Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes

. 2024 Jan ; 21 (1) : 1-17. [epub] 20240506

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid38711165

Grantová podpora
CZ.1.07/2.3.00/30.0022 European Social Fund and the state budget of the Czech Republic
QLK-CT2000-60036 Marie Curie Host fellowship
ASTF 226-2005 EMBO Short Term Fellowship
SVV260083, GAUK119710, GAUK441711, AND GAUK8214 Charles University
22-2014 Swedish Cancer Fund

Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.

Zobrazit více v PubMed

Herzel L, Ottoz DSM, Alpert T, et al. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol. 2017;18(10):637–650. doi: 10.1038/nrm.2017.63 PubMed DOI PMC

Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet. 2014;15(3):163–175. doi: 10.1038/nrg3662 PubMed DOI PMC

Luco RF, Allo M, Schor IE, et al. Epigenetics in alternative pre-mRNA splicing. Cell. 2011;144(1):16–26. doi: 10.1016/j.cell.2010.11.056 PubMed DOI PMC

Costanzo M, VanderSluis B, Koch EN, et al. A global genetic interaction network maps a wiring diagram of cellular function. Science. 2016;353(6306):aaf1420–aaf 1420. doi: 10.1126/science.aaf1420 PubMed DOI PMC

Carrillo Oesterreich F, Preibisch S, Neugebauer KM. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell. 2010;40(4):571–581. doi: 10.1016/j.molcel.2010.11.004 PubMed DOI

Carrillo Oesterreich F, Herzel L, Straube K, et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell. 2016;165(2):372–381. doi: 10.1016/j.cell.2016.02.045 PubMed DOI PMC

Khodor YL, Rodriguez J, Abruzzi KC, et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev. 2011;25(23):2502–2512. doi: 10.1101/gad.178962.111 PubMed DOI PMC

Nojima T, Rebelo K, Gomes T, et al. RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during Co-transcriptional Splicing. Mol Cell. 2018;72(2):369–379.e4. doi: 10.1016/j.molcel.2018.09.004 PubMed DOI PMC

Milligan L, Sayou C, Tuck A, et al. RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit. Elife. 2017;6:e27082. doi: 10.7554/eLife.27082 PubMed DOI PMC

Aslanzadeh V, Huang Y, Sanguinetti G, et al. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast. Genome Res. 2018;28(2):203–213. doi: 10.1101/gr.225615.117 PubMed DOI PMC

Carrocci TJ, Neugebauer KM. Pre-mRNA splicing in the nuclear landscape. Cold Spring Harb Symp Quant Biol. 2019;84:11–20. doi: 10.1101/sqb.2019.84.040402 PubMed DOI PMC

Fica SM. Cryo-EM snapshots of the human spliceosome reveal structural adaptions for splicing regulation. Curr Opin Struct Biol. 2020;65:139–148. doi: 10.1016/j.sbi.2020.06.018 PubMed DOI

Moehle EA, Ryan CJ, Krogan NJ, et al. The yeast SR-Like protein Npl3 links chromatin modification to mRNA processing. Buratowski S, editor. PLOS Genet. 2012;8(11):e1003101. doi: 10.1371/journal.pgen.1003101 PubMed DOI PMC

Minocha R, Popova V, Kopytova D, et al. Mud2 functions in transcription by recruiting the Prp19 and TREX complexes to transcribed genes. Nucleic Acids Res. 2018;46(18):9749–9763. doi: 10.1093/nar/gky640 PubMed DOI PMC

Cech TR. RNA in biological condensates. RNA. 2022;28(1):1–2. doi: 10.1261/rna.079051.121 PubMed DOI PMC

Gunderson FQ, Merkhofer EC, Johnson TL. Dynamic histone acetylation is critical for cotranscriptional spliceosome assembly and spliceosomal rearrangements. Proc Natl Acad Sci. 2011;108(5):2004–2009. doi: 10.1073/pnas.1011982108 PubMed DOI PMC

Hérissant L, Moehle EA, Bertaccini D, et al. H2B ubiquitylation modulates spliceosome assembly and function in budding yeast: histone marks and mRNA splicing. Biol Cell. 2014;106(4):126–138. doi: 10.1111/boc.201400003 PubMed DOI PMC

Sorenson MR, Jha DK, Ucles SA, et al. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae. RNA Biol. 2016;13(4):412–426. doi: 10.1080/15476286.2016.1144009 PubMed DOI PMC

Leung CS, Douglass SM, Morselli M, et al. H3K36 methylation and the chromodomain protein Eaf3 are required for proper cotranscriptional spliceosome assembly. Cell Rep. 2019;27(13):3760–3769.e4. doi: 10.1016/j.celrep.2019.05.100 PubMed DOI PMC

Shao W, Ding Z, Zheng Z-Z, et al. Prp5−Spt8/Spt3 interaction mediates a reciprocal coupling between splicing and transcription. Nucleic Acids Res. 2020;48(11):5799–5813. doi: 10.1093/nar/gkaa311 PubMed DOI PMC

Maudlin IE, Beggs JD. Spt5 modulates cotranscriptional spliceosome assembly in Saccharomyces cerevisiae. RNA. 2019;25(10):1298–1310. doi: 10.1261/rna.070425.119 PubMed DOI PMC

Martinkova K, Lebduska P, Skruzny M, et al. Functional mapping of Saccharomyces cerevisiae Prp45 identifies the SNW domain as essential for viability. J Biochem (Tokyo). 2002;132(4):557–563. doi: 10.1093/oxfordjournals.jbchem.a003257 PubMed DOI

Lenstra TL, Benschop JJ, Kim T, et al. The specificity and topology of chromatin interaction pathways in yeast. Mol Cell. 2011;42(4):536–549. doi: 10.1016/j.molcel.2011.03.026 PubMed DOI PMC

Görnemann J, Kotovic KM, Hujer K, et al. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell. 2005;19(1):53–63. doi: 10.1016/j.molcel.2005.05.007 PubMed DOI

Haque N, Oberdoerffer S. Chromatin and splicing. Methods Mol Biol Clifton NJ. 2014;1126:97–113. PubMed PMC

Hnisz D, Shrinivas K, Young RA, et al. A phase separation model for transcriptional control. Cell. 2017;169(1):13–23. doi: 10.1016/j.cell.2017.02.007 PubMed DOI PMC

Henninger JE, Oksuz O, Shrinivas K, et al. RNA-Mediated feedback control of transcriptional condensates. Cell. 2021;184(1):207–225.e24. doi: 10.1016/j.cell.2020.11.030 PubMed DOI PMC

Bhat P, Honson D, Guttman M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat Rev Mol Cell Biol. 2021;22(10):653–670. doi: 10.1038/s41580-021-00387-1 PubMed DOI

Moehle EA, Braberg H, Krogan NJ, et al. Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate. RNA Biol. 2014;11(4):313–319. doi: 10.4161/rna.28646 PubMed DOI PMC

Aslanzadeh V, Beggs JD. Revisiting the window of opportunity for cotranscriptional splicing in budding yeast. RNA. 2020;26(9):1081–1085. doi: 10.1261/rna.075895.120 PubMed DOI PMC

Chathoth KT, Barrass JD, Webb S, et al. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol Cell. 2014;53(5):779–790. doi: 10.1016/j.molcel.2014.01.017 PubMed DOI PMC

Harlen KM, Trotta KL, Smith EE, et al. Comprehensive RNA polymerase II interactomes reveal distinct and varied roles for each phospho-CTD residue. Cell Rep. 2016;15(10):2147–2158. doi: 10.1016/j.celrep.2016.05.010 PubMed DOI PMC

Rosonina E, Yurko N, Li W, et al. Threonine-4 of the budding yeast RNAP II CTD couples transcription with Htz1-mediated chromatin remodeling. Proc Natl Acad Sci. 2014;111(33):11924–11931. doi: 10.1073/pnas.1412802111 PubMed DOI PMC

Lu H, Yu D, Hansen AS, et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature. 2018;558(7709):318–323. doi: 10.1038/s41586-018-0174-3 PubMed DOI PMC

Maita H, Nakagawa S. What is the switch for coupling transcription and splicing? RNA polymerase II C-terminal domain phosphorylation, phase separation and beyond. Wiley Interdiscip Rev RNA. 2020;11(1):e1574. doi: 10.1002/wrna.1574 PubMed DOI

Guo YE, Manteiga JC, Henninger JE, et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature. 2019;572(7770):543–548. doi: 10.1038/s41586-019-1464-0 PubMed DOI PMC

Church MC, Fleming AB. A role for histone acetylation in regulating transcription elongation. Transcription. 2018;9(4):225–232. doi: 10.1080/21541264.2017.1394423 PubMed DOI PMC

Cohen E, Zafrir Z, Tuller T. A code for transcription elongation speed. RNA Biol. 2018;15(1):81–94. doi: 10.1080/15476286.2017.1384118 PubMed DOI PMC

Rahhal R, Seto E. Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res. 2019;47(10):4911–4926. doi: 10.1093/nar/gkz292 PubMed DOI PMC

Guillemette B, Gaudreau L. Reuniting the contrasting functions of H2A.Z. This paper is one of a selection of papers published in this special issue, entitled 27th international west coast chromatin and chromosome conference, and has undergone the Journal’s usual peer review process. Biochem Cell Biol Biochim Biol Cell. 2006;84(4):528–535. doi: 10.1139/o06-077 PubMed DOI

Billon P, Côté J. Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. Biochim Biophys Acta Gene Regul Mech. 2012;1819(3–4):290–302. doi: 10.1016/j.bbagrm.2011.10.004 PubMed DOI

Brewis HT, Wang AY, Gaub A, et al. What makes a histone variant a variant: changing H2A to become H2A.Z. Schneider R, editor. PLOS Genet. 2021;17(12):e1009950. doi: 10.1371/journal.pgen.1009950 PubMed DOI PMC

Sims RJ, Millhouse S, Chen C-F, et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell. 2007;28(4):665–676. doi: 10.1016/j.molcel.2007.11.010 PubMed DOI PMC

Fong N, Saldi T, Sheridan RM, et al. RNA Pol II dynamics modulate co-transcriptional chromatin modification, CTD phosphorylation, and transcriptional direction. Mol Cell. 2017;66(4):546–557.e3. doi: 10.1016/j.molcel.2017.04.016 PubMed DOI PMC

Patrick KL, Ryan CJ, Xu J, et al. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast. Bentley D, editor. PLOS Genet. 2015;11(3):e1005074. doi: 10.1371/journal.pgen.1005074 PubMed DOI PMC

Nissen KE, Homer CM, Ryan CJ, et al. The histone variant H2A. Z promotes splicing of weak introns. Genes Dev. 2017;31(7):688–701. doi: 10.1101/gad.295287.116 PubMed DOI PMC

Neves LT, Douglass S, Spreafico R, et al. The histone variant H2A.Z promotes efficient cotranscriptional splicing in S. cerevisiae. Genes Dev. 2017;31(7):702–717. doi: 10.1101/gad.295188.116 PubMed DOI PMC

Bai R, Yan C, Wan R, et al. Structure of the post-catalytic spliceosome from Saccharomyces cerevisiae. Cell. 2017;171(7):1589–1598.e8. doi: 10.1016/j.cell.2017.10.038 PubMed DOI

Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC

Ruff KM, Pappu RV. AlphaFold and implications for intrinsically disordered proteins. J Mol Biol. 2021;433(20):167208. doi: 10.1016/j.jmb.2021.167208 PubMed DOI

Wan R, Bai R, Yan C, et al. Structures of the catalytically activated yeast spliceosome reveal the mechanism of branching. Cell. 2019;177(2):339–351.e13. doi: 10.1016/j.cell.2019.02.006 PubMed DOI

Albers M, Diment A, Muraru M. Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. RNA. 2003;9(1):138–150. doi: 10.1261/rna.2119903 PubMed DOI PMC

Wan R, Bai R, Zhan X, et al. How is precursor messenger RNA spliced by the spliceosome? Annu Rev Biochem. 2020;89(1):333–358. doi: 10.1146/annurev-biochem-013118-111024 PubMed DOI

Yan C, Wan R, Bai R, et al. Structure of a yeast step II catalytically activated spliceosome. Science. 2017;355(6321):149–155. doi: 10.1126/science.aak9979 PubMed DOI

Plaschka C, Newman AJ, Nagai K. Structural basis of nuclear pre-mRNA splicing: lessons from yeast. Cold Spring Harb Perspect Biol. 2019;11(5):a032391. doi: 10.1101/cshperspect.a032391 PubMed DOI PMC

Wilkinson ME, Fica SM, Galej WP, et al. Postcatalytic spliceosome structure reveals mechanism of 3′–splice site selection. Science. 2017;358(6368):1283–1288. doi: 10.1126/science.aar3729 PubMed DOI PMC

Wan R, Yan C, Bai R, et al. Structure of an intron lariat spliceosome from Saccharomyces cerevisiae. Cell. 2017;171(1):120–132.e12. doi: 10.1016/j.cell.2017.08.029 PubMed DOI

Gahura O, Abrhámová K, Skružný M, et al. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates. J Cell Biochem. 2009;106(1):139–151. doi: 10.1002/jcb.21989 PubMed DOI

Harmon TS, Holehouse AS, Rosen MK, et al. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife. 2017;6:e30294. doi: 10.7554/eLife.30294 PubMed DOI PMC

Zhang C, Baudino TA, Dowd DR, et al. Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated transcription. J Biol Chem. 2001;276(44):40614–40620. doi: 10.1074/jbc.M106263200 PubMed DOI

Prathapam T, Kühne C, Banks L. Skip interacts with the retinoblastoma tumor suppressor and inhibits its transcriptional repression activity. Nucleic Acids Res. 2002;30(23):5261–5268. doi: 10.1093/nar/gkf658 PubMed DOI PMC

Brès V, Gomes N, Pickle L, et al. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev. 2005;19(10):1211–1226. doi: 10.1101/gad.1291705 PubMed DOI PMC

Chen Y, Zhang L, Jones KA. SKIP counteracts p53-mediated apoptosis via selective regulation of p21Cip1 mRNA splicing. Genes Dev. 2011;25(7):701–716. doi: 10.1101/gad.2002611 PubMed DOI PMC

Brès V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol. 2008;20(3):334–340. doi: 10.1016/j.ceb.2008.04.008 PubMed DOI PMC

Újvári A, Luse DS. Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J Biol Chem. 2004;279(48):49773–49779. doi: 10.1074/jbc.M409087200 PubMed DOI

Ambrozková M, Půta F, Fuková I, et al. The fission yeast ortholog of the coregulator SKIP interacts with the small subunit of U2AF. Biochem Biophys Res Commun. 2001;284(5):1148–1154. doi: 10.1006/bbrc.2001.5108 PubMed DOI

Hálová M, Gahura O, Převorovský M, et al. Nineteen complex–related factor Prp45 is required for the early stages of cotranscriptional spliceosome assembly. RNA. 2017;23(10):1512–1524. doi: 10.1261/rna.061986.117 PubMed DOI PMC

Clark TA, Sugnet CW, Ares M. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science. 2002;296(5569):907–910. doi: 10.1126/science.1069415 PubMed DOI

Soutourina J. Transcription regulation by the mediator complex. Nat Rev Mol Cell Biol. 2018;19(4):262–274. doi: 10.1038/nrm.2017.115 PubMed DOI

Van Driessche B, Tafforeau L, Hentges P, et al. Additional vectors for PCR-based gene tagging in Saccharomyces cerevisiae and Schizosaccharomyces pombe using nourseothricin resistance. Yeast Chichester Engl. 2005;22(13):1061–1068. doi: 10.1002/yea.1293 PubMed DOI

Storici F, Lewis LK, Resnick MA. In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol. 2001;19(8):773–776. doi: 10.1038/90837 PubMed DOI

Tong AHY, Boone C. Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol Biol Clifton NJ. 2006;313:171–192. PubMed

Winzeler EA, Shoemaker DD, Astromoff A, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285(5429):901–906. doi: 10.1126/science.285.5429.901 PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262 PubMed DOI

Převorovský M, Hálová M, Abrhámová K, et al. Workflow for genome-wide determination of pre-mRNA splicing efficiency from yeast RNA-seq data. Biomed Res Int. 2016;2016:1–9. doi: 10.1155/2016/4783841 PubMed DOI PMC

Baryshnikova A. Systematic functional annotation and visualization of biological networks. Cell Syst. 2016;2(6):412–421. doi: 10.1016/j.cels.2016.04.014 PubMed DOI

Persson BL, Lagerstedt JO, Pratt JR, et al. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet. 2003;43(4):225–244. doi: 10.1007/s00294-003-0400-9 PubMed DOI

Carvin CD, Kladde MP. Effectors of Lysine 4 methylation of histone H3 in Saccharomyces cerevisiae are negative regulators of PHO5 and GAL1-10. J Biol Chem. 2004;279(32):33057–33062. doi: 10.1074/jbc.M405033200 PubMed DOI PMC

Ellison MA, Lederer AR, Warner MH, et al. The Paf1 complex broadly impacts the transcriptome of Saccharomyces cerevisiae. Genetics. 2019;212(3):711–728. doi: 10.1534/genetics.119.302262 PubMed DOI PMC

Query CC, Konarska MM. Suppression of multiple substrate mutations by spliceosomal prp8 alleles suggests functional correlations with ribosomal ambiguity mutants. Mol Cell. 2004;14(3):343–354. doi: 10.1016/S1097-2765(04)00217-5 PubMed DOI

Konarska MM, Vilardell J, Query CC. Repositioning of the reaction intermediate within the catalytic center of the spliceosome. Mol Cell. 2006;21(4):543–553. doi: 10.1016/j.molcel.2006.01.017 PubMed DOI

Chung NC, Miasojedow B, Startek M, et al. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinf. 2019;20(S15):644. doi: 10.1186/s12859-019-3118-5 PubMed DOI PMC

Gu M, Naiyachit Y, Wood TJ, et al. H2A.Z marks antisense promoters and has positive effects on antisense transcript levels in budding yeast. BMC Genomics. 2015;16(1):99. doi: 10.1186/s12864-015-1247-4 PubMed DOI PMC

Sorenson MR, Stevens SW. Rapid identification of mRNA processing defects with a novel single-cell yeast reporter. RNA. 2014;20(5):732–745. doi: 10.1261/rna.042663.113 PubMed DOI PMC

Sun M, Schwalb B, Pirkl N, et al. Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels. Mol Cell. 2013;52(1):52–62. doi: 10.1016/j.molcel.2013.09.010 PubMed DOI

Pettersen EF, Goddard TD, Huang CC, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci Publ Protein Soc. 2021;30(1):70–82. doi: 10.1002/pro.3943 PubMed DOI PMC

Dion MF, Kaplan T, Kim M, et al. Dynamics of replication-independent histone turnover in budding yeast. Science. 2007;315(5817):1405–1408. doi: 10.1126/science.1134053 PubMed DOI

Abrhámová K, Nemčko F, Libus J, et al. Introns provide a platform for intergenic regulatory feedback of RPL22 paralogs in yeast. Palazzo AF, editor. PLOS ONE. 2018;13(1):e0190685. doi: 10.1371/journal.pone.0190685 PubMed DOI PMC

Herzel L, Neugebauer KM. Quantification of co-transcriptional splicing from RNA-Seq data. Methods. 2015;85:36–43. doi: 10.1016/j.ymeth.2015.04.024 PubMed DOI

VanderSluis B, Costanzo M, Billmann M, et al. Integrating genetic and protein–protein interaction networks maps a functional wiring diagram of a cell. Curr Opin Microbiol. 2018;45:170–179. doi: 10.1016/j.mib.2018.06.004 PubMed DOI PMC

Yang X, Shen Y, Garre E, et al. Stress granule-defective mutants deregulate stress responsive transcripts. Anderson P, editor. PLOS Genet. 2014;10(11):e1004763. doi: 10.1371/journal.pgen.1004763 PubMed DOI PMC

Tavella TA, Cassiano GC, Costa FTM, et al. Yeast-based high-throughput screens for discovery of kinase inhibitors for neglected diseases. Adv Protein Chem Struct Biol. 2021;124:275–309. PubMed

Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303 PubMed DOI PMC

Kuras L, Borggrefe T, Kornberg RD. Association of the mediator complex with enhancers of active genes. Proc Natl Acad Sci. 2003;100(24):13887–13891. doi: 10.1073/pnas.2036346100 PubMed DOI PMC

Larschan E, Winston F. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol Cell Biol. 2005;25(1):114–123. doi: 10.1128/MCB.25.1.114-123.2005 PubMed DOI PMC

Nagai S, Davis RE, Mattei PJ, et al. Chromatin potentiates transcription. Proc Natl Acad Sci. 2017;114(7):1536–1541. doi: 10.1073/pnas.1620312114 PubMed DOI PMC

Munding EM, Shiue L, Katzman S, et al. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing. Mol Cell. 2013;51(3):338–348. doi: 10.1016/j.molcel.2013.06.012 PubMed DOI PMC

Shore D, Zencir S, Albert B. Transcriptional control of ribosome biogenesis in yeast: links to growth and stress signals. Biochem Soc Trans. 2021;49(4):1589–1599. doi: 10.1042/BST20201136 PubMed DOI PMC

Wilkinson ME, Charenton C, Nagai K. RNA splicing by the spliceosome. Annu Rev Biochem. 2020;89(1):359–388. doi: 10.1146/annurev-biochem-091719-064225 PubMed DOI

Bagchi DN, Battenhouse AM, Park D, et al. The histone variant H2A.Z in yeast is almost exclusively incorporated into the +1 nucleosome in the direction of transcription. Nucleic Acids Res. 2019:gkz1075. doi: 10.1093/nar/gkz1075 PubMed DOI PMC

Iyer VR. The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription. Curr Genet. 2020;66(5):939–944. doi: 10.1007/s00294-020-01087-7 PubMed DOI

Holstege FCP, Jennings EG, Wyrick JJ, et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell. 1998;95(5):717–728. doi: 10.1016/S0092-8674(00)81641-4 PubMed DOI

Basehoar AD, Zanton SJ, Pugh BF. Identification and distinct regulation of yeast TATA box-containing genes. Cell. 2004;116(5):699–709. doi: 10.1016/S0092-8674(04)00205-3 PubMed DOI

Van Oss SB, Cucinotta CE, Arndt KM. Emerging insights into the roles of the Paf1 complex in gene regulation. Trends Biochem Sci. 2017;42(10):788–798. doi: 10.1016/j.tibs.2017.08.003 PubMed DOI PMC

Fischl H, Howe FS, Furger A, et al. Paf1 has distinct roles in transcription elongation and differential transcript fate. Mol Cell. 2017;65(4):685–698.e8. doi: 10.1016/j.molcel.2017.01.006 PubMed DOI PMC

Song Y-H, Ahn SH. A Bre1-associated protein, large 1 (Lge1), promotes H2B ubiquitylation during the early stages of transcription elongation. J Biol Chem. 2010;285(4):2361–2367. doi: 10.1074/jbc.M109.039255 PubMed DOI PMC

Venkatasubrahmanyam S, Hwang WW, Meneghini MD, et al. Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A. Proc Natl Acad Sci, USA. 2007;104(42):16609–16614. doi: 10.1073/pnas.0700914104 PubMed DOI PMC

Sayou C, Millán-Zambrano G, Santos-Rosa H, et al. RNA binding by histone methyltransferases Set1 and Set2. Mol Cell Biol. 2017;37(14):e00165–17. doi: 10.1128/MCB.00165-17 PubMed DOI PMC

Hang M, Smith MM. Genetic analysis implicates the Set3/Hos2 histone deacetylase in the deposition and remodeling of nucleosomes containing H2A.Z. Genetics. 2011;187(4):1053–1066. doi: 10.1534/genetics.110.125419 PubMed DOI PMC

Krogan NJ, Kim M, Tong A, et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol. 2003;23(12):4207–4218. doi: 10.1128/MCB.23.12.4207-4218.2003 PubMed DOI PMC

Jaiswal D, Turniansky R, Green EM. Choose your own adventure: the role of histone modifications in yeast cell fate. J Mol Biol. 2017;429(13):1946–1957. doi: 10.1016/j.jmb.2016.10.018 PubMed DOI PMC

Larson A, Fair BJ, Pleiss JA. Interconnections between RNA-processing pathways revealed by a sequencing-based genetic screen for pre-mRNA splicing mutants in fission yeast. G3: Genes | Genomes | Genetics. 2016;6(6):1513–1523. doi: 10.1534/g3.116.027508 PubMed DOI PMC

Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, et al. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell. 2003;11(1):261–266. doi: 10.1016/S1097-2765(02)00826-2 PubMed DOI

Pleiss JA, Whitworth GB, Bergkessel M, et al. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. Black DL, editor. PLOS Biol. 2007;5(4):e90. doi: 10.1371/journal.pbio.0050090 PubMed DOI PMC

Brown T, Howe FS, Murray SC, et al. Antisense transcription-dependent chromatin signature modulates sense transcript dynamics. Mol Syst Biol. 2018;14(2):e8007. doi: 10.15252/msb.20178007 PubMed DOI PMC

Zhou Y, Johansson MJO. The pre-mRNA retention and splicing complex controls expression of the mediator subunit Med20. RNA Biol. 2017;14(10):1411–1417. doi: 10.1080/15476286.2017.1294310 PubMed DOI PMC

Bao P, Will CL, Urlaub H, et al. The RES complex is required for efficient transformation of the precatalytic B spliceosome into an activated Bact complex. Genes Dev. 2017;31(23–24):2416–2429. doi: 10.1101/gad.308163.117 PubMed DOI PMC

Rauhut R, Fabrizio P, Dybkov O, et al. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science. 2016;353(6306):1399–1405. doi: 10.1126/science.aag1906 PubMed DOI

Zhou Y, Chen C, Johansson MJO. The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression. Nucleic Acids Res. 2013;41(11):5669–5678. doi: 10.1093/nar/gkt269 PubMed DOI PMC

Scherrer FW, Spingola M. A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention. RNA. 2006;12(7):1361–1372. doi: 10.1261/rna.2276806 PubMed DOI PMC

Spingola M. Mer1p is a modular splicing factor whose function depends on the conserved U2 snRNP protein Snu17p. Nucleic Acids Res. 2004;32(3):1242–1250. doi: 10.1093/nar/gkh281 PubMed DOI PMC

He Q, Battistella L, Morse RH. Mediator requirement downstream of chromatin remodeling during transcriptional activation of CHA1 in yeast. J Biol Chem. 2008;283(9):5276–5286. doi: 10.1074/jbc.M708266200 PubMed DOI

Cho W-K, Spille J-H, Hecht M, et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018;361(6400):412–415. doi: 10.1126/science.aar4199 PubMed DOI PMC

Mendoza-Ochoa GI, Barrass JD, Maudlin IE, et al. Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo. RNA Biol. 2019;16(12):1775–1784. doi: 10.1080/15476286.2019.1657788 PubMed DOI PMC

Rutz B. A dual role for BBP/ScSF1 in nuclear pre-mRNA retention and splicing. Embo J. 2000;19(8):1873–1886. doi: 10.1093/emboj/19.8.1873 PubMed DOI PMC

Legrain P, Rosbash M. Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell. 1989;57(4):573–583. doi: 10.1016/0092-8674(89)90127-X PubMed DOI

Baejen C, Torkler P, Gressel S, et al. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol Cell. 2014;55(5):745–757. doi: 10.1016/j.molcel.2014.08.005 PubMed DOI

Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci. 2017;74(16):2875–2897. doi: 10.1007/s00018-017-2503-3 PubMed DOI PMC

Wang K, Yin C, Du X, et al. A U2-snRNP–independent role of SF3b in promoting mRNA export. Proc Natl Acad Sci. 2019;116(16):7837–7846. doi: 10.1073/pnas.1818835116 PubMed DOI PMC

Galy V, Gadal O, Fromont-Racine M, et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell. 2004;116(1):63–73. doi: 10.1016/S0092-8674(03)01026-2 PubMed DOI

Gardner JM, Smoyer CJ, Stensrud ES, et al. Targeting of the SUN protein Mps3 to the inner nuclear membrane by the histone variant H2A.Z. J Cell Bio. 2011;193(3):489–507. doi: 10.1083/jcb.201011017 PubMed DOI PMC

Bonde MM, Voegeli S, Baudrimont A, et al. Quantification of pre-mRNA escape rate and synergy in splicing. Nucleic Acids Res. 2014;42(20):12847–12860. doi: 10.1093/nar/gku1014 PubMed DOI PMC

de Moura TR, Mozaffari-Jovin S, Szabó CZK, et al. Prp19/Pso4 is an autoinhibited ubiquitin ligase activated by stepwise assembly of three splicing factors. Mol Cell. 2018;69(6):979–992.e6. doi: 10.1016/j.molcel.2018.02.022 PubMed DOI

Chanarat S, Sträßer K. Splicing and beyond: the many faces of the Prp19 complex. Biochim Biophys Acta BBA – Mol Cell Res. 2013;1833:2126–2134. doi: 10.1016/j.bbamcr.2013.05.023 PubMed DOI

Chanarat S, Seizl M, Sträßer K. The Prp19 complex is a novel transcription elongation factor required for TREX occupancy at transcribed genes. Genes Dev. 2011;25(11):1147–1158. doi: 10.1101/gad.623411 PubMed DOI PMC

Kress TL, Krogan NJ, Guthrie C. A single SR-like protein, Npl3, promotes pre-mRNA splicing in budding yeast. Mol Cell. 2008;32(5):727–734. doi: 10.1016/j.molcel.2008.11.013 PubMed DOI PMC

Sayani S, Chanfreau GF. Sequential RNA degradation pathways provide a fail-safe mechanism to limit the accumulation of unspliced transcripts in Saccharomyces cerevisiae. RNA. 2012;18(8):1563–1572. doi: 10.1261/rna.033779.112 PubMed DOI PMC

Xie Y, Ren Y. Mechanisms of nuclear mRNA export: a structural perspective. Traffic. 2019;20(11):829–840. doi: 10.1111/tra.12691 PubMed DOI PMC

Alexander RD, Innocente SA, Barrass JD, et al. Splicing-dependent RNA polymerase pausing in yeast. Mol Cell. 2010;40(4):582–593. doi: 10.1016/j.molcel.2010.11.005 PubMed DOI PMC

Chen H, Pugh BF. What do transcription factors interact with? J Mol Biol. 2021;433(14):166883. doi: 10.1016/j.jmb.2021.166883 PubMed DOI PMC

Huranová M, Ivani I, Benda A, et al. The differential interaction of snRnps with pre-mRNA reveals splicing kinetics in living cells. J Cell Bio. 2010;191(1):75–86. doi: 10.1083/jcb.201004030 PubMed DOI PMC

Neugebauer KM. Nascent RNA and the coordination of splicing with transcription. Cold Spring Harb Perspect Biol. 2019;11(8):a032227. doi: 10.1101/cshperspect.a032227 PubMed DOI PMC

de Coelho Ribeiro ML, Espinosa J, Islam S, et al. Malleable ribonucleoprotein machine: protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome. PeerJ. 2013;1:e2. doi: 10.7717/peerj.2 PubMed DOI PMC

van der Feltz C, Hoskins AA. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol. 2019;54(5):443–465. doi: 10.1080/10409238.2019.1691497 PubMed DOI PMC

Harlen KM, Churchman LS. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat Rev Mol Cell Biol. 2017;18(4):263–273. doi: 10.1038/nrm.2017.10 PubMed DOI

Lin Y, Protter DSW, Rosen MK, et al. Formation and maturation of phase-separated liquid droplets by RNA-Binding proteins. Mol Cell. 2015;60(2):208–219. doi: 10.1016/j.molcel.2015.08.018 PubMed DOI PMC

Guo Q, Shi X, Wang X. RNA and liquid-liquid phase separation. Non-Coding RNA Res. 2021;6(2):92–99. doi: 10.1016/j.ncrna.2021.04.003 PubMed DOI PMC

Shaban HA, Barth R, Bystricky K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol. 2020;21(1):278. doi: 10.1186/s13059-020-02185-y PubMed DOI PMC

Duss O, Stepanyuk GA, Puglisi JD, et al. Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell. 2019;179(6):1357–1369.e16. doi: 10.1016/j.cell.2019.10.035 PubMed DOI PMC

Rodgers ML, Woodson SA. Transcription increases the cooperativity of ribonucleoprotein assembly. Cell. 2019;179(6):1370–1381.e12. doi: 10.1016/j.cell.2019.11.007 PubMed DOI PMC

Frumkin I, Yofe I, Bar-Ziv R, et al. Evolution of intron splicing towards optimized gene expression is based on various cis- and trans-molecular mechanisms. Hurst LD, editor. PLOS Biol. 2019;17(8):e3000423. doi: 10.1371/journal.pbio.3000423 PubMed DOI PMC

Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res. 2021;49(2):636–645. doi: 10.1093/nar/gkaa1209 PubMed DOI PMC

Gordon JM, Phizicky DV, Neugebauer KM. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr Opin Genet Dev. 2021;67:67–76. doi: 10.1016/j.gde.2020.11.002 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...