Estimates of recent and historical effective population size in turbot, seabream, seabass and carp selective breeding programmes

. 2021 Nov 06 ; 53 (1) : 85. [epub] 20211106

Jazyk angličtina Země Francie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34742227

Grantová podpora
KBBE.2013.1.2-659 10 under grant agreement n° 613611 FISHBOOST project Seventh Framework Programme
727315 MedAID project Horizon 2020
CGL2016-75904-C2 Ministerio de Ciencia e Innovación (ES)
ED431C 2020-05 Xunta de Galicia (ES)
Project Biodiverzity (CZ.02.1.01/0.0/0.0/16_025/0007370) Ministry of Education, Youth and Sports (CZ)
PID2020-114426GB-C22 MCIN/ AEI /10.13039/501100011033
PID2020-114426GB-C2 MCIN/ AEI /10.13039/501100011033

Odkazy

PubMed 34742227
PubMed Central PMC8572424
DOI 10.1186/s12711-021-00680-9
PII: 10.1186/s12711-021-00680-9
Knihovny.cz E-zdroje

BACKGROUND: The high fecundity of fish species allows intense selection to be practised and therefore leads to fast genetic gains. Based on this, numerous selective breeding programmes have been started in Europe in the last decades, but in general, little is known about how the base populations of breeders have been built. Such knowledge is important because base populations can be created from very few individuals, which can lead to small effective population sizes and associated reductions in genetic variability. In this study, we used genomic information that was recently made available for turbot (Scophthalmus maximus), gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and common carp (Cyprinus carpio) to obtain accurate estimates of the effective size for commercial populations. METHODS: Restriction-site associated DNA sequencing data were used to estimate current and historical effective population sizes. We used a novel method that considers the linkage disequilibrium spectrum for the whole range of genetic distances between all pairs of single nucleotide polymorphisms (SNPs), and thus accounts for potential fluctuations in population size over time. RESULTS: Our results show that the current effective population size for these populations is small (equal to or less than 50 fish), potentially putting the sustainability of the breeding programmes at risk. We have also detected important drops in effective population size about five to nine generations ago, most likely as a result of domestication and the start of selective breeding programmes for these species in Europe. CONCLUSIONS: Our findings highlight the need to broaden the genetic composition of the base populations from which selection programmes start, and suggest that measures designed to increase effective population size within all farmed populations analysed here should be implemented in order to manage genetic variability and ensure the sustainability of the breeding programmes.

Zobrazit více v PubMed

Holtsmark M, Klemetsdal G, Sonesson AK, Woolliams JA. Establishing a base population for a breeding program in aquaculture, from multiple subpopulations, differentiated by genetic drift: I effects of the number of subpopulations, heritability and mating strategies using optimum contribution selection. Aquaculture. 2008;274:232–240.

Holtsmark M, Klemetsdal G, Sonesson AK, Woolliams JA. Establishing a base population for a breeding program in aquaculture, from multiple subpopulations, differentiated by genetic drift: II sensitivity to assumptions on the additive genetic relationships of base animals. Aquaculture. 2008;274:241–246.

Fernández J, Toro MA, Sonesson AK, Villanueva B. Optimizing the creation of base populations for aquaculture breeding programs using phenotypic and genomic data and its consequences on genetic progress. Front Genet. 2014;5:e414. PubMed PMC

Hill WG. Estimation of effective population size from data on linkage disequilibrium. Genet Res. 1981;38:209–216.

Hayes BJ, Visscher PM, McPartlan HC, Goddard ME. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 2003;13:635–643. PubMed PMC

Santiago E, Novo I, Pardiñas AF, Saura M, Wang J, Caballero A. Recent demographic history inferred by high-resolution analysis of linkage disequilibrium. Mol Biol Evol. 2020;37:3642–3653. PubMed

Maroso F, Hermida M, Millán A, Blanco A, Saura M, et al. Highly dense linkage maps from 31 full-sibling families of turbot (Scophtahlmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly. DNA Res. 2018;25:439–450. PubMed PMC

Aslam ML, Carraro R, Bestin A, Cariou S, Sonesson AK, Bruant J-S, et al. Genetics of resistance to photobacteriosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing. BMC Genet. 2018;19:43. PubMed PMC

Palaiokostas C, Cariou S, Bestin A, Bruant J-S, Haffray P, Morin T, et al. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing. Genet Sel Evol. 2018;50:30. PubMed PMC

Palaiokostas C, Robledo D, Vesely T, Prchal M, Pokorova D, Piacknova V, et al. Mapping and sequencing of a significant quantitative trait locus affecting resistance to Koi herpesvirus in common carp. G3 (Bethesda) 2018;8:3507–3513. PubMed PMC

Browning SR, Browning BL. Haplotype phasing: existing methods and new developments. Nat Rev Genet. 2011;12:703–714. PubMed PMC

Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor Appl Genet. 1968;38:226–231. PubMed

Ohta T, Kimura M. Linkage disequilibrium due to random genetic drift. Genet Res. 1969;13:47–55.

Saura M, Tenesa A, Woolliams JA, Fernández A, Villanueva B. Evaluation of the linkage-disequilibrium method for the estimation of effective population size when generations overlap: an empirical case. BMC Genomics. 2015;16:922. PubMed PMC

Waples RS, England PR. Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics. 2011;189:633–644. PubMed PMC

Frankham R, Ballou JD, Briscoe DA. Introduction to conservation genetics. Cambridge: Cambridge University Press; 2002.

Frankham R, Bradshaw CJA, Brook BW. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv. 2014;170:56–63.

Caballero A, Bravo I, Wang J. Inbreeding load and purging: implications for the short-term survival and the conservation management of small populations. Heredity (Edinburgh) 2017;118:177–185. PubMed PMC

Waples RS, Antao T, Luikart G. Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics. 2014;197:769–780. PubMed PMC

Brown TC, Woolliams JA, McAndrew BJ. Factors influencing effective population size in commercial populations of gilthead seabream, Sparus aurata. Aquaculture. 2005;247:219–225.

Borrell V, Gallego V, García-Fernández C, Mazzeo I, Pérez L, Asturaino JF, et al. Assessment of parental contributions to fast- and slow-growing progenies in the sea bream Sparus aurata L. using a new multiplex PCR. Aquaculture. 2011;314:58–65.

Šegvić-Bubić T, Grubišić L, Trumbić Ž, Stanić R, Ljubković J, Maršić-Lučić J, et al. Genetic characterization of wild and farmed European seabass in the Adriatic sea: assessment of farmed escapees using a Bayesian approach. ICES J Mar Sci. 2017;74:369–378.

Eknath A, Doyle RW. Effective population size and rate of inbreeding in aquaculture of Indian major carps. Aquaculture. 1990;85:293–305.

Gallardo JA, García X, Lhorente JP, Neira R. Inbreeding and inbreeding depression of female reproductive traits in two populations of Coho salmon selected using BLUP predictors of breeding values. Aquaculture. 2004;234:111–122.

Yáñez JM, Bassini LN, Filp M, Lhorente JP, Ponzoni R, Neira R. Inbreeding and effective population size in a coho salmon (Oncorhynchus kisutch) breeding nucleus in Chile. Aquaculture. 2014;420:S15–19.

Su G-S, Liljedahl L-E, Gall GAE. Effects of inbreeding on growth and reproductive traits in rainbow trout (Oncorhynchus mykiss) Aquaculture. 1996;142:139–148.

Pante MA, Gjerde B, McMillan I. Effect of inbreeding on body weight at harvest in rainbow trout, Oncorhynchus mykiss. Aquaculture. 2001;192:201–211.

