Modulation of Gut Microbiome and Autism Symptoms of ASD Children Supplemented with Biological Response Modifier: A Randomized, Double-Blinded, Placebo-Controlled Pilot Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
Grantová podpora
0
Ministry of Defence of the Czech Republic - long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence
PubMed
38999736
PubMed Central
PMC11243103
DOI
10.3390/nu16131988
PII: nu16131988
Knihovny.cz E-zdroje
- Klíčová slova
- autism, biological response modifier, microbiome, psychobiotics,
- MeSH
- autistická porucha mikrobiologie MeSH
- dítě MeSH
- dvojitá slepá metoda MeSH
- dysbióza mikrobiologie MeSH
- feces mikrobiologie MeSH
- lidé MeSH
- pilotní projekty MeSH
- poruchy autistického spektra * mikrobiologie MeSH
- potravní doplňky * MeSH
- předškolní dítě MeSH
- prospektivní studie MeSH
- střevní mikroflóra * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
The etiology and mechanisms of autism and autism spectrum disorder (ASD) are not yet fully understood. There is currently no treatment for ASD for providing significant improvement in core symptoms. Recent studies suggest, however, that ASD is associated with gut dysbiosis, indicating that modulation of gut microbiota in children with ASD may thus reduce the manifestation of ASD symptoms. The aim of this pilot study (prospective randomized, double-blinded, placebo-controlled) was to evaluate efficacy of the biological response modifier Juvenil in modulating the microbiome of children with ASD and, in particular, whether Juvenil is able to alleviate the symptoms of ASD. In total, 20 children with ASD and 12 neurotypical children were included in our study. Supplementation of ASD children lasted for three months. To confirm Juvenil's impact on the gut microbiome, stool samples were collected from all children and the microbiome's composition was analyzed. This pilot study demonstrated that the gut microbiome of ASD children differed significantly from that of healthy controls and was converted by Juvenil supplementation toward a more neurotypical microbiome that positively modulated children's autism symptoms.
Department of Psychiatry University Hospital in Hradec Kralove 500 03 Hradec Kralove Czech Republic
Faculty of Medicine Charles University 500 03 Hradec Kralove Czech Republic
Military Faculty of Medicine University of Defence 500 03 Hradec Kralove Czech Republic
Zobrazit více v PubMed
Elsabbagh M., Divan G., Koh Y.J., Kim Y.S., Kauchali S., Marcin C., Montiel-Nava C., Patel V., Paula C.S., Wang C., et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012;5:160–179. doi: 10.1002/aur.239. PubMed DOI PMC
Baio J., Wiggins L., Christensen D.L., Maenner M.J., Daniels J., Warren Z., Kurzius-Spencer M., Zahorodny W., Rosenberg C.R., White T. Prevalence of autism spectrum disorder among children aged 8 years-Autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill. Summ. 2018;67:1. doi: 10.15585/mmwr.ss6706a1. PubMed DOI PMC
Venigalla H., Mekala H.M., Hassan M., Ahmed R., Zain H., Dar S., Veliz S. An update on biomarkers in psychiatric disorders–are we aware use in our clinical practice. Ment. Health Fam. Med. 2017;13:471–479.
