Mapping and Sequencing of a Significant Quantitative Trait Locus Affecting Resistance to Koi Herpesvirus in Common Carp
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30150301
PubMed Central
PMC6222565
DOI
10.1534/g3.118.200593
PII: g3.118.200593
Knihovny.cz E-zdroje
- Klíčová slova
- Carp, GWAS, Koi herpes virus, RADseq,
- MeSH
- celogenomová asociační studie MeSH
- Herpesviridae MeSH
- herpetické infekce genetika veterinární MeSH
- jednonukleotidový polymorfismus MeSH
- kapři genetika MeSH
- lokus kvantitativního znaku MeSH
- nemoci ryb genetika MeSH
- odolnost vůči nemocem genetika MeSH
- rybí proteiny genetika MeSH
- TRIM protein genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rybí proteiny MeSH
- TRIM protein MeSH
Cyprinids are the most highly produced group of fishes globally, with common carp being one of the most valuable species of the group. Koi herpesvirus (KHV) infections can result in high levels of mortality, causing major economic losses, and is listed as a notifiable disease by the World Organization for Animal Health. Selective breeding for host resistance has the potential to reduce morbidity and losses due to KHV. Therefore, improving knowledge about host resistance and methods of incorporating genomic data into breeding for resistance may contribute to a decrease in economic losses in carp farming. In the current study, a population of 1,425 carp juveniles, originating from a factorial cross between 40 sires and 20 dams was challenged with KHV. Mortalities and survivors were recorded and sampled for genotyping by sequencing using Restriction Site-Associated DNA sequencing (RADseq). Genome-wide association analyses were performed to investigate the genetic architecture of resistance to KHV. A genome-wide significant QTL affecting resistance to KHV was identified on linkage group 44, explaining approximately 7% of the additive genetic variance. Pooled whole genome resequencing of a subset of resistant (n = 60) and susceptible animals (n = 60) was performed to characterize QTL regions, including identification of putative candidate genes and functional annotation of associated polymorphisms. The TRIM25 gene was identified as a promising positional and functional candidate within the QTL region of LG 44, and a putative premature stop mutation in this gene was discovered.
Zobrazit více v PubMed
Aguilar I., Misztal I., Legarra A., Tsuruta S., 2011. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. J. Anim. Breed. Genet. 128: 422–428. 10.1111/j.1439-0388.2010.00912.x PubMed DOI
Baird N. A., Etter P. D., Atwood T. S., Currey M. C., Shiver A. L., et al. , 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3: e3376 10.1371/journal.pone.0003376 PubMed DOI PMC
Balon E. K., 1995. Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture 129: 3–48. 10.1016/0044-8486(94)00227-F DOI
Barría A., Christensen K. A., Yoshida G. M., Correa K., Jedlicki A., et al. , 2018. Genomic Predictions and Genome-Wide Association Study of Resistance Against Piscirickettsia salmonis in Coho Salmon (Oncorhynchus kisutch) Using ddRAD Sequencing. G3 (Bethesda) 8: 1183–1194. 10.1534/g3.118.200053 PubMed DOI PMC
Bishop S. C., Woolliams J. A., 2014. Genomics and disease resistance studies in livestock. Livest. Sci. 166: 190–198. 10.1016/j.livsci.2014.04.034 PubMed DOI PMC
Bolger A. M., Lohse M., Usadel B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Campbell N. R., LaPatra S. E., Overturf K., Towner R., Narum S. R., 2014. Association mapping of disease resistance traits in rainbow trout using restriction site associated DNA sequencing. G3 (Bethesda) 4: 2473–2481. 10.1534/g3.114.014621 PubMed DOI PMC
Catchen J. M., Amores A., Hohenlohe P., Cresko W., Postlethwait J. H., 2011. Stacks: building and genotyping Loci de novo from short-read sequences. G3 (Bethesda) 1: 171–182. 10.1534/g3.111.000240 PubMed DOI PMC
Chen H., Wang C., Conomos M. P., Stilp A. M., Li Z., et al. , 2016. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models. Am. J. Hum. Genet. 98: 653–666. 10.1016/j.ajhg.2016.02.012 PubMed DOI PMC
