Effects of host genetics and environmental conditions on fecal microbiota composition of pigs

. 2018 ; 13 (8) : e0201901. [epub] 20180807

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30086169

Since microbiota may influence the physiology of its host including body weight increase, growth rate or feed intake, in this study we determined the microbiota composition in high or low residual feed intake (HRFI and LRFI) pig lines, of different age and/or subjected to sanitary stress by sequencing the V3/V4 variable region of 16S rRNA genes. Allisonella, Megasphaera, Mitsuokella, Acidaminococcus (all belonging to Firmicutes/class Negativicutes), Lactobacillus, Faecalibacterium, Catenibacterium, Butyrivibrio, Erysipelotrichaceae, Holdemania, Olsenella and Collinsella were more abundant in HRFI pigs. On the other hand, 26 genera including Bacteroides, Clostridium sensu stricto, Oscillibacter, Paludibacter, Elusimicrobium, Bilophila, Pyramidobacter and TM7 genera, and Clostridium XI and Clostridium XIVa clusters were more abundant in LRFI than HRFI pigs. Adaptation of microbiota to new diet after weaning was slower in LRFI than in HRFI pigs. Sanitary stress was of relatively minor influence on pig microbiota composition in both tested lines although abundance of Helicobacter increased in LRFI pigs subjected to stress. Selection for residual feed intake thus resulted in a selection of fecal microbiota of different composition. However, we cannot conclude whether residual feed intake was directly affected by different microbiota composition or whether the residual feed intake and microbiota composition are two independent consequences of yet unknown genetic traits differentially selected in the pigs of the two lines.

Zobrazit více v PubMed

Davis CD. The Gut Microbiome and Its Role in Obesity. Nutr Today. 2016;51(4):167–74. 10.1097/NT.0000000000000167 ; PubMed Central PMCID: PMCPMC5082693. PubMed DOI PMC

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. 10.1038/nature05414 . PubMed DOI

Fetissov SO. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol. 2017;13(1):11–25. 10.1038/nrendo.2016.150 . PubMed DOI

Burrough ER, Arruda BL, Patience JF, Plummer PJ. Alterations in the Colonic Microbiota of Pigs Associated with Feeding Distillers Dried Grains with Solubles. PLoS One. 2015;10(11):e0141337 10.1371/journal.pone.0141337 ; PubMed Central PMCID: PMCPMC4640664. PubMed DOI PMC

Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota. Appl Environ Microbiol. 2015;82(5):1569–76. 10.1128/AEM.03473-15 ; PubMed Central PMCID: PMCPMC4771310. PubMed DOI PMC

Tian L, Bruggeman G, van den Berg M, Borewicz K, Scheurink AJ, Bruininx E, et al. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Mol Nutr Food Res. 2017;61(1). 10.1002/mnfr.201600186 . PubMed DOI

Fleming SE, Fitch MD, DeVries S, Liu ML, Kight C. Nutrient utilization by cells isolated from rat jejunum, cecum and colon. J Nutr. 1991;121(6):869–78. 10.1093/jn/121.6.869 . PubMed DOI

Kenny M, Smidt H, Mengheri E, Miller B. Probiotics—do they have a role in the pig industry? Animal. 2011;5(3):462–70. 10.1017/S175173111000193X . PubMed DOI

McCormack UM, Curiao T, Buzoianu SG, Prieto ML, Ryan T, Varley P, et al. Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs. Appl Environ Microbiol. 2017;83(15). 10.1128/AEM.00380-17 ; PubMed Central PMCID: PMCPMC5514681. PubMed DOI PMC

Gilbert H, Billon Y, Brossard L, Faure J, Gatellier P, Gondret F, et al. Review: divergent selection for residual feed intake in the growing pig. Animal. 2017;11(9):1427–39. 10.1017/S175173111600286X ; PubMed Central PMCID: PMCPMC5561440. PubMed DOI PMC

Chatelet A, Gondret F, Merlot E, Gilbert H, Friggens NC, Le Floc'h N. Impact of hygiene of housing conditions on performance and health of two pig genetic lines divergent for residual feed intake. Animal. 2018;12(2):350–8. 10.1017/S1751731117001379 . PubMed DOI

Gilbert H, Bidanel JP, Gruand J, Caritez JC, Billon Y, Guillouet P, et al. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. J Anim Sci. 2007;85(12):3182–8. 10.2527/jas.2006-590 . PubMed DOI

Montagne L, Loisel F, Le Naou T, Gondret F, Gilbert H, Le Gall M. Difference in short-term responses to a high-fiber diet in pigs divergently selected for residual feed intake. J Anim Sci. 2014;92(4):1512–23. 10.2527/jas.2013-6623 . PubMed DOI

Barea R, Dubois S, Gilbert H, Sellier P, van Milgen J, Noblet J. Energy utilization in pigs selected for high and low residual feed intake. J Anim Sci. 2010;88(6):2062–72. 10.2527/jas.2009-2395 . PubMed DOI

van de Wouw M, Schellekens H, Dinan TG, Cryan JF. Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. J Nutr. 2017;147(5):727–45. 10.3945/jn.116.240481 . PubMed DOI

Kubasova T, Davidova-Gerzova L, Merlot E, Medvecky M, Polansky O, Gardan-Salmon D, et al. Housing Systems Influence Gut Microbiota Composition of Sows but Not of Their Piglets. PLoS One. 2017;12(1):e0170051 10.1371/journal.pone.0170051 ; PubMed Central PMCID: PMCPMC5234784 relating to employment, consultancy, patents, products in development, or marketed products, etc. The commercial partner also did not alter our adherence to PLOS ONE policies on sharing data and materials. PubMed DOI PMC

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. 10.1038/nmeth.f.303 ; PubMed Central PMCID: PMCPMC3156573. PubMed DOI PMC

Bian G, Ma S, Zhu Z, Su Y, Zoetendal EG, Mackie R, et al. Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environ Microbiol. 2016;18(5):1566–77. 10.1111/1462-2920.13272 . PubMed DOI

Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307(5717):1955–9. 10.1126/science.1109051 . PubMed DOI

Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008;4(5):447–57. 10.1016/j.chom.2008.09.007 ; PubMed Central PMCID: PMCPMC2605320. PubMed DOI PMC

De Rodas B, Youmans BP, Danzeisen JL, Tran H, Johnson TJ. Microbiome Profiling of Commercial Pigs from Farrow to Finish. J Anim Sci. 2018. 10.1093/jas/sky109 . PubMed DOI PMC

De Bruyne E, Flahou B, Chiers K, Meyns T, Kumar S, Vermoote M, et al. An experimental Helicobacter suis infection causes gastritis and reduced daily weight gain in pigs. Vet Microbiol. 2012;160(3–4):449–54. 10.1016/j.vetmic.2012.06.031 . PubMed DOI

Fairbrother JM, Nadeau E, Gyles CL. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev. 2005;6(1):17–39. . PubMed

Magnusdottir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol. 2017;35(1):81–9. 10.1038/nbt.3703 . PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...