Styles M., Alsharshani D., Samara M., Alsharshani M., Khattab A., Walid M., Al-Dewik N.I. Risk factors, diagnosis, prognosis and treatment of autism. Front. Biosci. 2020;25:1682–1717. PubMed
Kang D.W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasano A., Khoruts A., Geis E., Maldonado J., McDonough-Means S. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome. 2017;5:10. doi: 10.1186/s40168-016-0225-7. PubMed DOI PMC
Mannion A., Leader G. Comorbidity in autism spectrum disorder: A literature review. Res. Autism Spectr. Disord. 2013;7:1595–1616. doi: 10.1016/j.rasd.2013.09.006. DOI
Doshi-Velez F., Ge Y., Kohane I. Comorbidity clusters in autism spectrum disorders: An electronic health record time-series analysis. Pediatrics. 2014;133:e54–e63. doi: 10.1542/peds.2013-0819. PubMed DOI PMC
Fiorentino M., Sapone A., Senger S., Camhi S.S., Kadzielski S.M., Buie T.M., Kelly D.L., Cascella N., Fasano A. Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol. Autism. 2016;7:49. doi: 10.1186/s13229-016-0110-z. PubMed DOI PMC
Hallmayer J., Cleveland S., Torres A., Phillips J., Cohen B., Torigoe T., Miller J., Fedele A., Collins J., Smith K. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry. 2011;68:1095–1102. doi: 10.1001/archgenpsychiatry.2011.76. PubMed DOI PMC
Ogunrinola G.A., Oyewale J.O., Oshamika O.O., Olasehinde G.I. The Human Microbiome and Its Impacts on Health. Int. J. Microbiol. 2020;2020:8045646. doi: 10.1155/2020/8045646. PubMed DOI PMC
Zhu S., Jiang Y., Xu K., Cui M., Ye W., Zhao G., Jin L., Chen X. The progress of gut microbiome research related to brain disorders. J. Neuroinflamm. 2020;17:25. doi: 10.1186/s12974-020-1705-z. PubMed DOI PMC
Liu L., Wang H., Chen X., Zhang Y., Zhang H., Xie P. Gut microbiota and its metabolites in depression: From pathogenesis to treatment. EBioMedicine. 2023;90:104527. doi: 10.1016/j.ebiom.2023.104527. PubMed DOI PMC
Asadi A., Shadab M.N., Mohamadi M.H., Shokri F., Heidary M., Sadeghifard N., Khoshnood S. Obesity and gut-microbiota-brain axis: A narrative review. J. Clin. Lab. Anal. 2022;36:e24420. doi: 10.1002/jcla.24420. PubMed DOI PMC
Quaglio A.E.V., Grillo T.G., De Oliveira E.C.S., Di Stasi L.C., Sassaki L.Y. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J. Gastroenterol. 2022;28:4053–4060. doi: 10.3748/wjg.v28.i30.4053. PubMed DOI PMC
Canakis A., Haroon M., Weber H.C. Irritable bowel syndrome and gut microbiota. Curr. Opin. Endocrinol. Diabetes Obes. 2020;27:28–35. doi: 10.1097/MED.0000000000000523. PubMed DOI
Louis P. Does the human gut microbiota contribute to the etiology of autism spectrum disorders? Dig. Dis. Sci. 2012;57:1987–1989. doi: 10.1007/s10620-012-2286-1. PubMed DOI
Sivamaruthi B.S., Suganthy N., Kesika P., Chaiyasut C. The Role of Microbiome, Dietary Supplements, and Probiotics in Autism Spectrum Disorder. Int. J. Environ. Res. Public Health. 2020;17:2647. doi: 10.3390/ijerph17082647. PubMed DOI PMC
Saurman V., Margolis K.G., Luna R.A. Autism Spectrum Disorder as a Brain-Gut-Microbiome Axis Disorder. Dig. Dis. Sci. 2020;65:818–828. doi: 10.1007/s10620-020-06133-5. PubMed DOI PMC
Alamoudi M.U., Hosie S., Shindler A.E., Wood J.L., Franks A.E., Hill-Yardin E.L. Comparing the Gut Microbiome in Autism and Preclinical Models: A Systematic Review. Front. Cell. Infect. Microbiol. 2022;12:905841. doi: 10.3389/fcimb.2022.905841. PubMed DOI PMC
Ristori M.V., Quagliariello A., Reddel S., Ianiro G., Vicari S., Gasbarrini A., Putignani L. Autism, Gastrointestinal Symptoms and Modulation of Gut Microbiota by Nutritional Interventions. Nutrients. 2019;11:2812. doi: 10.3390/nu11112812. PubMed DOI PMC
Martínez-González A.E., Andreo-Martínez P. Prebiotics, probiotics and fecal microbiota transplantation in autism: A systematic review. Rev. Psiquiatr. Salud Ment. 2020;13:150–164. doi: 10.1016/j.rpsm.2020.06.002. PubMed DOI
Ansari F., Pourjafar H., Tabrizi A., Homayouni A. The Effects of Probiotics and Prebiotics on Mental Disorders: A Review on Depression, Anxiety, Alzheimer, and Autism Spectrum Disorders. Curr. Pharm. Biotechnol. 2020;21:555–565. doi: 10.2174/1389201021666200107113812. PubMed DOI
Tan Q., Orsso C.E., Deehan E.C., Kung J.Y., Tun H.M., Wine E., Madsen K.L., Zwaigenbaum L., Haqq A.M. Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: A systematic review. Autism Res. 2021;14:1820–1836. doi: 10.1002/aur.2560. PubMed DOI
Taniya M.A., Chung H.J., Al Mamun A., Alam S., Aziz M.A., Emon N.U., Islam M.M., Hong S.S., Podder B.R. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front. Cell. Infect. Microbiol. 2022;12:915701. doi: 10.3389/fcimb.2022.915701. PubMed DOI PMC
Kubelkova K., Macela A. A short history of Imuregne—An original tissue extract. MMSL. 2019;88:115–120. doi: 10.31482/mmsl.2019.008. DOI
Bostik V., Kubelková K., Macela A. Juvenil, a natural immune booster affecting biological responses through modulation of gut microbiota composition. MMSL. 2023. in press . DOI
Kubelkova K., Hubalek M., Rehulka P., Rehulkova H., Friedecky D., Zakova J., Macela A. Molecular characterization of alcohol/ether extract from bovine tissue. MMSL. 2021;90:120–136. doi: 10.31482/mmsl.2021.012. DOI
Kubelkova K., Rychlik I., Crhanova M., Karasova D., Slizova D., Zakova J., Luksikova L., Macela A. Gut microbiota alterations by nutritional supplement Imuregen. MMSL. 2020;89:114–125. doi: 10.31482/mmsl.2020.008. DOI
Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Girardot C., Scholtalbers J., Sauer S., Su S.Y., Furlong E.E. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinform. 2016;17:419. doi: 10.1186/s12859-016-1284-2. PubMed DOI PMC
Chen S., Zhou Y., Chen Y., Gu J. An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Bokulich N.A., Kaehler B.D., Rideout J.R., Dillon M., Bolyen E., Knight R., Huttley G.A., Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90. doi: 10.1186/s40168-018-0470-z. PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glockner F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC
Williams B.L., Hornig M., Parekh T., Lipkin W.I. Application of novel PCR-based methods for detection, quantification, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio. 2012;3:e00261-11. doi: 10.1128/mBio.00261-11. PubMed DOI PMC
Song Y.L., Liu C.X., Finegold S.A. Real-time PCR quantitation of Clostridia in feces of autistic children. Appl. Environ. Microbiol. 2004;70:6459–6465. doi: 10.1128/AEM.70.11.6459-6465.2004. PubMed DOI PMC
De Angelis M., Piccolo M., Vannini L., Siragusa S., De Giacomo A., Serrazzanetti D.I., Cristofori F., Guerzoni M.E., Gobbetti M., Francavilla R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE. 2013;8:18. doi: 10.1371/journal.pone.0076993. PubMed DOI PMC
Wang L., Christophersen C.T., Sorich M.J., Gerber J.P., Angley M.T., Conlon M.A. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism. 2013;4:42. doi: 10.1186/2040-2392-4-42. PubMed DOI PMC
Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., Ostatnikova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015;138:179–187. doi: 10.1016/j.physbeh.2014.10.033. PubMed DOI
Yuan J., Zhu L., Liu X., Li T., Zhang Y., Ying T., Wang B., Wang J., Dong H., Feng E. A Proteome Reference Map and Proteomic Analysis of Bifidobacterium longum NCC2705. Mol. Cell. Proteom. 2006;5:11. doi: 10.1074/mcp.M500410-MCP200. PubMed DOI
Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L.G., Gratadoux J.J., Blugeon S., Bridonneau C., Furet J.P., Corthier G. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Cron disease patients. Proc. Natl. Acad. Sci. USA. 2008;105:16731–16736. doi: 10.1073/pnas.0804812105. PubMed DOI PMC
Rossi O., van Berkel L.A., Chain F., Tanweer Khan M., Taverne N., Sokol H., Duncan S.H., Flint H.J., Harmsen H.J., Langella P. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci. Rep. 2016;6:18507. doi: 10.1038/srep18507. PubMed DOI PMC
Zeamer A.L., Salive M.C., An X., Beaudoin F.L., House S.L., Stevens J.S., Zeng D., Neylan T.C., Clifford G.D., Linnstaedt S.D. Association between microbiome and the development of adverse posttraumatic neuropsychiatric sequelae after traumatic stress exposure. Transl. Psychiatry. 2023;13:354. doi: 10.1038/s41398-023-02643-8. PubMed DOI PMC
Coello K., Hansen T.H., Sørensen N., Ottesen N.M., Miskowiak K.W., Pedersen O., Kessing L.V., Vinberg M. Affective disorders impact prevalence of Flavonifractor and abundance of Christensenellaceae in gut microbiota. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021;110:110300. doi: 10.1016/j.pnpbp.2021.110300. PubMed DOI
Vinod K., Narendrakumar M., Suchismitha I., Chitra D. Divergences in gene repertoire among the reference Prevotella genomes derived from distinct human body sites. BMC Genom. 2015;16:153 PubMed PMC
Ley R.E. Gut microbiota in 2015: Prevotella in the gut: Choose carefully. Nature Reviews. Gastroenterol. Hepatol. 2016;13:69–70. PubMed
Tett A., Pasolli E., Masetti G., Ercolini D., Segata N. Prevotella diversity, niches and interactions with the human host. Nat. Rev. Microbiol. 2021;19:585–599. doi: 10.1038/s41579-021-00559-y. PubMed DOI PMC
Agarwala S., Naik B., Ramachandra N.B. Mucosa-associated specific bacterial species disrupt the intestinal epithelial barrier in the autism phenome. Brain Behav. Immun. Health. 2021;15:100269. doi: 10.1016/j.bbih.2021.100269. PubMed DOI PMC
Abdelsalam N.A., Hegazy S.M., Aziz R.K. The curious case of Prevotella copri. Gut Microbes. 2023;15:2249152. doi: 10.1080/19490976.2023.2249152. PubMed DOI PMC
Chang C.J., Lin T.L., Tsai Y.L., Wu T.R., Lai W.F., Lu C.C., Lai H.C. Next generation probiotics in disease amelioration. J. Food Drug Anal. 2019;27:615–622. doi: 10.1016/j.jfda.2018.12.011. PubMed DOI PMC
Tremaroli V., Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249. doi: 10.1038/nature11552. PubMed DOI
García-Montero C., Fraile-Martínez O., Gómez-Lahoz A.M., Pekarek L., Castellanos A.J., Noguerales-Fraguas F., Coca S., Guijarro L.G., García-Honduvilla N., Asúnsolo A. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients. 2021;13:699. doi: 10.3390/nu13020699. PubMed DOI PMC
Khine W.W.T., Rahayu E.S., See T.Y., Kuah S., Salminen S., Nakayama J., Lee Y.K. Indonesian children fecal microbiome from birth until weaning was different from microbiomes of their mothers. Gut Microbes. 2020;12:1761240. doi: 10.1080/19490976.2020.1761240. PubMed DOI PMC
Kubasova T., Davidova-Gerzova L., Babak V., Cejkova D., Montagne L., Le-Floc’h N., Rychlik I. Effects of host genetics and environmental conditions on fecal microbiota composition of pigs. PLoS ONE. 2018;13:e0201901. doi: 10.1371/journal.pone.0201901. PubMed DOI PMC
Karasova D., Crhanova M., Babak V., Jerabek M., Brzobohaty L., Matesova Z., Rychlik I. Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea—A field study. Res. Vet. Sci. 2021;135:59–65. doi: 10.1016/j.rvsc.2020.12.022. PubMed DOI
Simopoulos A.P. Importance of the Omega-6/Omega-3 Balance in Health and Disease: Evolutionary Aspects of Diet, Healthy Agriculture, Healthy Nutrition, Healthy People. Karger Publishers; Basel, Switzerland: 2011. pp. 10–21. PubMed
Yau S.Y., Yip Y.S.L., Formolo D.A., He S., Lee T.H.Y., Wen C., Hryciw D.H. Chronic consumption of a high linoleic acid diet during pregnancy, lactation and post-weaning period increases depression-like behavior in male, but not female offspring. Behav. Brain Res. 2022;416:113538. doi: 10.1016/j.bbr.2021.113538. PubMed DOI
Liu Y.W., Liong M.T., Chung Y.E., Huang H.Y., Peng W.S., Cheng Y.F., Lin Y.S., Wu Y.Y., Tsai Y.C. Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2019;11:820. doi: 10.3390/nu11040820. PubMed DOI PMC
Critchfield J.W., van Hemert S., Ash M., Mulder L., Ashwood P. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol. Res. Pract. 2011;2011:161358. doi: 10.1155/2011/161358. PubMed DOI PMC
Santocchi E., Guiducci L., Fulceri F., Billeci L., Buzzigoli E., Apicella F., Calderoni S., Grossi E., Morales M.A., Muratori F. Gut to brain interaction in Autism Spectrum Disorders: A randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry. 2016;16:183. doi: 10.1186/s12888-016-0887-5. PubMed DOI PMC
Arnold L.E., Luna R.A., Williams K., Chan J., Parker R.A., Wu Q., Hollway J.A., Jeffs A., Lu F., Coury D.L., et al. Probiotics for Gastrointestinal Symptoms and Quality of Life in Autism: A Placebo-Controlled Pilot Trial. J. Child Adolesc. Psychopharmacol. 2019;29:659–669. doi: 10.1089/cap.2018.0156. PubMed DOI PMC
Sanctuary M.R., Kain J.N., Chen S.Y., Kalanetra K., Lemay D.G., Rose D.R., Yang H.T., Tancredi D.J., German J.B., Slupsky C.M. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS ONE. 2019;14:e0210064. doi: 10.1371/journal.pone.0210064. PubMed DOI PMC
Kang D.W., Adams J.B., Coleman D.M., Pollard E.L., Maldonado J., McDonough-Means S., Caporaso J.G., Krajmalnik-Brown R. Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Sci. Rep. 2019;9:5821. doi: 10.1038/s41598-019-42183-0. PubMed DOI PMC
Wang Y., Li N., Yang J.J., Zhao D.M., Chen B., Zhang G.Q., Chen S., Cao R.F., Yu H., Zhao C.Y., et al. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacol. Res. 2020;157:104784. doi: 10.1016/j.phrs.2020.104784. PubMed DOI
Sarkar A., Lehto S.M., Harty S., Dinan T.G., Cryan J.F., Burnet P.W.J. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci. 2016;39:763–781. doi: 10.1016/j.tins.2016.09.002. PubMed DOI PMC
Kong X.J., Liu J., Liu K., Koh M., Sherman H., Liu S., Tian R., Sukijthamapan P., Wang J., Fong M. Probiotic and Oxytocin Combination Therapy in Patients with Autism Spectrum Disorder: A Randomized, Double-Blinded, Placebo-Controlled Pilot Trial. Nutrients. 2021;13:1552. doi: 10.3390/nu13051552. PubMed DOI PMC