Cingolani P., Platts A., Wang L. L., Coon M., Nguyen T., et al. , 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin) 6: 80–92. 10.4161/fly.19695 PubMed DOI PMC
Correa K., Lhorente J. P., Bassini L., López M. E., Di Genova A., et al. , 2017. Genome wide association study for resistance to Caligus rogercresseyi in Atlantic salmon (Salmo salar L.) using a 50K SNP genotyping array. Aquaculture 472: 61–65. 10.1016/j.aquaculture.2016.04.008 DOI
Correa K., Lhorente J. P., López M. E., Bassini L., Naswa S., et al. , 2015. Genome-wide association analysis reveals loci associated with resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo salar L.) chromosomes. BMC Genomics 16: 854 10.1186/s12864-015-2038-7 PubMed DOI PMC
Dixon P. F., Joiner C. L., Way K., Reese R. A., Jeney G., et al. , 2009. Comparison of the resistance of selected families of common carp, Cyprinus carpio L., to koi herpesvirus: preliminary study. J. Fish Dis. 32: 1035–1039. 10.1111/j.1365-2761.2009.01081.x PubMed DOI
FAO , 2015. FishStat Database; Available at: http://faostat.fao.org/site/629/default.aspx
Ferdosi M. H., Kinghorn B. P., van der Werf J. H. J., Lee S. H., Gondro C., 2014. hsphase: An R package for pedigree reconstruction, detection of recombination events, phasing and imputation of half-sib family groups. BMC Bioinformatics 15: 172 10.1186/1471-2105-15-172 PubMed DOI PMC
Gack M. U., Kirchhofer A., Shin Y. C., Inn K.-S., Liang C., et al. , 2008. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc. Natl. Acad. Sci. USA 105: 16743–16748. 10.1073/pnas.0804947105 PubMed DOI PMC
Goldstein H., Browne W., Rasbash J., 2002. Partitioning Variation in Multilevel Models. Underst. Stat. 1: 223–231. 10.1207/S15328031US0104_02 DOI
Gupta S., Ylä-Anttila P., Callegari S., Tsai M. H., Delecluse H. J., et al. , 2018. Herpesvirus deconjugases inhibit the IFN response by promoting TRIM25 autoubiquitination and functional inactivation of the RIG-I signalosome. PLoS Pathog. 14: e1006852 10.1371/journal.ppat.1006852 PubMed DOI PMC
Gutierrez A. P., Bean T. P., Hooper C., Stenton C. A., Sanders M. B., et al. , 2018. A Genome-Wide Association Study for Host Resistance to Ostreid Herpesvirus in Pacific Oysters (Crassostrea gigas). G3 (Bethesda) 8: 1273–1280. 10.1534/g3.118.200113 PubMed DOI PMC
Haenen O. L. M., Way K., Bergmann S. M., Ariel E., 2004. The emergence of koi herpesvirus and its significance to European aquaculture. Bull. Eur. Ass. Fish Pathol 24(6).
Hedrick R. P., Gilad O., Yun S., Spangenberg J. V., Marty G. D., et al. , 2000. A herpesvirus associated with mass mortality of juvenile and adult koi, a strain of common carp. J. Aquat. Anim. Health 12: 44–57. 10.1577/1548-8667(2000)012<0044:AHAWMM>2.0.CO;2 PubMed DOI
Houston R. D., 2017. Future directions in breeding for disease resistance in aquaculture species. Rev. Bras. Zootec. 46: 545–551. 10.1590/s1806-92902017000600010 DOI
Houston R. D., Haley C. S., Hamilton A., Guy D. R., Tinch A. E., et al. , 2008. Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 178: 1109–1115. 10.1534/genetics.107.082974 PubMed DOI PMC
Hwang J.-A., Kim J. E., Kim H.-S., Lee J.-H., 2017. Immune Response to Koi Herpesvirus (KHV) of Koi and Koi × Red Common Carp (Cyprinus carpio). Dev. Reprod. 21: 361–370. 10.12717/DR.2017.21.4.361 PubMed DOI PMC
Janssen K., Chavanne H., Berentsen P., Komen H., 2017. Impact of selective breeding on European aquaculture. Aquaculture 472: 8–16. 10.1016/j.aquaculture.2016.03.012 DOI
Kocour M., Gela D., Rodina M., Linhart O., 2005. Testing of performance in common carp Cyprinus carpio L. under pond husbandry conditions I: top-crossing with Northern mirror carp. Aquacult. Res. 36: 1207–1215. 10.1111/j.1365-2109.2005.01340.x DOI
Kocour M., Mauger S., Rodina M., Gela D., Linhart O., et al. , 2007. Heritability estimates for processing and quality traits in common carp (Cyprinus carpio L.) using a molecular pedigree. Aquaculture 270: 43–50. 10.1016/j.aquaculture.2007.03.001 DOI
Kofler R., Orozco-terWengel P., De Maio N., Pandey R. V., Nolte V., et al. , 2011. PoPoolation: A toolbox for population genetic analysis of Next Generation Sequencing data from pooled individuals. PLoS ONE 6: e15925. PubMed PMC
Kongchum P., Sandel E., Lutzky S., Hallerman E. M., Hulata G., et al. , 2011. Association between IL-10a single nucleotide polymorphisms and resistance to cyprinid herpesvirus-3 infection in common carp (Cyprinus carpio). Aquaculture 315: 417–421. 10.1016/j.aquaculture.2011.02.035 DOI
Langmead B., Salzberg S. L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Li Heng, 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: 1303.3997
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., et al. , 2009. 1000 Genome Project Data Processing subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079. PubMed PMC
Lourenco D. A. L., Tsuruta S., Fragomeni B. O., Masuda Y., Aguilar I., et al. , 2015. Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus. J. Anim. Sci. 93: 2653–2662. 10.2527/jas.2014-8836 PubMed DOI
Misztal I., Tsuruta S., Lourenco D., Aguilar I., Legarra A., et al. , 2018. Manual for BLUPF90 family of programs. Univ. Georg., Athens, USA: nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all7.pdf
Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., et al. , 2002. BLUPF90 and related programs (BGF90), pp. 21–22 in Proceedings of the 7th World Congress on Genetics Applied to Livestock Production
Moen T., Baranski M., Sonesson A. K., Kjøglum S., 2009. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics 10: 368 10.1186/1471-2164-10-368 PubMed DOI PMC
Nakagawa S., Schielzeth H., 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4: 133–142. 10.1111/j.2041-210x.2012.00261.x DOI
Nielsen H. M., Ødegård J., Olesen I., Gjerde B., Ardo L., et al. , 2010. Genetic analysis of common carp (Cyprinus carpio) strains. I: Genetic parameters and heterosis for growth traits and survival. Aquaculture 304: 14–21. 10.1016/j.aquaculture.2010.03.016 DOI
Ødegård J., Baranski M., Gjerde B., Gjedrem T., 2011. Methodology for genetic evaluation of disease resistance in aquaculture species: Challenges and future prospects. Aquacult. Res. 42: 103–114. 10.1111/j.1365-2109.2010.02669.x DOI
Ødegård J., Olesen I., Dixon P., Jeney Z., Nielsen H. M., et al. , 2010. Genetic analysis of common carp (Cyprinus carpio) strains. II: Resistance to koi herpesvirus and Aeromonas hydrophila and their relationship with pond survival. Aquaculture 304: 7–13. 10.1016/j.aquaculture.2010.03.017 DOI
OIE , 2018. OIE-Listed diseases, infections and infestations in force in 2018, World Organ. Anim. Heal; www.oie.int/animal-health-in-the-world/oie-listed-diseases-2018
Palaiokostas C., Kocour M., Prchal M., Houston R. D., 2018a. Accuracy of genomic evaluations of juvenile growth rate in common carp (Cyprinus carpio) using genotyping by sequencing. Front. Genet. 9: 82 10.3389/fgene.2018.00082 PubMed DOI PMC
Palaiokostas C., Cariou S., Bestin A., Bruant J.-S., Haffray P., et al. , 2018b. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing. Genet. Sel. Evol. 50: 30 10.1186/s12711-018-0401-2 PubMed DOI PMC
Palti Y., Vallejo R. L., Gao G., Liu S., Hernandez A. G., et al. , 2015. Detection and Validation of QTL Affecting Bacterial Cold Water Disease Resistance in Rainbow Trout Using Restriction-Site Associated DNA Sequencing. PLoS One 10: e0138435 10.1371/journal.pone.0138435 PubMed DOI PMC
Perdry H., Dandine-Roulland C., 2016. gaston: Genetic Data Handling (QC, GRM, LD, PCA); Linear Mixed Models version 1.5 from CRAN. Available from: https://rdrr.io/cran/gaston/
Pérez P., de Los Campos G., 2014. Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics 198: 483–495. 10.1534/genetics.114.164442 PubMed DOI PMC
Piačková V., Flajšhans M., Pokorová D., Reschová S., Gela D., et al. , 2013. Sensitivity of common carp, Cyprinus carpio L., strains and crossbreeds reared in the Czech Republic to infection by cyprinid herpesvirus 3 (CyHV-3; KHV). J. Fish Dis. 36: 75–80. 10.1111/jfd.12007 PubMed DOI
Plummer M., Best N., Cowles K., Vines K., 2006. CODA: convergence diagnosis and output analysis for MCMC. R News 6: 7–11.
Pokorova D., Reschova S., Hulova J., Vicenova M., Vesely T., Piackova V., 2010. Detection of cyprinid herpesvirus-3 in field samples of common and koi carp by various single-round and nested PCR methods. Jour. World Aqua. Soc. 41: 773–779.
Prchal M., Kause A., Vandeputte M., Gela D., Allamellou J. M., et al. , 2018. The genetics of overwintering performance in two-year old common carp and its relation to performance until market size. PLoS One 13: e0191624 10.1371/journal.pone.0191624 PubMed DOI PMC
Rakus K. Ł., Wiegertjes G. F., Adamek M., Siwicki A. K., Lepa A., et al. , 2009. Resistance of common carp (Cyprinus carpio L.) to Cyprinid herpesvirus-3 is influenced by major histocompatibility (MH) class II B gene polymorphism. Fish Shellfish Immunol. 26: 737–743. 10.1016/j.fsi.2009.03.001 PubMed DOI
Robledo D., Matika O., Hamilton A., Houston R. D., 2018. Genome-Wide Association and Genomic Selection for Resistance to Amoebic Gill Disease in Atlantic Salmon. G3 (Bethesda) 8: 1195–1203. 10.1534/g3.118.200075 PubMed DOI PMC
Robledo D., Palaiokostas C., Bargelloni L., Martínez P., Houston R., 2017. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev. Aquacult. 0: 1–13. PubMed PMC
Sargolzaei M., Chesnais J. P., Schenkel F. S., 2014. A new approach for efficient genotype imputation using information from relatives. BMC Genomics 15: 478 10.1186/1471-2164-15-478 PubMed DOI PMC
Shapira Y., Magen Y., Zak T., Ktler M., Hulata G., et al. , 2005. Differential resistance to koi herpes virus (KHV)/carp interstitial nephritis and gill necrosis virus (CNGV) among common carp (Cyprinus carpio L.) strains and crossbreds. Aquaculture 245: 1–11. 10.1016/j.aquaculture.2004.11.038 DOI
Tadmor-Levi R., Asoulin E., Hulata G., David L., 2017. Studying the Genetics of Resistance to CyHV-3 Disease Using Introgression from Feral to Cultured Common Carp Strains. Front. Genet. 8: 24 10.3389/fgene.2017.00024 PubMed DOI PMC
Taylor N. G. H., Dixon P. F., Jeffery K. R., Peeler E. J., Denham K. L., et al. , 2010. Koi herpesvirus: distribution and prospects for control in England and Wales. J. Fish Dis. 33: 221–230. 10.1111/j.1365-2761.2009.01111.x PubMed DOI
Vallejo R. L., Liu S., Gao G., Fragomeni B. O., Hernandez A. G., et al. , 2017. Similar Genetic Architecture with Shared and Unique Quantitative Trait Loci for Bacterial Cold Water Disease Resistance in Two Rainbow Trout Breeding Populations. Front. Genet. 8: 156 10.3389/fgene.2017.00156 PubMed DOI PMC
Vandeputte M., 2003. Selective breeding of quantitative traits in the common carp (Cyprinus carpio): A review. Aquat. Living Resour. 16: 399–407. 10.1016/S0990-7440(03)00056-1 DOI
Vandeputte M., Kocour M., Mauger S., Dupont-Nivet M., De Guerry D., et al. , 2004. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.). Aquaculture 235: 223–236. 10.1016/j.aquaculture.2003.12.019 DOI
Vandeputte M., Kocour M., Mauger S., Rodina M., Launay A., et al. , 2008. Genetic variation for growth at one and two summers of age in the common carp (Cyprinus carpio L.): Heritability estimates and response to selection. Aquaculture 277: 7–13. 10.1016/j.aquaculture.2008.02.009 DOI
VanRaden P. M., 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91: 4414–4423. 10.3168/jds.2007-0980 PubMed DOI
Wang H., Misztal I., Aguilar I., Legarra A., Muir W. M., 2012. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. 94: 73–83. 10.1017/S0016672312000274 PubMed DOI
Xu P., Zhang X., Wang X., Li J., Liu G., et al. , 2014. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat. Genet. 46: 1212–1219. 10.1038/ng.3098 PubMed DOI
Zhang X., Lourenco D., Aguilar I., Legarra A., Misztal I., 2016. Weighting strategies for single-step genomic BLUP: An iterative approach for accurate calculation of GEBV and GWAS. Front. Genet. 7: 151 10.3389/fgene.2016.00151 PubMed DOI PMC
Zhou T., Liu S., Geng X., Jin Y., Jiang C., et al. , 2017. GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance. Mol. Genet. Genomics 292: 231–242. 10.1007/s00438-016-1269-x PubMed DOI
Optimizing Genomic Prediction of Host Resistance to Koi Herpesvirus Disease in Carp
figshare
10.25387/g3.6281561