Loop permutation affects the topology and stability of G-quadruplexes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30184167
PubMed Central
PMC6182180
DOI
10.1093/nar/gky757
PII: 5089904
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- cirkulární dichroismus MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny * MeSH
- sekvence nukleotidů MeSH
- termodynamika * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
G-quadruplexes are unusual DNA and RNA secondary structures ubiquitous in a variety of organisms including vertebrates, plants, viruses and bacteria. The folding topology and stability of intramolecular G-quadruplexes are determined to a large extent by their loops. Loop permutation is defined as swapping two or three of these regions so that intramolecular G-quadruplexes only differ in the sequential order of their loops. Over the past two decades, both length and base composition of loops have been studied extensively, but a systematic study on the effect of loop permutation has been missing. In the present work, 99 sequences from 21 groups with different loop permutations were tested. To our surprise, both conformation and thermal stability are greatly dependent on loop permutation. Loop permutation actually matters as much as loop length and base composition on G-quadruplex folding, with effects on Tm as high as 17°C. Sequences containing a longer central loop have a high propensity to adopt a stable non-parallel topology. Conversely, sequences containing a short central loop tend to form a parallel topology of lower stability. In addition, over half of interrogated sequences were found in the genomes of diverse organisms, implicating their potential regulatory roles in the genome or as therapeutic targets. This study illustrates the structural roles of loops in G-quadruplex folding and should help to establish rules to predict the folding pattern and stability of G-quadruplexes.
ARNA Laboratory Inserm U1212 CNRS UMR5320 IECB Université de Bordeaux Pessac 33607 France
Institute of Biophysics of the CAS v v i Královopolská 135 612 65 Brno Czech Republic
University of Chinese Academy of Sciences No 19A Yuquan Road Beijing 100049 China
Zobrazit více v PubMed
Giancola C., Montesarchio D.. Not unusual, just different! Chemistry, biology and applications of G-quadruplex nucleic acids. Biochim. Biophys. Acta. 2017; 1861:1201–1204. PubMed
Neidle S., Balasubramanian S.. Quadruplex Nucleic Acids. 2006; Cambridge: Royal Society of Chemistry.
Chaires J.B., Graves D.. Quadruplex Nucleic Acids. 2013; Berlin: Springer.
Hansel-Hertsch R., Di Antonio M., Balasubramanian S.. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 2017; 18:279–284. PubMed
Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S.. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015; 33:877–881. PubMed
Biffi G., Tannahill D., McCafferty J., Balasubramanian S.. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013; 5:182–186. PubMed PMC
Tang J., Kan Z.Y., Yao Y., Wang Q., Hao Y.H., Tan Z.. G-quadruplex preferentially forms at the very 3′ end of vertebrate telomeric DNA. Nucleic Acids Res. 2008; 36:1200–1208. PubMed PMC
Garg R., Aggarwal J., Thakkar B.. Genome-wide discovery of G-quadruplex forming sequences and their functional relevance in plants. Sci. Rep. 2016; 6:28211–28223. PubMed PMC
Ruggiero E., Richter S.N.. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res. 2018; 47:3270–3283. PubMed PMC
Marusic M., Hosnjak L., Krafcikova P., Poljak M., Viglasky V., Plavec J.. The effect of single nucleotide polymorphisms in G-rich regions of high-risk human papillomaviruses on structural diversity of DNA. Biochim. Biophys. Acta. 2017; 1861:1229–1236. PubMed
Di Salvo M., Pinatel E., Tala A., Fondi M., Peano C., Alifano P.. G4PromFinder: an algorithm for predicting transcription promoters in GC-rich bacterial genomes based on AT-rich elements and G-quadruplex motifs. BMC Bioinform. 2018; 19:36–46. PubMed PMC
Moye A.L., Porter K.C., Cohen S.B., Phan T., Zyner K.G., Sasaki N., Lovrecz G.O., Beck J.L., Bryan T.M.. Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun. 2015; 6:7643–7654. PubMed PMC
Rigo R., Palumbo M., Sissi C.. G-quadruplexes in human promoters: a challenge for therapeutic applications. Biochim. Biophys. Acta. 2017; 1861:1399–1413. PubMed
Hansel-Hertsch R., Beraldi D., Lensing S.V., Marsico G., Zyner K., Parry A., Di Antonio M., Pike J., Kimura H., Narita M. et al. . G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 2016; 48:1267–1272. PubMed
Rhodes D., Lipps H.J.. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015; 43:8627–8637. PubMed PMC
McLuckie K.I., Di Antonio M., Zecchini H., Xian J., Caldas C., Krippendorff B.F., Tannahill D., Lowe C., Balasubramanian S.. G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J. Am. Chem. Soc. 2013; 135:9640–9643. PubMed PMC
Piazza A., Boule J.B., Lopes J., Mingo K., Largy E., Teulade-Fichou M.P., Nicolas A.. Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acids Res. 2010; 38:4337–4348. PubMed PMC
Zhao A., Howson S.E., Zhao C., Ren J., Scott P., Wang C., Qu X.. Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA. Nucleic Acids Res. 2017; 45:5026–5035. PubMed PMC
Hu M.H., Chen S.B., Wang B., Ou T.M., Gu L.Q., Tan J.H., Huang Z.S.. Specific targeting of telomeric multimeric G-quadruplexes by a new triaryl-substituted imidazole. Nucleic Acids Res. 2017; 45:1606–1618. PubMed PMC
Bates P.J., Reyes-Reyes E.M., Malik M.T., Murphy E.M., O’Toole M.G., Trent J.O.. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: uses and mechanisms. Biochim. Biophys. Acta. 2017; 1861:1414–1428. PubMed
Do N.Q., Chung W.J., Truong T.H.A., Heddi B., Phan A.T.. G-quadruplex structure of an anti-proliferative DNA sequence. Nucleic Acids Res. 2017; 45:7487–7493. PubMed PMC
Musumeci D., Riccardi C., Montesarchio D.. G-quadruplex forming oligonucleotides as anti-HIV agents. Molecules. 2015; 20:17511–17532. PubMed PMC
Li Y., Jia G., Wang C., Cheng M., Li C.. Higher-order human telomeric G-quadruplex DNA metalloenzymes enhance enantioselectivity in the Diels-Alder reaction. ChemBioChem. 2015; 16:618–624. PubMed
Cheng M., Li Y., Zhou J., Jia G., Lu S.M., Yang Y., Li C.. Enantioselective sulfoxidation reaction catalyzed by a G-quadruplex DNA metalloenzyme. Chem. Commun. 2016; 52:9644–9647. PubMed
Dey S., Ruhl C.L., Jaschke A.. Catalysis of michael additions by covalently modified G-quadruplex DNA. Chemistry. 2017; 23:12162–12170. PubMed
Lv L., Guo Z., Wang J., Wang E.. G-quadruplex as signal transducer for biorecognition events. Curr. Pharm. Des. 2012; 18:2076–2095. PubMed
Connor A.C., Frederick K.A., Morgan E.J., McGown L.B.. Insulin capture by an insulin-linked polymorphic region G-quadruplex DNA oligonucleotide. J. Am. Chem. Soc. 2006; 128:4986–4991. PubMed PMC
Zhang D., Han J., Li Y., Fan L., Li X.. Aptamer-based K+ sensor: process of aptamer transforming into G-quadruplex. J. Phys. Chem. B. 2016; 120:6606–6611. PubMed
Macaya R.F., Schultze P., Smith F.W., Roe J.A., Feigon J.. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. P. Natl. Acad. Sci. U.S.A. 1993; 90:3745–3749. PubMed PMC
Yatsunyk L.A., Mendoza O., Mergny J.L.. “Nano-oddities”: unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. Acc. Chem. Res. 2014; 47:1836–1844. PubMed
Zhou J., Amrane S., Korkut D.N., Bourdoncle A., He H.Z., Ma D.L., Mergny J.L.. Combination of i-motif and G-quadruplex structures within the same strand: formation and application. Angew. Chem. Int. Ed. 2013; 52:7742–7746. PubMed
Feng G., Luo C., Yi H., Yuan L., Lin B., Luo X., Hu X., Wang H., Lei C., Nie Z. et al. . DNA mimics of red fluorescent proteins (RFP) based on G-quadruplex-confined synthetic RFP chromophores. Nucleic Acids Res. 2017; 45:10380–10392. PubMed PMC
Risitano A., Fox K.R.. Influence of loop size on the stability of intramolecular DNA quadruplexes. Nucleic Acids Res. 2004; 32:2598–2606. PubMed PMC
Hazel P., Huppert J., Balasubramanian S., Neidle S.. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 2004; 126:16405–16415. PubMed
Kumar N., Maiti S.. A thermodynamic overview of naturally occurring intramolecular DNA quadruplexes. Nucleic Acids Res. 2008; 36:5610–5622. PubMed PMC
Bugaut A., Balasubramanian S.. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry. 2008; 47:689–697. PubMed PMC
Tran P.L., Mergny J.L., Alberti P.. Stability of telomeric G-quadruplexes. Nucleic Acids Res. 2011; 39:3282–3294. PubMed PMC
Agrawal P., Lin C., Mathad R.I., Carver M., Yang D.. The major G-quadruplex formed in the human BCL-2 proximal promoter adopts a parallel structure with a 13-nt loop in K+ solution. J. Am. Chem. Soc. 2014; 136:1750–1753. PubMed PMC
Guédin A., Gros J., Alberti P., Mergny J.L.. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010; 38:7858–7868. PubMed PMC
Tippana R., Xiao W., Myong S.. G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic Acids Res. 2014; 42:8106–8114. PubMed PMC
Rachwal P.A., Brown T., Fox K.R.. Sequence effects of single base loops in intramolecular quadruplex DNA. FEBS Lett. 2007; 581:1657–1660. PubMed
Sattin G., Artese A., Nadai M., Costa G., Parrotta L., Alcaro S., Palumbo M., Richter S.N.. Conformation and stability of intramolecular telomeric G-quadruplexes: sequence effects in the loops. PLoS One. 2013; 8:e84113. PubMed PMC
Li Y.Y., Macgregor R.B. Jr. A thermodynamic study of adenine and thymine substitutions in the loops of the oligodeoxyribonucleotide HTel. J. Phys. Chem. B. 2016; 120:8830–8836. PubMed
Guédin A., De Cian A., Gros J., Lacroix L., Mergny J.L.. Sequence effects in single-base loops for quadruplexes. Biochimie. 2008; 90:686–696. PubMed
Ghimire C., Park S., Iida K., Yangyuoru P., Otomo H., Yu Z., Nagasawa K., Sugiyama H., Mao H.. Direct quantification of loop interaction and pi-pi stacking for G-quadruplex stability at the submolecular level. J. Am. Chem. Soc. 2014; 136:15537–15544. PubMed
Piazza A., Adrian M., Samazan F., Heddi B., Hamon F., Serero A., Lopes J., Teulade-Fichou M.P., Phan A.T., Nicolas A.. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J. 2015; 34:1718–1734. PubMed PMC
Lago S., Tosoni E., Nadai M., Palumbo M., Richter S.N.. The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids. Biochim. Biophys. Acta. 2017; 1861:1371–1381. PubMed PMC
Takahama K., Sugimoto C., Arai S., Kurokawa R., Oyoshi T.. Loop lengths of G-quadruplex structures affect the G-quadruplex DNA binding selectivity of the RGG motif in Ewing's sarcoma. Biochemistry. 2011; 50:5369–5378. PubMed
Kumar N., Sahoo B., Varun K.A., Maiti S., Maiti S.. Effect of loop length variation on quadruplex-Watson Crick duplex competition. Nucleic Acids Res. 2008; 36:4433–4442. PubMed PMC
Guan A.J., Zhang E.X., Xiang J.F., Li Q., Yang Q.F., Li L., Tang Y.L., Wang M.X.. Effects of loops and nucleotides in G-quadruplexes on their interaction with an azacalixarene, methylazacalix[6]pyridine. J. Phys. Chem. B. 2011; 115:12584–12590. PubMed
Yu H., Zhao C., Chen Y., Fu M., Ren J., Qu X.. DNA loop sequence as the determinant for chiral supramolecular compound G-quadruplex selectivity. J. Med. Chem. 2010; 53:492–498. PubMed
Collie G.W., Campbell N.H., Neidle S.. Loop flexibility in human telomeric quadruplex small-molecule complexes. Nucleic Acids Res. 2015; 43:4785–4799. PubMed PMC
Chen J., Guo Y., Zhou J., Ju H.. The effect of adenine repeats on G-quadruplex/hemin peroxidase mimicking DNAzyme activity. Chemistry. 2017; 23:4210–4215. PubMed
Cheng M., Zhou J., Jia G., Ai X., Mergny J.L., Li C.. Relations between the loop transposition of DNA G-quadruplex and the catalytic function of DNAzyme. Biochim. Biophys. Acta. 2017; 1861:1913–1920. PubMed
Rachwal P.A., Findlow I.S., Werner J.M., Brown T., Fox K.R.. Intramolecular DNA quadruplexes with different arrangements of short and long loops. Nucleic Acids Res. 2007; 35:4214–4222. PubMed PMC
Del Villar-Guerra R., Trent J.O., Chaires J.B.. G-quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew. Chem. Int. Ed. 2017; 57:7171–7175. PubMed PMC
Mergny J.L., Phan A.T., Lacroix L.. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998; 435:74–78. PubMed
Webba da Silva M., Trajkovski M., Sannohe Y., Ma’ani Hessari N., Sugiyama H., Plavec J.. Design of a G-quadruplex topology through glycosidic bond angles. Angew. Chem. Int. Ed. 2009; 48:9167–9170. PubMed
Arora A., Maiti S.. Stability and molecular recognition of quadruplexes with different loop length in the absence and presence of molecular crowding agents. J. Phys. Chem. B. 2009; 113:8784–8792. PubMed
Babinsky M., Fiala R., Kejnovska I., Bednarova K., Marek R., Sagi J., Sklenar V., Vorlickova M.. Loss of loop adenines alters human telomere d[AG3(TTAG3)3] quadruplex folding. Nucleic Acids Res. 2014; 42:14031–14041. PubMed PMC
Cea V., Cipolla L., Sabbioneda S.. Replication of Structured DNA and its implication in epigenetic stability. Front. Genet. 2015; 6:209–215. PubMed PMC
Palumbo S.L., Memmott R.M., Uribe D.J., Krotova-Khan Y., Hurley L.H., Ebbinghaus S.W.. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res. 2008; 36:1755–1769. PubMed PMC
Piazza A., Cui X., Adrian M., Samazan F., Heddi B., Phan A.T., Nicolas A.G.. Non-Canonical G-quadruplexes cause the hCEB1 minisatellite instability in Saccharomyces cerevisiae. Elife. 2017; 6:e26884. PubMed PMC
Paeschke K., Bochman M.L., Garcia P.D., Cejka P., Friedman K.L., Kowalczykowski S.C., Zakian V.A.. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature. 2013; 497:458–462. PubMed PMC
Mergny J.L., Li J., Lacroix L., Amrane S., Chaires J.B.. Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res. 2005; 33:e138. PubMed PMC
Largy E., Marchand A., Amrane S., Gabelica V., Mergny J.L.. Quadruplex turncoats: cation-dependent folding and stability of quadruplex-DNA double switches. J. Am. Chem. Soc. 2016; 138:2780–2792. PubMed
Do N.Q., Lim K.W., Teo M.H., Heddi B., Phan A.T.. Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity. Nucleic Acids Res. 2011; 39:9448–9457. PubMed PMC
Guédin A., Alberti P., Mergny J.L.. Stability of intramolecular quadruplexes: sequence effects in the central loop. Nucleic Acids Res. 2009; 37:5559–5567. PubMed PMC
Takahashi S., Sugimoto N.. Volumetric contributions of loop regions of G-quadruplex DNA to the formation of the tertiary structure. Biophys. Chem. 2017; 231:146–154. PubMed
Wei D., Husby J., Neidle S.. Flexibility and structural conservation in a c-KIT G-quadruplex. Nucleic Acids Res. 2015; 43:629–644. PubMed PMC
Fujimoto T., Nakano S., Sugimoto N., Miyoshi D.. Thermodynamics-hydration relationships within loops that affect G-quadruplexes under molecular crowding conditions. J. Phys. Chem. B. 2013; 117:963–972. PubMed
Olsen C.M., Lee H.T., Marky L.A.. Unfolding thermodynamics of intramolecular G-quadruplexes: base sequence contributions of the loops. J. Phys. Chem. B. 2009; 113:2587–2595. PubMed
Zhang Z., Dai J., Veliath E., Jones R.A., Yang D.. Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res. 2010; 38:1009–1021. PubMed PMC
Lim K.W., Amrane S., Bouaziz S., Xu W., Mu Y., Patel D.J., Luu K.N., Phan A.T.. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J. Am. Chem. Soc. 2009; 131:4301–4309. PubMed PMC
Dai J., Carver M., Punchihewa C., Jones R.A., Yang D.. Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res. 2007; 35:4927–4940. PubMed PMC
Agrawal P., Hatzakis E., Guo K., Carver M., Yang D.. Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res. 2013; 41:10584–10592. PubMed PMC
Podbevsek P., Sket P., Plavec J.. Stacking and not solely topology of T3 loops controls rigidity and ammonium ion movement within d(G4T3G4)2 G-quadruplex. J. Am. Chem. Soc. 2008; 130:14287–14293. PubMed
Onel B., Carver M., Wu G., Timonina D., Kalarn S., Larriva M., Yang D.. A new G-quadruplex with hairpin loop immediately upstream of the human BCL2 P1 promoter modulates transcription. J. Am. Chem. Soc. 2016; 138:2563–2570. PubMed PMC
Lim K.W., Nguyen T.Q., Phan A.T.. Joining of multiple duplex stems at a single quadruplex loop. J. Am. Chem. Soc. 2014; 136:17969–17973. PubMed
Lim K.W., Phan A.T.. Structural basis of DNA quadruplex-duplex junction formation. Angew. Chem. Int. Ed. 2013; 52:8566–8569. PubMed
Boratyn G.M., Camacho C., Cooper P.S., Coulouris G., Fong A., Ma N., Madden T.L., Matten W.T., McGinnis S.D., Merezhuk Y. et al. . BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 2013; 41:W29–W33. PubMed PMC
Sahakyan A.B., Chambers V.S., Marsico G., Santner T., Di Antonio M., Balasubramanian S.. Machine learning model for sequence-driven DNA G-quadruplex formation. Sci. Rep. 2017; 7:14535–14545. PubMed PMC
Stegle O., Payet L., Mergny J.L., MacKay D.J., Huppert J.L.. Predicting and understanding the stability of G-quadruplexes. Bioinformatics. 2009; 25:i374–i382. PubMed PMC
The beginning and the end: flanking nucleotides induce a parallel G-quadruplex topology
Structures and stability of simple DNA repeats from bacteria