Influence of lincomycin-spectinomycin treatment on the outcome of Enterococcus cecorum infection and on the cecal microbiota in broilers
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007404
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_025/0007404
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_025/0007404
Ministerstvo Školství, Mládeže a Tělovýchovy
QS Fachgesellschaft Geflügel GmbH
QS Fachgesellschaft Geflügel GmbH
QS Fachgesellschaft Geflügel GmbH
QS Fachgesellschaft Geflügel GmbH
PubMed
34983636
PubMed Central
PMC8729143
DOI
10.1186/s13099-021-00467-9
PII: 10.1186/s13099-021-00467-9
Knihovny.cz E-zdroje
- Klíčová slova
- Broilers, Cecal microbiota, Enterococcus cecorum, Infection, Lincomycin, Spectinomycin,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Enterococcus cecorum (EC) is one of the main reasons for skeletal disease in meat type chickens. Intervention strategies are still rare and focus mainly on early antibiotic treatment of the disease, although there are no data available concerning the effectivity of this procedure. The present study aimed to investigate the effectivity of early lincomycin-spectinomycin treatment during the first week of life after EC-infection. Furthermore, the impact of lincomycin-spectinomycin treatment and EC infection on the development of cecal microbiota was investigated. METHODS: A total of 383 day-old broiler chicks were randomly assigned to four groups (non-infected and non-treated, non-infected and treated, EC-infected and non-treated, and EC-infected and treated). The EC-infected groups were inoculated orally with an EC suspension at the day of arrival and at study day 3. The treatment groups were treated with lincomycin-spectinomycin via the drinking water for six consecutive days, starting two hours after the first inoculation. Necropsy of 20 chickens per group was performed at study days 7, 14, 21, and 42. Bacteriological examination via culture and real-time PCR was performed to detect EC in different extraintestinal organs. Cecal samples of nine chickens per group and necropsy day were analyzed to characterize the composition of the cecal microbiota. RESULTS: No clinical signs or pathologic lesions were found at necropsy, and EC was not detected in extraintestinal organs of the EC-infected and treated birds. Lincomycin-spectinomycin promoted the growth of the bacterial genus Escherichia/Shigella and reduced the amount of potentially beneficial Lactobacillus spp. in the ceca regardless of EC-infection. Unexpectedly, the highest abundances of the genus Enterococcus were found directly after ending antibiotic treatment in both treatment groups, suggesting the growth of resistant enterococcal species. EC was not detected among the most abundant members of the genus Enterococcus. Oral EC-infection at the first day of life did not influence the development of cecal microbiota in the present study. CONCLUSIONS: Lincomycin-spectinomycin treatment during the first week of life can prevent the EC-associated disease in broiler type chickens and has a direct impact on the development of the cecal microbiota. The low abundance of EC in the ceca of infected chickens underlines the pathogenic nature of the disease-causing EC strains. Further research on alternative prevention and intervention strategies is needed with regard to current efforts on reducing the use of antibiotics in livestock animals.
Clinic for Poultry University of Veterinary Medicine Hannover Buenteweg 17 30559 Hannover Germany
Veterinary Research Institute Hudcova 296 70 62100 Brno Czech Republic
Zobrazit více v PubMed
Talebi A, Taifebagherlu J, Sharifi A. Delkhosh-Kasmaie F Spondylitis in broiler breeder farms in West-Azerbaijan province, Iran: clinical report. Vet Res Forum. 2016;7(4):353–355. PubMed PMC
Jung A, Rautenschlein S. Comprehensive report of an Enterococcus cecorum infection in a broiler flock in Northern Germany. BMC Vet Res. 2014;10:311. doi: 10.1186/s12917-014-0311-7. PubMed DOI PMC
Aitchison H, Poolman P, Coetzer M, Griffiths C, Jacobs J, Meyer M, Bisschop S. Enterococcal-related vertebral osteoarthritis in South African broiler breeders: A case report. J S Afr Vet Assoc. 2014;85(1):1077. doi: 10.4102/jsava.v85i1.1077. PubMed DOI
Robbins KM, Suyemoto MM, Lyman RL, Martin MP, Barnes HJ, Borst LB. An outbreak and source investigation of enterococcal spondylitis in broilers caused by Enterococcus cecorum. Avian Dis. 2012;56(4):768–773. doi: 10.1637/10253-052412-Case.1. PubMed DOI
Makrai L, Nemes C, Simon A, Ivanics E, Dudas Z, Fodor L, Glavits R. Association of Enterococcus cecorum with vertebral osteomyelitis and spondylolisthesis in broiler parent chicks. Acta Vet Hung. 2011;59(1):11–21. doi: 10.1556/AVet.59.2011.1.2. PubMed DOI
Stalker MJ, Brash ML, Weisz A, Ouckama RM, Slavic D. Arthritis and osteomyelitis associated with Enterococcus cecorum infection in broiler and broiler breeder chickens in Ontario, Canada. J Vet Diagn Invest. 2010;22(4):643–645. doi: 10.1177/104063871002200426. PubMed DOI
Herdt Pd, Defoort P, Steelant Jv, Swam H, Tanghe L, Goethem Sv, Vanrobaeys MJVDT (2009) Enterococcus cecorum osteomyelitis and arthritis in broiler chickens. 78 (1):44–48
Devriese LA, Cauwerts K, Hermans K, Wood AM. Enterococcus cecorum septicemia as a cause of bone and joint lesions resulting in lameness in broiler chickens. Vlaams Diergeneeskundig Tijdschrift. 2002;71(3):219–221.
Borst LB, Suyemoto MM, Sarsour AH, Harris MC, Martin MP, Strickland JD, Oviedo EO, Barnes HJ. Pathogenesis of Enterococcal Spondylitis Caused by Enterococcus cecorum in Broiler Chickens. Vet Pathol. 2017;54(1):61–73. doi: 10.1177/0300985816658098. PubMed DOI
Kense MJ, Landman WJ. Enterococcus cecorum infections in broiler breeders and their offspring: molecular epidemiology. Avian Pathol. 2011;40(6):603–612. doi: 10.1080/03079457.2011.619165. PubMed DOI
Martin LT, Martin MP, Barnes HJ. Experimental reproduction of enterococcal spondylitis in male broiler breeder chickens. Avian Dis. 2011;55(2):273–278. doi: 10.1637/9614-121410-Reg.1. PubMed DOI
Devriese LA, Ceyssens K, Haesebrouck F. Characteristics of Enterococcus cecorum strains from the intestines of different animal species. Lett Appl Microbiol. 1991;12(4):137–139. doi: 10.1111/j.1472-765X.1991.tb00524.x. DOI
Devriese LA, Hommez J, Wijfels R, Haesebrouck F. Composition of the enterococcal and streptococcal intestinal flora of poultry. J Appl Bacteriol. 1991;71(1):46–50. doi: 10.1111/j.1365-2672.1991.tb04585.x. PubMed DOI
Borst LB, McLamb KA, Suyemoto MM, Chen LR, Levy MG, Sarsour AH, Cordova HA, Barnes HJ, Oviedo-Rondon EO. Coinfection with Eimeria spp. decreases bacteremia and spinal lesions caused by pathogenic Enterococcus cecorum. Anim Feed Sci Technol. 2019;250:59–68. doi: 10.1016/j.anifeedsci.2018.09.014. DOI
Dolka B, Chrobak-Chmiel D, Makrai L, Szeleszczuk P. Phenotypic and genotypic characterization of Enterococcus cecorum strains associated with infections in poultry. BMC Vet Res. 2016;12(1):129. doi: 10.1186/s12917-016-0761-1. PubMed DOI PMC
Jackson CR, Kariyawasam S, Borst LB, Frye JG, Barrett JB, Hiott LM, Woodley TA. Antimicrobial resistance, virulence determinants and genetic profiles of clinical and nonclinical Enterococcus cecorum from poultry. Lett Appl Microbiol. 2015;60(2):111–119. doi: 10.1111/lam.12374. PubMed DOI
Jung A, Metzner M, Ryll M. Comparison of pathogenic and non-pathogenic Enterococcus cecorum strains from different animal species. BMC Microbiol. 2017;17(1):33. doi: 10.1186/s12866-017-0949-y. PubMed DOI PMC
Logue CM, Andreasen CB, Borst LB, Eriksson H, Hampson DJ, Sanchez S, Fulton RM (2020) Other Bacterial Diseases. In: Diseases of Poultry. pp. 995-1085. 10.1002/9781119371199.ch23
Kristich CJ, Rice LB, Arias CA, et al. Enterococcal infection-treatment and antibiotic resistance. In: Gilmore MS, Clewell DB, Ike Y, et al., editors. Enterococci: from commensals to leading causes of drug resistant infection. U.S. National Institutes of Health NCBI Bookshelf; 2014.
Borst LB, Suyemoto MM, Robbins KM, Lyman RL, Martin MP, Barnes HJ. Molecular epidemiology of Enterococcus cecorum isolates recovered from enterococcal spondylitis outbreaks in the southeastern United States. Avian Pathol. 2012;41(5):479–485. doi: 10.1080/03079457.2012.718070. PubMed DOI
Suyemoto MM, Barnes HJ, Borst LB. Culture methods impact recovery of antibiotic-resistant Enterococci including Enterococcus cecorum from pre- and postharvest chicken. Lett Appl Microbiol. 2017;64(3):210–216. doi: 10.1111/lam.12705. PubMed DOI
Sharma P, Gupta SK, Barrett JB, Hiott LM, Woodley TA, Kariyawasam S, Frye JG, Jackson CR. Comparison of Antimicrobial Resistance and Pan-Genome of Clinical and Non-Clinical Enterococcus cecorum from Poultry Using Whole-Genome Sequencing. Foods. 2020;9(6):686. doi: 10.3390/foods9060686. PubMed DOI PMC
Veterinary medicinal products containing a combination of lincomycin and spectinomycin to be administered orally to pigs and, or poultry. https://www.ema.europa.eu/en/medicines/veterinary/referrals/veterinary-medicinal-products-containing-combination-lincomycin-spectinomycin-be-administered-orally. Accessed 25 Feb 2021
Wei S, Morrison M, Yu Z. Bacterial census of poultry intestinal microbiome. Poult Sci. 2013;92(3):671–683. doi: 10.3382/ps.2012-02822. PubMed DOI
Mancabelli L, Ferrario C, Milani C, Mangifesta M, Turroni F, Duranti S, Lugli GA, Viappiani A, Ossiprandi MC, van Sinderen D, Ventura M. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ Microbiol. 2016;18(12):4727–4738. doi: 10.1111/1462-2920.13363. PubMed DOI
Torok VA, Hughes RJ, Mikkelsen LL, Perez-Maldonado R, Balding K, MacAlpine R, Percy NJ, Ophel-Keller K. Identification and Characterization of Potential Performance-Related Gut Microbiotas in Broiler Chickens across Various Feeding Trials. Appl Environ Microbiol. 2011;77(17):5868–5878. doi: 10.1128/Aem.00165-11. PubMed DOI PMC
Torok VA, Hughes RJ, Ophel-Keller K, Ali M, Macalpine R. Influence of different litter materials on cecal microbiota colonization in broiler chickens. Poult Sci. 2009;88(12):2474–2481. doi: 10.3382/ps.2008-00381. PubMed DOI
Torok VA, Allison GE, Percy NJ, Ophel-Keller K, Hughes RJ. Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Appl Environ Microbiol. 2011;77(10):3380–3390. doi: 10.1128/AEM.02300-10. PubMed DOI PMC
Oakley BB, Vasconcelos EJR, Diniz P, Calloway KN, Richardson E, Meinersmann RJ, Cox NA, Berrang ME. The cecal microbiome of commercial broiler chickens varies significantly by season. Poult Sci. 2018;97(10):3635–3644. doi: 10.3382/ps/pey214. PubMed DOI
Torok VA, Ophel-Keller K, Loo M, Hughes RJ. Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl Environ Microbiol. 2008;74(3):783–791. doi: 10.1128/AEM.01384-07. PubMed DOI PMC
Stanley D, Geier MS, Hughes RJ, Denman SE, Moore RJ. Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One. 2013;8(12):e84290. doi: 10.1371/journal.pone.0084290. PubMed DOI PMC
Yin Y, Lei F, Zhu L, Li S, Wu Z, Zhang R, Gao GF, Zhu B, Wang X. Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression. ISME J. 2010;4(3):367–376. doi: 10.1038/ismej.2009.128. PubMed DOI
Debnam AL, Jackson CR, Avellaneda GE, Barrett JB, Hofacre CL. Effect of growth promotant usage on enterococci species on a poultry farm. Avian Dis. 2005;49(3):361–365. doi: 10.1637/7328-011405R.1. PubMed DOI
Grund A, Rautenschlein S, Jung A. Tenacity of Enterococcus cecorum at different environmental conditions. J Appl Microbiol. 2021;130(5):1494–1507. doi: 10.1111/jam.14899. PubMed DOI
Remiot P, Panaget G, Chataigner E, Chevalier D. Enterococcus cecorum in broilers: a survey in farm to identify risky zootechnical practices. 13èmes Journées de la Recherche Avicole et Palmipèdes à Foie Gras, Tours, France, 20 et 21 mars 2019. 2019:116-20.
Stepien-Pysniak D, Marek A, Banach T, Adaszek L, Pyzik E, Wilczynski J, Winiarczyk S. Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry. Acta Vet Hung. 2016;64(2):148–163. doi: 10.1556/004.2016.016. PubMed DOI
Skraban J, Dzeroski S, Zenko B, Tusar L, Rupnik M. Changes of poultry faecal microbiota associated with Clostridium difficile colonisation. Vet Microbiol. 2013;165(3-4):416–424. doi: 10.1016/j.vetmic.2013.04.014. PubMed DOI
Juricova H, Videnska P, Lukac M, Faldynova M, Babak V, Havlickova H, Sisak F, Rychlik I. Influence of Salmonella enterica serovar enteritidis infection on the development of the cecum microbiota in newly hatched chicks. Appl Environ Microbiol. 2013;79(2):745–747. doi: 10.1128/AEM.02628-12. PubMed DOI PMC
Rychlik I. Composition and function of chicken gut microbiota. Animals. 2020;10(1):103. doi: 10.3390/ani10010103. PubMed DOI PMC
Lu J, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol. 2003;69(11):6816–24. doi: 10.1128/AEM.69.11.6816-6824.2003. PubMed DOI PMC
Nolan LK, Vaillancourt JP, Barbieri NL, Logue CM (2020) Colibacillosis. In: Diseases of Poultry. pp. 770-830. 10.1002/9781119371199.ch18
Callaway TR, Edrington TS, Anderson RC, Harvey RB, Genovese KJ, Kennedy CN, Venn DW, Nisbet DJ. Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Anim Health Res Rev. 2008;9(2):217–225. doi: 10.1017/S1466252308001540. PubMed DOI
Goren E, de Jong WA, Doornenbal P. Therapeutic efficacy of medicating drinking water with spectinomycin and lincomycin-spectinomycin in experimental Escherichia coli infection in poultry. Vet Q. 1988;10(3):191–197. doi: 10.1080/01652176.1988.9694170. PubMed DOI
Ahmed AM, Shimamoto T, Shimamoto T. Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. Int J Med Microbiol. 2013;303(8):475–483. doi: 10.1016/j.ijmm.2013.06.009. PubMed DOI
Osman KM, Kappell AD, Elhadidy M, ElMougy F, El-Ghany WAA, Orabi A, Mubarak AS, Dawoud TM, Hemeg HA, Moussa IMI, Hessain AM, Yousef HMY. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: A risk to public health and food safety. Sci Rep. 2018;8(1):5859. doi: 10.1038/s41598-018-23962-7. PubMed DOI PMC
Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol. 2015;52(12):7577–7587. doi: 10.1007/s13197-015-1921-1. PubMed DOI PMC
Dec M, Nowaczek A, Urban-Chmiel R, Stepien-Pysniak D, Wernicki A. Probiotic potential of Lactobacillus isolates of chicken origin with anti-Campylobacter activity. J Vet Med Sci. 2018;80(8):1195–1203. doi: 10.1292/jvms.18-0092. PubMed DOI PMC
Tabashsum Z, Peng M, Alvarado-Martinez Z, Aditya A, Bhatti J, Romo PB, Young A, Biswas D. Competitive reduction of poultry-borne enteric bacterial pathogens in chicken gut with bioactive Lactobacillus casei. Sci Rep. 2020;10(1):16259. doi: 10.1038/s41598-020-73316-5. PubMed DOI PMC
Wang S, Peng Q, Jia HM, Zeng XF, Zhu JL, Hou CL, Liu XT, Yang FJ, Qiao SY. Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1. Poult Sci. 2017;96(8):2576–2586. doi: 10.3382/ps/pex061. PubMed DOI
Jung A, Chen LR, Suyemoto MM, Barnes HJ, Borst LB. A Review of Enterococcus cecorum Infection in Poultry. Avian Dis. 2018;62(3):261–271. doi: 10.1637/11825-030618-Review.1. PubMed DOI
Aviagen (2018) Ross 308 Broiler Management Handbook. https://en.aviagen.com/brands/ross/products/ross-308. Accessed 18 Aug 2021
Mignard S, Flandrois JP. 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J Microbiol Methods. 2006;67(3):574–581. doi: 10.1016/j.mimet.2006.05.009. PubMed DOI
Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn. 2001;6(4):313–321. doi: 10.1054/modi.2001.29158. PubMed DOI
Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol. 1990;28(9):1942–1946. doi: 10.1128/JCM.28.9.1942-1946.1990. PubMed DOI PMC
Jung A, Petersen H, Teske L, Rautenschlein S. Colonization patterns of Enterococcus cecorum in two different broiler production cycles detected with a newly developed quantitative real-time PCR. BMC Microbiol. 2017;17(1):106. doi: 10.1186/s12866-017-1021-7. PubMed DOI PMC
Kollarcikova M, Kubasova T, Karasova D, Crhanova M, Cejkova D, Sisak F, Rychlik I. Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota. Poult Sci. 2019;98(6):2347–2353. doi: 10.3382/ps/pey594. PubMed DOI
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–174. doi: 10.2307/2529310. PubMed DOI
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6(2):65–70.