Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28050562
PubMed Central
PMC5168555
DOI
10.1155/2016/4783841
Knihovny.cz E-zdroje
- MeSH
- databáze nukleových kyselin MeSH
- mutace genetika MeSH
- prekurzory RNA genetika MeSH
- průběh práce * MeSH
- Saccharomyces cerevisiae genetika MeSH
- sekvenční analýza RNA metody MeSH
- sestřih RNA genetika MeSH
- spliceozomy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- prekurzory RNA MeSH
Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5' and 3' splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions.
Zobrazit více v PubMed
Will C. L., Lührmann R. Spliceosome structure and function. Cold Spring Harbor Perspectives in Biology. 2011;3(7):1–23. doi: 10.1101/cshperspect.a003707. PubMed DOI PMC
Ward A. J., Cooper T. A. The pathobiology of splicing. Journal of Pathology. 2010;220(2):152–163. doi: 10.1002/path.2649. PubMed DOI PMC
Singh R. K., Cooper T. A. Pre-mRNA splicing in disease and therapeutics. Trends in Molecular Medicine. 2012;18(8):472–482. doi: 10.1016/j.molmed.2012.06.006. PubMed DOI PMC
Wang Z., Burge C. B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA. 2008;14(5):802–813. doi: 10.1261/rna.876308. PubMed DOI PMC
Deutsch M., Long M. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Research. 1999;27(15):3219–3228. doi: 10.1093/nar/27.15.3219. PubMed DOI PMC
Spingola M., Grate L., Haussler D., Manuel A., Jr. Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA. 1999;5(2):221–234. doi: 10.1017/S1355838299981682. PubMed DOI PMC
Ares M., Grate L., Pauling M. H. A handful of intron-containing genes produces the lion's share of yeast mRNA. RNA. 1999;5(9):1138–1139. doi: 10.1017/s1355838299991379. PubMed DOI PMC
Kempken F. Alternative splicing in ascomycetes. Applied Microbiology and Biotechnology. 2013;97(10):4235–4241. doi: 10.1007/s00253-013-4841-x. PubMed DOI
Engebrecht J., Voelkel-Meiman K., Roeder G. S. Meiosis-specific RNA splicing in yeast. Cell. 1991;66(6):1257–1268. doi: 10.1016/0092-8674(91)90047-3. PubMed DOI
Bergkessel M., Whitworth G. B., Guthrie C. Diverse environmental stresses elicit distinct responses at the level of pre-mRNA processing in yeast. RNA. 2011;17(8):1461–1478. doi: 10.1261/rna.2754011. PubMed DOI PMC
Pleiss J. A., Whitworth G. B., Bergkessel M., Guthrie C. Rapid, transcript-specific changes in splicing in response to environmental stress. Molecular Cell. 2007;27(6):928–937. doi: 10.1016/j.molcel.2007.07.018. PubMed DOI PMC
Nakagawa T., Ogawa H. The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO Journal. 1999;18(20):5714–5723. doi: 10.1093/emboj/18.20.5714. PubMed DOI PMC
Munding E. M., Igel A. H., Shiue L., Dorighi K. M., Treviño L. R., Ares M., Jr. Integration of a splicing regulatory network within the meiotic gene expression program of Saccharomyces cerevisiae . Genes & Development. 2010;24(23):2693–2704. doi: 10.1101/gad.1977410. PubMed DOI PMC
Davis C. A., Grate L., Spingola M., Ares M., Jr. Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucleic Acids Research. 2000;28(8):1700–1706. doi: 10.1093/nar/28.8.1700. PubMed DOI PMC
Fabrizio P., Dannenberg J., Dube P., et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Molecular Cell. 2009;36(4):593–608. doi: 10.1016/j.molcel.2009.09.040. PubMed DOI
Hao S., Baltimore D. RNA splicing regulates the temporal order of TNF-induced gene expression. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(29):11934–11939. doi: 10.1073/pnas.1309990110. PubMed DOI PMC
Munding E. M., Shiue L., Katzman S., Donohue J. P., Ares M. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing. Molecular Cell. 2013;51(3):338–348. doi: 10.1016/j.molcel.2013.06.012. PubMed DOI PMC
Kawashima T., Douglass S., Gabunilas J., Pellegrini M., Chanfreau G. F. Widespread use of non-productive alternative splice sites in saccharomyces cerevisiae. PLoS Genetics. 2014;10(4) doi: 10.1371/journal.pgen.1004249.e1004249 PubMed DOI PMC
Bitton D. A., Rallis C., Jeffares D. C., et al. LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. Genome Research. 2014;24(7):1169–1179. doi: 10.1101/gr.166819.113. PubMed DOI PMC
Herzel L., Neugebauer K. M. Quantification of co-transcriptional splicing from RNA-Seq data. Methods. 2015;85:36–43. doi: 10.1016/j.ymeth.2015.04.024. PubMed DOI
Livesay S. B., Collier S. E., Bitton D. A., Bähler J., Ohi M. D. Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10. Eukaryotic Cell. 2013;12(11):1472–1489. doi: 10.1128/ec.00140-13. PubMed DOI PMC
Grisdale C. J., Bowers L. C., Didier E. S., Fast N. M. Transcriptome analysis of the parasite Encephalitozoon cuniculi: an in-depth examination of pre-mRNA splicing in a reduced eukaryote. BMC Genomics. 2013;14(1, article 207) doi: 10.1186/1471-2164-14-207. PubMed DOI PMC
Gould G. M., Paggi J. M., Guo Y., et al. Identification of new branch points and unconventional introns in Saccharomyces cerevisiae. RNA. 2016;22(10):1522–1534. doi: 10.1261/rna.057216.116. PubMed DOI PMC
Volanakis A., Passoni M., Hector R. D., et al. Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast. Genes and Development. 2013;27(18):2025–2038. doi: 10.1101/gad.221960.113. PubMed DOI PMC
Ozsolak F., Milos P. M. RNA sequencing: advances, challenges and opportunities. Nature Reviews Genetics. 2011;12(2):87–98. doi: 10.1038/nrg2934. PubMed DOI PMC
Reuter J. A., Spacek D. V., Snyder M. P. High-throughput sequencing technologies. Molecular Cell. 2015;58(4):586–597. doi: 10.1016/j.molcel.2015.05.004. PubMed DOI PMC
Jensen T. H., Jacquier A., Libri D. Dealing with pervasive transcription. Molecular Cell. 2013;52(4):473–484. doi: 10.1016/j.molcel.2013.10.032. PubMed DOI
Bolger A. M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Kim D., Langmead B., Salzberg S. L. HISAT: a fast spliced aligner with low memory requirements. Nature Methods. 2015;12(4):357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Thorvaldsdóttir H., Robinson J. T., Mesirov J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics. 2013;14(2):178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC
Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S. L. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology. 2013;14(4, article R36) doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC
Quinlan A. R., Hall I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi: 10.1093/bioinformatics/btq033.btq033 PubMed DOI PMC
Hooks K. B., Naseeb S., Parker S., Griffiths-Jones S., Delneri D. Novel intronic RNA structures contribute to maintenance of phenotype in Saccharomyces cerevisiae. Genetics. 2016;203(3):1469–1481. doi: 10.1534/genetics.115.185363. PubMed DOI PMC
Schmittgen T. D., Livak K. J. Analyzing real-time PCR data by the comparative C T method. Nature Protocols. 2008;3(6):1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
Ohi M. D., Link A. J., Ren L., Jennings J. L., McDonald W. H., Gould K. L. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Molecular and Cellular Biology. 2002;22(7):2011–2024. doi: 10.1128/MCB.22.7.2011-2024.2002. PubMed DOI PMC
Wan R., Yan C., Bai R., Huang G., Shi Y. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science. 2016;353(6302):895–904. doi: 10.1126/science.aag2235. PubMed DOI
Gahura O., Abrhámová K., Skružný M., et al. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates. Journal of Cellular Biochemistry. 2009;106(1):139–151. doi: 10.1002/jcb.21989. PubMed DOI
Banroques J., Abelson J. N. PRP4: a protein of the yeast U4/U6 small nuclear ribonucleoprotein particle. Molecular and Cellular Biology. 1989;9(9):3710–3719. doi: 10.1128/mcb.9.9.3710. PubMed DOI PMC
Bjørn S. P., Soltyk A., Beggs J. D., Friesen J. D. PRP4 (RNA4) from Saccharomyces cerevisiae: its gene product is associated with the U4/U6 small nuclear ribonucleoprotein particle. Molecular and Cellular Biology. 1989;9(9):3698–3709. doi: 10.1128/mcb.9.9.3698. PubMed DOI PMC
Hartwell L. H., McLaughlin C. S., Warner J. R. Identification of ten genes that control ribosome formation in yeast. MGG Molecular & General Genetics. 1970;109(1):42–56. doi: 10.1007/bf00334045. PubMed DOI
Ayadi L., Miller M., Banroques J. Mutations within the yeast U4/U6 snRNP protein Prp4 affect a late stage of spliceosome assembly. RNA. 1997;3(2):197–209. PubMed PMC
Clark T. A., Sugnet C. W., Ares M., Jr. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science. 2002;296(5569):907–910. doi: 10.1126/science.1069415. PubMed DOI
Kao H.-Y., Siliciano P. G. Identification of Prp40, a novel essential yeast splicing factor associated with the U1 small nuclear ribonucleoprotein particle. Molecular and Cellular Biology. 1996;16(3):960–967. doi: 10.1128/MCB.16.3.960. PubMed DOI PMC
Becerra S., Andrés-León E., Prieto-Sánchez S., Hernández-Munain C., Suñé C. Prp40 and early events in splice site definition. Wiley Interdisciplinary Reviews: RNA. 2016;7(1):17–32. doi: 10.1002/wrna.1312. PubMed DOI
Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes
Introns provide a platform for intergenic regulatory feedback of RPL22 paralogs in yeast