Effects of host genetics and environmental conditions on fecal microbiota composition of pigs
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
30086169
PubMed Central
PMC6080793
DOI
10.1371/journal.pone.0201901
PII: PONE-D-18-02025
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA MeSH
- dieta * MeSH
- druhová specificita * MeSH
- feces mikrobiologie MeSH
- fyziologický stres fyziologie MeSH
- odstavení MeSH
- přijímání potravy MeSH
- RNA ribozomální 16S MeSH
- střevní mikroflóra genetika fyziologie MeSH
- Sus scrofa MeSH
- věkové faktory MeSH
- životní prostředí * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- bakteriální RNA MeSH
- RNA ribozomální 16S MeSH
Since microbiota may influence the physiology of its host including body weight increase, growth rate or feed intake, in this study we determined the microbiota composition in high or low residual feed intake (HRFI and LRFI) pig lines, of different age and/or subjected to sanitary stress by sequencing the V3/V4 variable region of 16S rRNA genes. Allisonella, Megasphaera, Mitsuokella, Acidaminococcus (all belonging to Firmicutes/class Negativicutes), Lactobacillus, Faecalibacterium, Catenibacterium, Butyrivibrio, Erysipelotrichaceae, Holdemania, Olsenella and Collinsella were more abundant in HRFI pigs. On the other hand, 26 genera including Bacteroides, Clostridium sensu stricto, Oscillibacter, Paludibacter, Elusimicrobium, Bilophila, Pyramidobacter and TM7 genera, and Clostridium XI and Clostridium XIVa clusters were more abundant in LRFI than HRFI pigs. Adaptation of microbiota to new diet after weaning was slower in LRFI than in HRFI pigs. Sanitary stress was of relatively minor influence on pig microbiota composition in both tested lines although abundance of Helicobacter increased in LRFI pigs subjected to stress. Selection for residual feed intake thus resulted in a selection of fecal microbiota of different composition. However, we cannot conclude whether residual feed intake was directly affected by different microbiota composition or whether the residual feed intake and microbiota composition are two independent consequences of yet unknown genetic traits differentially selected in the pigs of the two lines.
Zobrazit více v PubMed
Davis CD. The Gut Microbiome and Its Role in Obesity. Nutr Today. 2016;51(4):167–74. 10.1097/NT.0000000000000167 ; PubMed Central PMCID: PMCPMC5082693. PubMed DOI PMC
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. 10.1038/nature05414 . PubMed DOI
Fetissov SO. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol. 2017;13(1):11–25. 10.1038/nrendo.2016.150 . PubMed DOI
Burrough ER, Arruda BL, Patience JF, Plummer PJ. Alterations in the Colonic Microbiota of Pigs Associated with Feeding Distillers Dried Grains with Solubles. PLoS One. 2015;10(11):e0141337 10.1371/journal.pone.0141337 ; PubMed Central PMCID: PMCPMC4640664. PubMed DOI PMC
Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota. Appl Environ Microbiol. 2015;82(5):1569–76. 10.1128/AEM.03473-15 ; PubMed Central PMCID: PMCPMC4771310. PubMed DOI PMC
Tian L, Bruggeman G, van den Berg M, Borewicz K, Scheurink AJ, Bruininx E, et al. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Mol Nutr Food Res. 2017;61(1). 10.1002/mnfr.201600186 . PubMed DOI
Fleming SE, Fitch MD, DeVries S, Liu ML, Kight C. Nutrient utilization by cells isolated from rat jejunum, cecum and colon. J Nutr. 1991;121(6):869–78. 10.1093/jn/121.6.869 . PubMed DOI
Kenny M, Smidt H, Mengheri E, Miller B. Probiotics—do they have a role in the pig industry? Animal. 2011;5(3):462–70. 10.1017/S175173111000193X . PubMed DOI
McCormack UM, Curiao T, Buzoianu SG, Prieto ML, Ryan T, Varley P, et al. Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs. Appl Environ Microbiol. 2017;83(15). 10.1128/AEM.00380-17 ; PubMed Central PMCID: PMCPMC5514681. PubMed DOI PMC
Gilbert H, Billon Y, Brossard L, Faure J, Gatellier P, Gondret F, et al. Review: divergent selection for residual feed intake in the growing pig. Animal. 2017;11(9):1427–39. 10.1017/S175173111600286X ; PubMed Central PMCID: PMCPMC5561440. PubMed DOI PMC
Chatelet A, Gondret F, Merlot E, Gilbert H, Friggens NC, Le Floc'h N. Impact of hygiene of housing conditions on performance and health of two pig genetic lines divergent for residual feed intake. Animal. 2018;12(2):350–8. 10.1017/S1751731117001379 . PubMed DOI
Gilbert H, Bidanel JP, Gruand J, Caritez JC, Billon Y, Guillouet P, et al. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. J Anim Sci. 2007;85(12):3182–8. 10.2527/jas.2006-590 . PubMed DOI
Montagne L, Loisel F, Le Naou T, Gondret F, Gilbert H, Le Gall M. Difference in short-term responses to a high-fiber diet in pigs divergently selected for residual feed intake. J Anim Sci. 2014;92(4):1512–23. 10.2527/jas.2013-6623 . PubMed DOI
Barea R, Dubois S, Gilbert H, Sellier P, van Milgen J, Noblet J. Energy utilization in pigs selected for high and low residual feed intake. J Anim Sci. 2010;88(6):2062–72. 10.2527/jas.2009-2395 . PubMed DOI
van de Wouw M, Schellekens H, Dinan TG, Cryan JF. Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. J Nutr. 2017;147(5):727–45. 10.3945/jn.116.240481 . PubMed DOI
Kubasova T, Davidova-Gerzova L, Merlot E, Medvecky M, Polansky O, Gardan-Salmon D, et al. Housing Systems Influence Gut Microbiota Composition of Sows but Not of Their Piglets. PLoS One. 2017;12(1):e0170051 10.1371/journal.pone.0170051 ; PubMed Central PMCID: PMCPMC5234784 relating to employment, consultancy, patents, products in development, or marketed products, etc. The commercial partner also did not alter our adherence to PLOS ONE policies on sharing data and materials. PubMed DOI PMC
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. 10.1038/nmeth.f.303 ; PubMed Central PMCID: PMCPMC3156573. PubMed DOI PMC
Bian G, Ma S, Zhu Z, Su Y, Zoetendal EG, Mackie R, et al. Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environ Microbiol. 2016;18(5):1566–77. 10.1111/1462-2920.13272 . PubMed DOI
Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307(5717):1955–9. 10.1126/science.1109051 . PubMed DOI
Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008;4(5):447–57. 10.1016/j.chom.2008.09.007 ; PubMed Central PMCID: PMCPMC2605320. PubMed DOI PMC
De Rodas B, Youmans BP, Danzeisen JL, Tran H, Johnson TJ. Microbiome Profiling of Commercial Pigs from Farrow to Finish. J Anim Sci. 2018. 10.1093/jas/sky109 . PubMed DOI PMC
De Bruyne E, Flahou B, Chiers K, Meyns T, Kumar S, Vermoote M, et al. An experimental Helicobacter suis infection causes gastritis and reduced daily weight gain in pigs. Vet Microbiol. 2012;160(3–4):449–54. 10.1016/j.vetmic.2012.06.031 . PubMed DOI
Fairbrother JM, Nadeau E, Gyles CL. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev. 2005;6(1):17–39. . PubMed
Magnusdottir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol. 2017;35(1):81–9. 10.1038/nbt.3703 . PubMed DOI
Host Species Adaptation of Obligate Gut Anaerobes Is Dependent on Their Environmental Survival