Barría A, López ME, Yoshida G, Carvalheiro R, Lhhorente JP, Yáñez JM. Population genomic structure and genome-wide linkage disequilibrium in farmed Atlantic salmon (Salmo salar L.) using dense SNP genotypes. Front Genet. 2018;9:649. PubMed PMC

Barría A, Christensen KA, Yoshida G, Jedlicki A, Leong JS, Rondeau EB, et al. Whole genome linkage disequilibrium and effective population size in a coho Salmon (Oncorhynchus kisutch) breeding population using a high-density SNP array. Front Genet. 2019;10:498. PubMed PMC

D’Ambrosio J, Phocas F, Haffray P, Bestin A, Brard-Fudulea S, Poncet C, et al. Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental and commercial rainbow trout lines undergoing selective breeding. Genet Sel Evol. 2019;51:26. PubMed PMC

Ponzoni RW, Khaw HL, Nguyen HN, Hamzah A. Inbreeding and effective population size in the Malaysian nucleus of the GIFT strain of Nile tilapia (Oreochromis niloticus) Aquaculture. 2010;302:42–48.

do Prado FD, Vera M, Hermida M, Bouza C, Pardo BG, Vilas R, et al. Parallel evolution and adaptation to environmental factors in a marine flatfish: implications for fisheries and aquaculture management of the turbot (Scophthalmus maximus) Evol Appl. 2018;11:1322–1341. PubMed PMC

García de León FJ, Chikhi L, Bonhomme F. Microsatellite polymorphism and population subdivision in natural populations of European sea bass Dicentrarchus labrax (Linnaeus, 1758) Mol Ecol. 1997;6:51–62.

Loukovitis D, Sarropolou E, Vogiatzi E, Tsigenopoulos CS, Kotoulas G, Magoulas A, et al. Genetic variation in farmed populations of the gilthead sea bream Sparus aurata in Greece using microsatellite DNA markers. Aquac Res. 2012;43:239–246.

Kohlmann K, Kersten P. Genetic variability of German and foreign common carp (Cyprinus carpio L.) populations. Aquaculture. 1999;173:435–445.

Kohlmann K, Kersten P, Flajšhans M. Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture. 2005;247:253–266.

Janssen K, Chavanne H, Berentsen P, Komen H. Impact of selective breeding on European aquaculture. Aquaculture. 2017;472:8–16.

Yoshida GM, Barriá A, Correa K, Cáceres G, Jedicki A, Cádiz MI, et al. Genome-wide patterns of population structure and linkage disequilibrium in farmed Nile tilapia (Oreochromis niloticus) Front Genet. 2019;10:745. PubMed PMC

Kijas J, Elliot N, Kube P, Evans B, Botwright N, King H, et al. Diversity and linkage disequilibrium in farmed Tasmanian Atlantic salmon. Anim Genet. 2017;48:237–241. PubMed

Glover KA, Solberg MF, McGinnity P, Hindar K, Verspoor E, Coulson MW, et al. Half a century of genetic interaction between farmed and wild Atlantic salmon: status of knowledge and unanswered questions. Fish Fish. 2017;18:890–927.

Sonesson A, Ødegård J. Mating structures for genomic selection breeding programs in aquaculture. Genet Sel Evol. 2016;48:46. PubMed PMC

Meuwissen THE. Maximizing the response of selection with a predefined rate of inbreeding. J Anim Sci. 1997;75:934–940. PubMed

Grundy B, Villanueva B, Woolliams JA. Dynamic selection procedures for constrained inbreeding and their consequences for pedigree development. Genet Res. 1998;72:159–168.

Bouza C, Hermida M, Pardo BG, Vera M, Fernández C, Fernández C, et al. An expressed sequence tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts. BMC Genet. 2012;13:54. PubMed PMC

Khul H, Sarropoulou E, Tine M, Kotoulas G, Magoulas A, Reinhardt R. A comparative BAC map for the gilthead sea bream (Sparus aurata L.) J Biomed Biotechnol. 2011;2011:329025. PubMed PMC

Chistiakov DA, Tsigenopoulos CS, Lagnel J, Guo Y-M, Hellemans, Haley CS, et al. A combined AFLP and microsatellite linkage map and pilot comparative genomic analysis of European sea bass Dicentrarchus labrax L. Anim Genet. 2008;39:623–634. PubMed

Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet. 2014;46:1212–1219. PubMed

Haller BC, Messer PW. SLiM 3: forward genetic simulations beyond the Wright–Fisher model. Mol Biol Evol. 2019;36:632–637. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...