Quadruplexes with a grain of salt: influence of cation type and concentration on DNA G4 stability
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
project 2023 - Pathogens
Agence de l'Innovation de Défense (AID)
PubMed
40560404
DOI
10.1007/s00249-025-01772-w
PII: 10.1007/s00249-025-01772-w
Knihovny.cz E-zdroje
- Klíčová slova
- Cations, Duplex-quadruplex competition, G-quadruplex, Halophile, Ionic strength,
- Publikační typ
- časopisecké články MeSH
G-quadruplexes (G4) are stabilized by intra-quartet hydrogen bonds stacking between quartets, as well as specific and non-specific ionic interactions. Cation effects on G-quadruplexes differ significantly from those on duplexes, and specific cation coordination is indeed required to stabilize G4 structures. Most studies so far involve "standard" concentrations of potassium or sodium cations because of their prevalence in human cells, but several other monovalent and divalent cations may promote quadruplex formation. In addition, ionic strength may be different in other organisms such as Halophiles: the intracellular cation (potassium) concentration in salt-loving organisms such as Haloferax volcanii can be extremely high. In this study, we first performed a bioinformatics analysis of G4 propensity in halophiles and analyzed the impact of altering ionic strength or ionic balance on G4 or hairpin duplex stability. We then present a detailed and quantitative assessment of salt effect on a variety of duplex and quadruplex sequences. Over a dozen different quadruplex and duplex sequences were investigated by FRET melting and UV melting experiments. In addition, changes in sodium/potassium balance possibly occurring in human cells have a modest effect on G4-duplex competition. We also confirm that lithium is rather a "G4-indifferent" than a G4-destabilizing cation.
Zobrazit více v PubMed
Andrei A-Ş, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9. https://doi.org/10.1111/j.1574-6968.2012.02526.x PubMed DOI
Bansal A, Kaushik S, Kukreti S (2022) Non-canonical DNA structures: diversity and disease association. Front Genet 13:959258. https://doi.org/10.3389/fgene.2022.959258 PubMed DOI PMC
Bartas M, Čutová M, Brázda V et al (2019) The presence and localization of G-Quadruplex forming sequences in the domain of bacteria. Molecules 24:1711. https://doi.org/10.3390/molecules24091711 PubMed DOI PMC
Bohálová N, Cantara A, Bartas M et al (2021) Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie 186:13–27. https://doi.org/10.1016/j.biochi.2021.03.017 PubMed DOI
Brázda V, Kolomazník J, Lýsek J et al (2019) G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 35:3493–3495. https://doi.org/10.1093/bioinformatics/btz087 PubMed DOI PMC
Brázda V, Luo Y, Bartas M et al (2020) G-quadruplexes in the archaea domain. Biomolecules 10:1349. https://doi.org/10.3390/biom10091349 PubMed DOI PMC
Brazda V, Fojta M, Bowater RP (2020) Structures and stability of simple DNA repeats from bacteria. Biochem J 477:325–339. https://doi.org/10.1042/BCJ20190703 PubMed DOI
Chen J, Cheng M, Salgado GF et al (2021) The beginning and the end: flanking nucleotides induce a parallel G-quadruplex topology. Nucleic Acids Res 49:9548–9559. https://doi.org/10.1093/nar/gkab681 PubMed DOI PMC
Comes N, Serrano-Albarrás A, Capera J et al (2015) Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochim Biophys Acta 1848:2477–2492. https://doi.org/10.1016/j.bbamem.2014.12.008 PubMed DOI
De Rache A, Mergny J-L (2015) Assessment of selectivity of G-quadruplex ligands via an optimised FRET melting assay. Biochimie 115:194–202. https://doi.org/10.1016/j.biochi.2015.06.002 PubMed DOI
Gajarsky M, Stadlbauer P, Sponer J et al (2024) DNA quadruplex structure with a unique cation dependency. Angew Chem Int Ed 63:e202313226. https://doi.org/10.1002/anie.202313226 DOI
Jevtić Ž, Stoll B, Pfeiffer F et al (2019) The response of haloferax volcanii to salt and temperature stress: a proteome study by label-free mass spectrometry. Proteomics 19:1800491. https://doi.org/10.1002/pmic.201800491 DOI
Kim BG, Evans HM, Dubins DN, Chalikian TV (2015) Effects of salt on the stability of a G-Quadruplex from the human c-MYC promoter. Biochemistry 54:3420–3430. https://doi.org/10.1021/acs.biochem.5b00097 PubMed DOI
Largy E, Mergny J-L, Gabelica V (2016) Role of alkali metal ions in G-quadruplex nucleic acid structure and stability. Met Ions Life Sci 16:203–258. https://doi.org/10.1007/978-3-319-21756-7_7 PubMed DOI
Li M, Xiong Z-G (2011) Ion channels as targets for cancer therapy. Int J Physiol Pathophysiol Pharmacol 3:156–166 PubMed PMC
Luo Y, Živković ML, Wang J et al (2024) A sodium/potassium switch for G4-prone G/C-rich sequences. Nucleic Acids Res 52:448–461. https://doi.org/10.1093/nar/gkad1073 PubMed DOI
Makova KD, Pickett BD, Harris RS et al (2024) The complete sequence and comparative analysis of ape sex chromosomes. Nature 630:401–411 PubMed DOI PMC
Niemeyer BA, Mery L, Zawar C et al (2001) Ion channels in health and disease. EMBO Rep 2:568–573. https://doi.org/10.1093/embo-reports/kve145 PubMed DOI PMC
O’Grady SM, Lee SY (2005) Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells. Int J Biochem Cell Biol 37:1578–1594. https://doi.org/10.1016/j.biocel.2005.04.002 PubMed DOI
Olejko L, Dutta A, Shahsavar K, Bald I (2022) Influence of different salts on the G-quadruplex structure formed from the reversed human telomeric DNA sequence. Int J Mol Sci 23:12206. https://doi.org/10.3390/ijms232012206 PubMed DOI PMC
Oren A (2024) Novel insights into the diversity of halophilic microorganisms and their functioning in hypersaline ecosystems. Npj Biodivers 3:18. https://doi.org/10.1038/s44185-024-00050-w PubMed DOI PMC
Ousingsawat J, Spitzner M, Puntheeranurak S et al (2007) Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res 13:824–831. https://doi.org/10.1158/1078-0432.CCR-06-1940 PubMed DOI
Shitikov EA, Bespiatykh DA, Bodoev IN, Zaychikova MV (2022) G-quadruplex structures in bacteria: functional properties and prospects for use as biotargets. Biochem Mosc Suppl Ser B Biomed Chem 16:292–304. https://doi.org/10.1134/S1990750822040084 DOI
Spiegel J, Adhikari S, Balasubramanian S (2020) The structure and function of DNA G-quadruplexes. Trends Chem 2:123–136. https://doi.org/10.1016/j.trechm.2019.07.002 PubMed DOI PMC
Spitzner M, Ousingsawat J, Scheidt K et al (2007) Voltage-gated K channels support proliferation of colonic carcinoma cells. FASEB J 21:35–44. https://doi.org/10.1096/fj.06-6200com PubMed DOI
Tateishi-Karimata H, Kawauchi K, Sugimoto N (2018) Destabilization of DNA G-quadruplexes by chemical environment changes during tumor progression facilitates transcription. J Am Chem Soc 140:642–651. https://doi.org/10.1021/jacs.7b09449 PubMed DOI
Vodnala SK, Eil R, Kishton RJ et al (2019) T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363:eaau0135. https://doi.org/10.1126/science.aau0135 PubMed DOI PMC
Walker JL, Brown HM (1977) Intracellular ionic activity measurements in nerve and muscle. Physiol Rev 57:729–778. https://doi.org/10.1152/physrev.1977.57.4.729 PubMed DOI
Waller ZAE, Pinchbeck BJ, Buguth BS et al (2016) Control of bacterial nitrate assimilation by stabilization of G-quadruplex DNA. Chem Commun 52:13511–13514. https://doi.org/10.1039/C6CC06057A DOI