The beginning and the end: flanking nucleotides induce a parallel G-quadruplex topology
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34379785
PubMed Central
PMC8450091
DOI
10.1093/nar/gkab681
PII: 6348194
Knihovny.cz E-zdroje
- MeSH
- cirkulární dichroismus MeSH
- DNA genetika ultrastruktura MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- nukleotidy chemie genetika MeSH
- oligonukleotidy chemie genetika MeSH
- polymorfismus genetický genetika MeSH
- RNA genetika ultrastruktura MeSH
- simulace molekulární dynamiky MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- nukleotidy MeSH
- oligonukleotidy MeSH
- RNA MeSH
Genomic sequences susceptible to form G-quadruplexes (G4s) are always flanked by other nucleotides, but G4 formation in vitro is generally studied with short synthetic DNA or RNA oligonucleotides, for which bases adjacent to the G4 core are often omitted. Herein, we systematically studied the effects of flanking nucleotides on structural polymorphism of 371 different oligodeoxynucleotides that adopt intramolecular G4 structures. We found out that the addition of nucleotides favors the formation of a parallel fold, defined as the 'flanking effect' in this work. This 'flanking effect' was more pronounced when nucleotides were added at the 5'-end, and depended on loop arrangement. NMR experiments and molecular dynamics simulations revealed that flanking sequences at the 5'-end abolish a strong syn-specific hydrogen bond commonly found in non-parallel conformations, thus favoring a parallel topology. These analyses pave a new way for more accurate prediction of DNA G4 folding in a physiological context.
Zobrazit více v PubMed
Mergny J.-L., Sen D.. DNA quadruple helices in nanotechnology. Chem. Rev. 2019; 119:6290–6325. PubMed
Chaires J.B., Graves D.. Quadruplex Nucleic Acids. 2013; Springer.
Kwok C.K., Merrick C.J.. G-Quadruplexes: prediction, characterization, and biological application. Trends Biotechnol. 2017; 35:997–1013. PubMed
Tian T., Chen Y.-Q., Wang S.-R., Zhou X.. G-Quadruplex: a regulator of gene expression and its chemical targeting. Chem. 2018; 4:1314–1344.
Spiegel J., Adhikari S., Balasubramanian S.. The structure and function of DNA G-quadruplexes. Trends Chem. 2020; 2:123–136. PubMed PMC
Cheng M., Cheng Y., Hao J., Jia G., Zhou J., Mergny J.-L., Li C.. Loop permutation affects the topology and stability of G-quadruplexes. Nucleic Acids Res. 2018; 46:9264–9275. PubMed PMC
Risitano A., Fox K.R.. Influence of loop size on the stability of intramolecular DNA quadruplexes. Nucleic Acids Res. 2004; 32:2598–2606. PubMed PMC
Hazel P., Huppert J., Balasubramanian S., Neidle S.. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 2004; 126:16405–16415. PubMed
Smargiasso N., Rosu F., Hsia W., Colson P., Baker E.S., Bowers M.T., De Pauw E., Gabelica V.. G-quadruplex DNA assemblies: loop length, cation identity, and multimer formation. J. Am. Chem. Soc. 2008; 130:10208–10216. PubMed
Kettani A., Bouaziz S., Wang W., Jones R.A., Patel D.J.. Bombyx mori single repeat telomeric DNA sequence forms a G-quadruplex capped by base triads. Nat. Struct. Biol. 1997; 4:382–389. PubMed
Do N.Q., Phan A.T.. Monomer-dimer equilibrium for the 5′-5′ stacking of propeller-type parallel-stranded G-quadruplexes: NMR structural study. Chem. Eur. J. 2012; 18:14752–14759. PubMed
Pavc D., Wang B., Spindler L., Drevensek-Olenik I., Plavec J., Sket P.. GC ends control topology of DNA G-quadruplexes and their cation-dependent assembly. Nucleic Acids Res. 2020; 48:2749–2761. PubMed PMC
Hatzakis E., Okamoto K., Yang D.. Thermodynamic stability and folding kinetics of the major G-quadruplex and its loop isomers formed in the nuclease hypersensitive element in the human c-Myc promoter: effect of loops and flanking segments on the stability of parallel-stranded intramolecular G-quadruplexes. Biochemistry. 2010; 49:9152–9160. PubMed PMC
Zhang Z., Dai J., Veliath E., Jones R.A., Yang D.. Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res. 2010; 38:1009–1021. PubMed PMC
Phan A.T.Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J. 2010; 277:1107–1117. PubMed
Dai J., Carver M., Yang D.. Polymorphism of human telomeric quadruplex structures. Biochimie. 2008; 90:1172–1183. PubMed PMC
Del Villar-Guerra R., Trent J.O., Chaires J.B.. G-Quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew. Chem. Int. Ed. 2018; 57:7171–7175. PubMed PMC
Mergny J.-L., Phan A.T., Lacroix L.. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998; 435:74–78. PubMed
Mergny J.-L., Li J., Lacroix L., Amrane S., Chaires J.B.. Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res. 2005; 33:e138. PubMed PMC
Phan A.T.Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA. J. Biomol. NMR. 2000; 16:175–178. PubMed
Clark G.R., Pytel P.D., Squire C.J.. The high-resolution crystal structure of a parallel intermolecular DNA G-4 quadruplex/drug complex employing syn glycosyl linkages. Nucleic Acids Res. 2012; 40:5731–5738. PubMed PMC
Wang Y., Patel D.J.. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993; 1:263–282. PubMed
Luu K.N., Phan A.T., Kuryavyi V., Lacroix L., Patel D.J.. Structure of the human telomere in K+ solution: an intramolecular (3+1) G-quadruplex scaffold. J. Am. Chem. Soc. 2006; 128:9963–9970. PubMed PMC
Kollman P.A., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W.et al. .. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 2000; 33:889–897. PubMed
Islam B., Stadlbauer P., Neidle S., Haider S., Sponer J.. Can we execute reliable MM-PBSA free energy computations of relative stabilities of different guanine quadruplex folds. J. Phys. Chem. B. 2016; 120:2899–2912. PubMed
Case D., Ben-Shalom I., Brozell S., Cerutti D., Cheatham T. III, Cruzeiro V., Darden T., Duke R., Ghoreishi D., Gilson M.K.et al. .. 2018; San Francisco. AMBER 2018.
Zgarbova M., Šponer J., Otyepka M., Cheatham T.E. 3rd, Galindo-Murillo R., Jurecka P.. Refinement of the sugar-phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 2015; 11:5723–5736. PubMed
Largy E., Marchand A., Amrane S., Gabelica V., Mergny J.-L.. Quadruplex turncoats: cation-dependent folding and stability of quadruplex-DNA double switches. J. Am. Chem. Soc. 2016; 138:2780–2792. PubMed
Dvorkin S.A., Karsisiotis A.I., Webba da Silva M.. Encoding canonical DNA quadruplex structure. Sci. Adv. 2018; 4:eaat3007. PubMed PMC
Largy E., Mergny J.-L.. Shape matters: size-exclusion HPLC for the study of nucleic acid structural polymorphism. Nucleic Acids Res. 2014; 42:e149. PubMed PMC
Cang X., Šponer J., Cheatham T.E. 3rd. Explaining the varied glycosidic conformational, G-tract length and sequence preferences for anti-parallel G-quadruplexes. Nucleic Acids Res. 2011; 39:4499–4512. PubMed PMC
Šponer J., Mladek A., Spackova N., Cang X.H., Cheatham T.E., Grimme S.. Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations. J. Am. Chem. Soc. 2013; 135:9785–9796. PubMed PMC
Travascio P., Li Y., Sen D.. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem. Biol. 1998; 5:505–517. PubMed
Puig Lombardi E., Londono-Vallejo A.. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2020; 48:1–15. PubMed PMC
Rodriguez R., Miller K.M., Forment J.V., Bradshaw C.R., Nikan M., Britton S., Oelschlaegel T., Xhemalce B., Balasubramanian S., Jackson S.P.. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 2012; 8:301–310. PubMed PMC
Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S.. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015; 33:877–881. PubMed
Gray R.D., Trent J.O., Chaires J.B.. Folding and unfolding pathways of the human telomeric G-quadruplex. J. Mol. Biol. 2014; 426:1629–1650. PubMed PMC
Li X.M., Zheng K.W., Zhang J.Y., Liu H.H., Yuan B.F., Hao Y.H., Tan Z.. Guanine-vacancy–bearing G-quadruplexes responsive to guanine derivatives. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:14581–14586. PubMed PMC
Winnerdy F.R., Das P., Heddi B., Phan A.T.. Solution structures of a G-quadruplex bound to linear-and cyclic-dinucleotides. J. Am. Chem. Soc. 2019; 141:18038–18047. PubMed
Mukundan V.T., Phan A.T.. Bulges in G-quadruplexes: broadening the definition of G-quadruplex-forming sequences. J. Am. Chem. Soc. 2013; 135:5017–5028. PubMed