Communication Architecture in Mixed-Reality Simulations of Unmanned Systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29538290
PubMed Central
PMC5877314
DOI
10.3390/s18030853
PII: s18030853
Knihovny.cz E-zdroje
- Klíčová slova
- communication architecture, middleware, mixed-reality simulations, testbeds, unmanned systems,
- Publikační typ
- časopisecké články MeSH
Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture's viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture.
Zobrazit více v PubMed
Demers S., Gopalakrishnan P., Kant L. A generic solution to software-in-the-loop; Proceedings of the IEEE Military Communications Conference (MILCOM); Orlando, FL, USA. 29–31 October 2007; pp. 1–6.
Komenda A., Vokřínek J., Čáp M., Pěchouček M. Developing multiagent algorithms for tactical missions using simulation. IEEE Intell. Syst. 2013;28:42–49. doi: 10.1109/MIS.2012.90. DOI
Nikaein N., Bonnet C. Topology management for improving routing and network performances in mobile ad hoc networks. Mob. Netw. Appl. 2004;9:583–594. doi: 10.1023/B:MONE.0000042497.03569.17. DOI
Avellar G.S., Pereira G.A., Pimenta L.C., Iscold P. Multi-UAV routing for area coverage and remote sensing with minimum time. Sensors. 2015;15:27783–27803. doi: 10.3390/s151127783. PubMed DOI PMC
Li B., Jiang Y., Sun J., Cai L., Wen C.Y. Development and testing of a two-UAV communication relay system. Sensors. 2016;16:1696. doi: 10.3390/s16101696. PubMed DOI PMC
Pal A., Tiwari R., Shukla A. Communication constraints multi-agent territory exploration task. Appl. Intell. 2013;38:357–383. doi: 10.1007/s10489-012-0376-6. DOI
Balduccini M., Nguyen D.N., Regli W.C. Coordinating UAVs in dynamic environments by network-aware mission planning; Proceedings of the IEEE Military Communications Conference (MILCOM); Baltimore, MD, USA. 6–8 October 2014; pp. 983–988.
Fadlullah Z.M., Takaishi D., Nishiyama H., Kato N., Miura R. A dynamic trajectory control algorithm for improving the communication throughput and delay in UAV-aided networks. IEEE Netw. 2016;30:100–105. doi: 10.1109/MNET.2016.7389838. DOI
Saad W., Han Z., Basar T., Debbah M., Hjorungnes A. Hedonic coalition formation for distributed task allocation among wireless agents. IEEE Trans. Mob. Comput. 2011;10:1327–1344. doi: 10.1109/TMC.2010.242. DOI
Milgram P., Kishino F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 1994;77:1321–1329.
Chen I., MacDonald B., Wunsche B. Mixed reality simulation for mobile robots; Proceedings of the IEEE International Conference on Robotics and Automation; Kobe, Japan. 12–17 May 2009; pp. 232–237.
Chen I., MacDonald B., Wunsche B. Evaluating the effectiveness of mixed reality simulations for developing UAV systems; Proceedings of the International Conference on Simulation, Modeling, and Programming for Autonomous Robots; Tsukuba, Japan. 5–8 November 2012; pp. 388–399.
Honig W., Milanes C., Scaria L., Phan T., Bolas M., Ayanian N. Mixed reality for robotics; Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Hamburg, Germany. 28 September–2 October 2015; pp. 5382–5387.
Jakob M., Pěchouček M., Čáp M., Novák P., Vaněk O. Mixed-reality testbeds for incremental development of HART applications. IEEE Intell. Syst. 2012;27:19–25. doi: 10.1109/MIS.2012.2. DOI
Selecký M., Faigl J., Rollo M. Mixed reality simulation for incremental development of multi-UAV systems; Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS); Miami, FL, USA. 13–16 June 2017; pp. 1530–1538.
Selecký M., Rollo M., Losiewicz P., Reade J., Maida N. Framework for incremental development of complex unmanned aircraft systems; Proceedings of the Integrated Communication, Navigation, and Surveillance Conference (ICNS); Herdon, VA, USA. 21–23 April 2015; pp. J3-1–J3-9.
Selecký M., Štolba M., Meiser T., Čáp M., Komenda A., Rollo M., Vokřínek J., Pěchouček M. Deployment of multi-agent algorithms for tactical operations on UAV hardware; Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS); St. Paul, MN, USA. 6–10 May 2013; pp. 1407–1408.
Santi P. Topology control in wireless ad hoc and sensor networks. ACM Comput. Surv. 2005;37:164–194. doi: 10.1145/1089733.1089736. DOI
Asadpour M., Van den Bergh B., Giustiniano D., Hummel K., Pollin S., Plattner B. Micro aerial vehicle networks: An experimental analysis of challenges and opportunities. IEEE Commun. Mag. 2014;52:141–149. doi: 10.1109/MCOM.2014.6852096. DOI
Pinto L.R., Moreira A., Almeida L., Rowe A. Characterizing Multihop Aerial Networks of COTS Multirotors. IEEE Trans. Ind. Inform. 2017;13:898–906. doi: 10.1109/TII.2017.2668439. DOI
Teng E., Falcão J.D., Iannucci B. Holes-in-the-Sky: A field study on cellular-connected UAS; Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS); Miami, FL, USA. 13–16 June 2017; pp. 1165–1174.
Gupta N., Prakash A., Tripathi R. Medium access control protocols for safety applications in Vehicular Ad-Hoc Network: A classification and comprehensive survey. Veh. Commun. 2015;2:223–237. doi: 10.1016/j.vehcom.2015.10.001. DOI
Jayaraj V., Hemanth C., Sangeetha R. A survey on hybrid MAC protocols for vehicular ad-hoc networks. Veh. Commun. 2016;6:29–36. doi: 10.1016/j.vehcom.2016.09.003. DOI
Breslau L., Estrin D., Fall K., Floyd S., Heidemann J., Helmy A., Huang P., McCanne S., Varadhan K., Xu Y., et al. Advances in network simulation. Computer. 2000;33:59–67. doi: 10.1109/2.841785. DOI
Varga A. Discrete event simulation system; Proceedings of the European Simulation Multiconference (ESM’2001); Prague, Czech Republic. 6–9 June 2001.
Bekmezci I., Sahingoz O.K., Temel Ş. Flying ad-hoc networks (FANETs): A survey. Ad Hoc Netw. 2013;11:1254–1270. doi: 10.1016/j.adhoc.2012.12.004. DOI
Oubbati O.S., Lakas A., Zhou F., Güneş M., Yagoubi M.B. A survey on position-based routing protocols for Flying Ad hoc Networks (FANETs) Veh. Commun. 2017 doi: 10.1016/j.vehcom.2017.10.003. DOI
Aschenbruck N., Munjal A., Camp T. Trace-based mobility modeling for multi-hop wireless networks. Comput. Commun. 2011;34:704–714. doi: 10.1016/j.comcom.2010.11.002. DOI
Krajzewicz D., Bonert M., Wagner P. The open source traffic simulation package SUMO; Proceedings of the RoboCup 2006; Bremen, Germany. 19–20 June 2006.
Härri J., Filali F., Bonnet C., Fiore M. VanetMobiSim: Generating realistic mobility patterns for VANETs; Proceedings of the 3rd International Workshop on Vehicular ad-hoc Networks; Los Angeles, CA, USA. 29 September 2006; pp. 96–97.
Kuiper E., Nadjm-Tehrani S. Mobility models for UAV group reconnaissance applications; Proceedings of the International Conference on Wireless and Mobile Communications (ICWMC); Bucharest, Romania. 29–31 July 2006; p. 33.
Bujari A., Palazzi C.E., Ronzani D. FANET Application Scenarios and Mobility Models; Proceedings of the 3rd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications; Niagara Falls, NY, USA. 23 June 2017; pp. 43–46.
Silva C.M., Masini B.M., Ferrari G., Thibault I. A survey on infrastructure-based vehicular networks. Mob. Inf. Syst. 2017;2017:6123868. doi: 10.1155/2017/6123868. DOI
Göktogan A.H., Sukkarieh S. Unmanned Aircraft Systems. Springer; Berlin/Heidelberg, Germany: 2008. Distributed simulation and middleware for networked UAS; pp. 331–357.
Pizetta I.H.B., Brandao A.S., Sarcinelli-Filho M. A Hardware-in-the-Loop Platform for Rotary-Wing Unmanned Aerial Vehicles. J. Intell. Robot. Syst. 2016;84:725–743. doi: 10.1007/s10846-016-0357-9. DOI
Henderson T.R., Lacage M., Riley G.F., Dowell C., Kopena J. Network simulations with the ns-3 simulator. SIGCOMM Demonstr. 2008;14:527.
Alvarez A., Orea R., Cabrero S., Pañeda X.G., García R., Melendi D. Limitations of network emulation with single-machine and distributed ns-3; Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques; Malaga, Spain. 15–19 March 2010; p. 67.
Ahmed H., Pierre S., Quintero A. A flexible testbed architecture for VANET. Veh. Commun. 2017;9:115–126. doi: 10.1016/j.vehcom.2017.04.004. DOI
Schünemann B., Massow K., Radusch I. Realistic simulation of vehicular communication and vehicle-2-X applications; Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops; Marseille, France. 3–7 March 2008; p. 62.
Sunshine C.A. IEEE InfoCom. Volume 82 IEEE; Piscataway, NJ, USA: 1982. Addressing problems in multi-network systems.
Narten T., Simpson W.A., Nordmark E., Soliman H. Neighbor discovery for IP version 6 (IPv6). Standards Track 2007. [(accessed on 29 January 2018)]; Available online: http://www.ietf.org/rfc/rfc4861.txt.
Nadeem T., Dashtinezhad S., Liao C., Iftode L. TrafficView: Traffic data dissemination using car-to-car communication. ACM Sigmob. Mob. Comput. Commun. Rev. 2004;8:6–19. doi: 10.1145/1031483.1031487. DOI
Baldessari R., Bödekker B., Deegener M., Festag A., Franz W., Kellum C.C., Kosch T., Kovacs A., Lenardi M., Menig C., et al. Car-2-Car Communication Consortium-Manifesto. Institute of Communication and Navigation; Oberpfaffenhofen, Germany: 2007.
Allouche Y., Segal M. Cluster-based beaconing process for VANET. Veh. Commun. 2015;2:80–94. doi: 10.1016/j.vehcom.2015.03.001. DOI
Mayer C.P., Gamer T. Integrating Real World Applications into OMNeT++ Institute of Telematics, University of Karlsruhe; Karlsruhe, Germany: 2008. Tech. Rep. TM-2008-2.
Zeng X., Bagrodia R., Gerla M. GloMoSim: A library for parallel simulation of large-scale wireless networks; Proceedings of the Workshop on Parallel and Distributed Simulation (PADS); Banff, AB, Canada. 29 May 1998; pp. 154–161.