ambofaciens) exhibited a high level of activity in the presence of Toluidine Blue (TB). It was determined that 8.5 was the optimal pH for these two strains, the optimal temperature conditions ranged between 22 and 37 °C, and acidic pHs and temperatures around 50 °C caused enzyme inactivation. Finally, the genome of the most promising candidate (Ln26, approximately 4.2 Mb in size) was sequenced. Genes coding for two DyP-type peroxidases, one laccase and one azoreductase were identified and account for the ability of this strain to effectively oxidize a variety of dyes with different chemical structures.
- MeSH
- Actinobacteria enzymology isolation & purification metabolism MeSH
- Bacteria enzymology isolation & purification metabolism MeSH
- Coloring Agents isolation & purification metabolism MeSH
- Biodegradation, Environmental MeSH
- Biotechnology MeSH
- Brevibacterium enzymology isolation & purification metabolism MeSH
- Firmicutes enzymology isolation & purification metabolism MeSH
- Ants microbiology MeSH
- Laccase isolation & purification metabolism MeSH
- Environmental Pollutants isolation & purification metabolism MeSH
- NADH, NADPH Oxidoreductases isolation & purification metabolism MeSH
- Peroxidase isolation & purification metabolism MeSH
- Streptomyces enzymology isolation & purification metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
To study the various processes in the rumen the in vitro techniques are widely used to realize more controlled and reproducible conditions compared to in vivo experiments. Mostly, only the parameters like pH changes, volatile fatty acids content or metabolite production are monitored. In this study we examine the bacterial community dynamics of rumen fluid in course of ten day cultivation realize under standard conditions described in the literature. Whereas the pH values, total VFA content and A/P ratio in bioreactor were consistent with natural conditions in the rumen, the mean redox-potential values of -251 and -243mV were much more negative. For culture-independent assessment of bacterial community composition, the Illumina MiSeq results indicated that the community contained 292 bacterial genera. In course of ten days cultivation a significant changes in the microbial community were measured when Bacteroidetes to Firmicutes ratio changed from 3.2 to 1.2 and phyla Proteobacteria and Actinobacteria represented by genus Bifidobacterium and Olsenella significantly increased. The main responsible factor of these changes seems to be very low redox potential in bioreactor together with accumulation of simple carbohydrates in milieu as a result of limited excretion of fermented feed and absence of nutrient absorbing mechanisms.
- MeSH
- Rumen metabolism microbiology MeSH
- Bacteria classification genetics growth & development isolation & purification MeSH
- Bacteroidetes genetics growth & development isolation & purification MeSH
- Bioreactors microbiology MeSH
- DNA, Bacterial MeSH
- Fermentation MeSH
- Firmicutes genetics growth & development isolation & purification MeSH
- Fatty Acids, Volatile metabolism MeSH
- Microbiota * genetics MeSH
- Oxidation-Reduction MeSH
- Proteobacteria genetics growth & development isolation & purification MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Cattle MeSH
- Animals MeSH
- Check Tag
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The mammalian gastrointestinal (GI) microbiome, which plays indispensable roles in host nutrition and health, is affected by numerous intrinsic and extrinsic factors. Among them, antibiotic (ATB) treatment is reported to have a significant effect on GI microbiome composition in humans and other animals. However, the impact of ATBs on the GI microbiome of free-ranging or even captive great apes remains poorly characterized. Here, we investigated the effect of cephalosporin treatment (delivered by intramuscular dart injection during a serious respiratory outbreak) on the GI microbiome of a wild habituated group of western lowland gorillas (Gorilla gorilla gorilla) in the Dzanga Sangha Protected Areas, Central African Republic. We examined 36 fecal samples from eight individuals, including samples before and after ATB treatment, and characterized the GI microbiome composition using Illumina-MiSeq sequencing of the bacterial 16S rRNA gene. The GI microbial profiles of samples from the same individuals before and after ATB administration indicate that the ATB treatment impacts GI microbiome stability and the relative abundance of particular bacterial taxa within the colonic ecosystem of wild gorillas. We observed a statistically significant increase in Firmicutes and a decrease in Bacteroidetes levels after ATB treatment. We found disruption of the fibrolytic community linked with a decrease of Ruminoccocus levels as a result of ATB treatment. Nevertheless, the nature of the changes observed after ATB treatment differs among gorillas and thus is dependent on the individual host. This study has important implications for ecology, management, and conservation of wild primates.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacteroidetes growth & development MeSH
- Cephalosporins pharmacology MeSH
- Feces microbiology MeSH
- Firmicutes growth & development MeSH
- Gorilla gorilla microbiology MeSH
- Ape Diseases drug therapy MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Ruminococcus growth & development MeSH
- Gastrointestinal Microbiome drug effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Central African Republic MeSH
x
x
- MeSH
- Bacteroidetes pathogenicity MeSH
- Firmicutes pathogenicity MeSH
- Colorectal Neoplasms epidemiology etiology microbiology therapy MeSH
- Humans MeSH
- Microbiota physiology immunology MeSH
- Anastomotic Leak etiology microbiology MeSH
- Intestines blood supply microbiology pathology MeSH
- Gastrointestinal Microbiome * physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH