Loss of loop adenines alters human telomere d[AG3(TTAG3)3] quadruplex folding
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25428355
PubMed Central
PMC4267657
DOI
10.1093/nar/gku1245
PII: gku1245
Knihovny.cz E-zdroje
- MeSH
- adenin chemie MeSH
- draslík chemie MeSH
- G-kvadruplexy * MeSH
- guanin chemie MeSH
- lidé MeSH
- molekulární modely MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- poškození DNA * MeSH
- telomery chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenin MeSH
- draslík MeSH
- guanin MeSH
Abasic (AP) lesions are the most frequent type of damages occurring in cellular DNA. Here we describe the conformational effects of AP sites substituted for 2'-deoxyadenosine in the first (ap7), second (ap13) or third (ap19) loop of the quadruplex formed in K(+) by the human telomere DNA 5'-d[AG3(TTAG3)3]. CD spectra and electrophoresis reveal that the presence of AP sites does not hinder the formation of intramolecular quadruplexes. NMR spectra show that the structural heterogeneity is substantially reduced in ap7 and ap19 as compared to that in the wild-type. These two (ap7 and ap19) sequences are shown to adopt the hybrid-1 and hybrid-2 quadruplex topology, respectively, with AP site located in a propeller-like loop. All three studied sequences transform easily into parallel quadruplex in dehydrating ethanol solution. Thus, the AP site in any loop region facilitates the formation of the propeller loop. Substitution of all adenines by AP sites stabilizes the parallel quadruplex even in the absence of ethanol. Whereas guanines are the major determinants of quadruplex stability, the presence or absence of loop adenines substantially influences quadruplex folding. The naturally occurring adenine-lacking sites in the human telomere DNA can change the quadruplex topology in vivo with potentially vital biological consequences.
Zobrazit více v PubMed
Wang Z. DNA damage and mutagenesis. In: Smart RC, Hodgson E, editors. Molecular and Biochemical Toxicology. John Wiley & Sons, Inc; 2007. pp. 441–491.
Nakamura J., Swenberg J.A. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 1999;59:2522–2526. PubMed
Mellon I. DNA repair. In: Smart RC, Hodgson E, editors. Molecular and Biochemical Toxicology. John Wiley & Sons, Inc; 2007. pp. 493–535.
Gelfand C.A., Plum G.E., Grollman A.P., Johnson F., Breslauer K.J. Thermodynamic consequences of an abasic lesion in duplex DNA are strongly dependent on base sequence. Biochemistry. 1998;37:7321–7327. PubMed
Goljer I., Withka J.M., Kao J.Y., Bolton P.H. Effects of the presence of an aldehydic abasic site on the thermal stability and rates of helix opening and closing of duplex DNA. Biochemistry. 1992;31:11614–11619. PubMed
Sagi J., Hang B., Singer B. Sequence-dependent repair of synthetic AP sites in 15-mer and 35-mer oligonucleotides: role of thermodynamic stability imposed by neighbor bases. Chem. Res. Toxicol. 1999;12:917–923. PubMed
Sagi J., Guliaev A.B., Singer B. 15-mer DNA duplexes containing an abasic site are thermodynamically more stable with adjacent purines than with pyrimidines. Biochemistry. 2001;40:3859–3868. PubMed
Goljer I., Kumar S., Bolton P.H. Refined solution structure of a DNA heteroduplex containing an aldehydic abasic site. J. Biol. Chem. 1995;270:22980–22987. PubMed
Beger R.D., Bolton P.H. Structures of apurinic and apyrimidinic sites in duplex DNAs. J. Biol. Chem. 1998;273:15565–15573. PubMed
Goodman M., Cai H., Bloom L., Eritja R. Nucleotide insertion and primer extension at abasic template sites in different sequence contexts. In: Wallace SS, VanHouten B, Kow YW, editors. DNA Damage: Effects on DNA Structure and Protein Recognition. Vol. 726. New York: New York Academy of Sciences; 1994. pp. 132–143. PubMed
Kiyonari S., Tahara S., Shirai T., Iwai S., Ishino S., Ishino Y. Biochemical properties and base excision repair complex formation of apurinic/apyrimidinic endonuclease from Pyrococcus furiosus. Nucleic Acids Res. 2009;37:6439–6453. PubMed PMC
Völker J., Plum G.E., Klump H.H., Breslauer K.J. DNA repair and DNA triplet repeat expansion: the impact of abasic lesions on triplet repeat DNA energetics. J. Am. Chem. Soc. 2009;131:9354–9360. PubMed PMC
Völker J., Plum G.E., Klump H.H., Breslauer K.J. Energy crosstalk between DNA lesions: implications for allosteric coupling of DNA repair and triplet repeat expansion pathways. J. Am. Chem. Soc. 2010;132:4095–4097. PubMed PMC
Sagi J. G-quadruplexes incorporating modified constituents: a review. J. Biomol. Struct. Dyn. 2014;32:477–511. PubMed
Biffi G., Tannahill D., McCafferty J., Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013;5:182–186. PubMed PMC
Maizels N. Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat. Struct. Mol. Biol. 2006;13:1055–1059. PubMed
Zahler A.M., Williamson J.R., Cech T.R., Prescott D.M. Inhibition of telomerase by G-quartet DNA structures. Nature. 1991;350:718–720. PubMed
Maizels N. Quadruplexes and the Biology of G-Rich Genomic Regions. In: Neidle S, Balasubramanian S, editors. Quadruplex Nucleic Acids. Cambridge: RSC Publishing; 2007. pp. 228–252.
Esposito V., Martino L., Citarella G., Virgilio A., Mayol L., Giancola C., Galeone A. Effects of abasic sites on structural, thermodynamic and kinetic properties of quadruplex structures. Nucleic Acids Res. 2010;38:2069–2080. PubMed PMC
Skolakova P., Bednarova K., Vorlickova M., Sagi J. Quadruplexes of human telomere dG(3)(TTAG(3))(3) sequences containing guanine abasic sites. Biochem. Biophys. Res. Commun. 2010;399:203–208. PubMed
Fujimoto T., Nakano S., Miyoshi D., Sugimoto N. The effects of molecular crowding on the structure and stability of G-quadruplexes with an abasic site. J. Nucleic Acids. 2011;2011:1–9. PubMed PMC
Virgilio A., Petraccone L., Esposito V., Citarella G., Giancola C., Galeone A. The abasic site lesions in the human telomeric sequence d[TA(G3T2A)3G3]: a thermodynamic point of view. BBA - Gen. Subjects. 2012;1820:2037–2043. PubMed
Esposito V., Oliviero G., Pepe A., Virgilio A., Galeone A. Studies on the influence of inversion of polarity sites on the dG residues glycosidic conformation in quadruplex structures. Nucleic Acids Symp. Ser. 2008;52:177–178. PubMed
Rachwal P.A., Brown T., Fox K.R. Sequence effects of single base loops in intramolecular quadruplex DNA. FEBS Lett. 2007;581:1657–1660. PubMed
Beckett J., Burns J., Broxson C., Tornaletti S. Spontaneous DNA lesions modulate DNA structural transitions occurring at nuclease hypersensitive element III1 of the human c-myc proto-oncogene. Biochemistry. 2012;51:5257–5268. PubMed
Dai J., Carver M., Yang D. Polymorphism of human telomeric quadruplex structures. Biochimie. 2008;90:1172–1183. PubMed PMC
Wang Y., Patel D.J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993;1:263–282. PubMed
Parkinson G.N., Lee M.P.H., Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature. 2002;417:876–880. PubMed
Ambrus A., Chen D., Dai J., Bialis T., Jones R.A., Yang D. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res. 2006;34:2723–2735. PubMed PMC
Luu K.N., Phan A.T., Kuryavyi V., Lacroix L., Patel D.J. Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. J. Am. Chem. Soc. 2006;128:9963–9970. PubMed PMC
Dai J., Punchihewa C., Ambrus A., Chen D., Jones R.A., Yang D. Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Res. 2007;35:2440–2450. PubMed PMC
Dai J., Carver M., Punchihewa C., Jones R.A., Yang D. Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic. Acids Res. 2007;35:4927–4940. PubMed PMC
Phan A.T., Kuryavyi V., Luu K.N., Patel D.J. Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res. 2007;35:6517–6525. PubMed PMC
Lim K.W., Amrane S., Bouaziz S., Xu W., Mu Y., Patel D.J., Luu K.N., Phan A.T. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J. Am. Chem. Soc. 2009;131:4301–4309. PubMed PMC
Zhang Z., Dai J., Veliath E., Jones R.A., Yang D. Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res. 2010;38:1009–1021. PubMed PMC
Lim K.W., Ng V.C.M., Martín-Pintado N., Heddi B., Phan A.T. Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Res. 2013;41:10556–10562. PubMed PMC
Dias E., Battiste J.L., Williamson J.R. Chemical probe for glycosidic conformation in telomeric DNAs. J. Am. Chem. Soc. 1994;116:4479–4480.
Xu Y., Noguchi Y., Sugiyama H. The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. Bioorg. Med. Chem. 2006;14:5584–5591. PubMed
Lech C.J., Li Z., Heddi B., Phan A.T. 2′-F-ANA-guanosine and 2′-F-guanosine as powerful tools for structural manipulation of G-quadruplexes. Chem. Commun. 2012;48:11425–11427. PubMed
Risitano A., Fox K.R. Influence of loop size on the stability of intramolecular DNA quadruplexes. Nucleic Acids Res. 2004;32:2598–2606. PubMed PMC
Hazel P., Huppert J., Balasubramanian S., Neidle S. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 2004;126:16405–16415. PubMed
Rachwal P.A., Findlow I.S., Werner J.M., Brown T., Fox K.R. Intramolecular DNA quadruplexes with different arrangements of short and long loops. Nucleic Acids Res. 2007;35:4214–4222. PubMed PMC
Vorlickova M., Bednarova K., Kejnovska I., Kypr J. Intramolecular and intermolecular guanine quadruplexes of DNA in aqueous salt and ethanol solutions. Biopolymers. 2007;86:1–10. PubMed
Bugaut A., Balasubramanian S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry. 2008;47:689–697. PubMed PMC
Guédin A., De Cian A., Gros J., Lacroix L., Mergny J.-L. Sequence effects in single-base loops for quadruplexes. Biochimie. 2008;90:686–696. PubMed
Guédin A., Gros J., Alberti P., Mergny J.-L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010;38:7858–7868. PubMed PMC
Tippana R., Xiao W., Myong S. G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic Acids Res. 2014;42:8106–8114. PubMed PMC
Palacky J., Vorlickova M., Kejnovska I., Mojzes P. Polymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study. Nucleic Acids Res. 2013;41:1005–1016. PubMed PMC
Gray D., Hung S., Johnson K. Absorption and circular-dichroism spectroscopy of nucleic-acid duplexes and triplexes. Methods Enzymol. 1995;246:19–34. PubMed
Phan A.T. Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA. J. Biomol. NMR. 2000;16:175–178. PubMed
Fiala R., Munzarová M.L., Sklenář V. Experiments for correlating quaternary carbons in RNA bases. J. Biomol. NMR. 2004;29:477–490. PubMed
Piotto M., Saudek V., Sklenar V. Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J. Biomol. NMR. 1992;6:661–665. PubMed
Goddard T.D., Kneller D.G. SPARKY 3. San Francisco: University of California;
Vorlickova M., Kejnovska I., Sagi J., Renciuk D., Bednarova K., Motlova J., Kypr J. Circular dichroism and guanine quadruplexes. Methods. 2012;57:64–75. PubMed
Renciuk D., Kejnovska I., Skolakova P., Bednarova K., Motlova J., Vorlickova M. Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res. 2009;37:6625–6634. PubMed PMC
Vorlickova M., Tomasko M., Sagi A.J., Bednarova K., Sagi J. 8-Oxoguanine in a quadruplex of the human telomere DNA sequence. FEBS J. 2012;279:29–39. PubMed
Tomasko M., Vorlickova M., Sagi J. Substitution of adenine for guanine in the quadruplex-forming human telomere DNA sequence G(3)(T(2)AG(3))(3) Biochimie. 2009;91:171–179. PubMed
Sagi J., Renciuk D., Tomasko M., Vorlickova M. Quadruplexes of human telomere DNA analogs designed to contain G:A:G:A, G:G:A:A, and A:A:A:A tetrads. Biopolymers. 2010;93:880–886. PubMed
Kejnovska I., Vorlickova M., Brazdova M., Sagi J. Stability of human telomere quadruplexes at high DNA concentrations. Biopolymers. 2014;101:428–438. PubMed
Phan A.T., Patel D.J. A site-specific low-enrichment 15N, 13C isotope-labeling approach to unambiguous NMR spectral assignments in nucleic acids. J. Am. Chem. Soc. 2002;124:1160–1161. PubMed
Feigon J., Koshlap K.M., Smith F.W. H-1 NMR spectroscopy of DNA triplexes and quadruplexes. Methods Enzymol. 1995;261:225–255. PubMed
Loop permutation affects the topology and stability of G-quadruplexes
i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions