Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data

. 2016 ; 2016 () : 4783841. [epub] 20161206

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28050562

Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5' and 3' splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions.

Zobrazit více v PubMed

Will C. L., Lührmann R. Spliceosome structure and function. Cold Spring Harbor Perspectives in Biology. 2011;3(7):1–23. doi: 10.1101/cshperspect.a003707. PubMed DOI PMC

Ward A. J., Cooper T. A. The pathobiology of splicing. Journal of Pathology. 2010;220(2):152–163. doi: 10.1002/path.2649. PubMed DOI PMC

Singh R. K., Cooper T. A. Pre-mRNA splicing in disease and therapeutics. Trends in Molecular Medicine. 2012;18(8):472–482. doi: 10.1016/j.molmed.2012.06.006. PubMed DOI PMC

Wang Z., Burge C. B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA. 2008;14(5):802–813. doi: 10.1261/rna.876308. PubMed DOI PMC

Deutsch M., Long M. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Research. 1999;27(15):3219–3228. doi: 10.1093/nar/27.15.3219. PubMed DOI PMC

Spingola M., Grate L., Haussler D., Manuel A., Jr. Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA. 1999;5(2):221–234. doi: 10.1017/S1355838299981682. PubMed DOI PMC

Ares M., Grate L., Pauling M. H. A handful of intron-containing genes produces the lion's share of yeast mRNA. RNA. 1999;5(9):1138–1139. doi: 10.1017/s1355838299991379. PubMed DOI PMC

Kempken F. Alternative splicing in ascomycetes. Applied Microbiology and Biotechnology. 2013;97(10):4235–4241. doi: 10.1007/s00253-013-4841-x. PubMed DOI

Engebrecht J., Voelkel-Meiman K., Roeder G. S. Meiosis-specific RNA splicing in yeast. Cell. 1991;66(6):1257–1268. doi: 10.1016/0092-8674(91)90047-3. PubMed DOI

Bergkessel M., Whitworth G. B., Guthrie C. Diverse environmental stresses elicit distinct responses at the level of pre-mRNA processing in yeast. RNA. 2011;17(8):1461–1478. doi: 10.1261/rna.2754011. PubMed DOI PMC

Pleiss J. A., Whitworth G. B., Bergkessel M., Guthrie C. Rapid, transcript-specific changes in splicing in response to environmental stress. Molecular Cell. 2007;27(6):928–937. doi: 10.1016/j.molcel.2007.07.018. PubMed DOI PMC

Nakagawa T., Ogawa H. The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO Journal. 1999;18(20):5714–5723. doi: 10.1093/emboj/18.20.5714. PubMed DOI PMC

Munding E. M., Igel A. H., Shiue L., Dorighi K. M., Treviño L. R., Ares M., Jr. Integration of a splicing regulatory network within the meiotic gene expression program of Saccharomyces cerevisiae . Genes & Development. 2010;24(23):2693–2704. doi: 10.1101/gad.1977410. PubMed DOI PMC

Davis C. A., Grate L., Spingola M., Ares M., Jr. Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucleic Acids Research. 2000;28(8):1700–1706. doi: 10.1093/nar/28.8.1700. PubMed DOI PMC

Fabrizio P., Dannenberg J., Dube P., et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Molecular Cell. 2009;36(4):593–608. doi: 10.1016/j.molcel.2009.09.040. PubMed DOI

Hao S., Baltimore D. RNA splicing regulates the temporal order of TNF-induced gene expression. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(29):11934–11939. doi: 10.1073/pnas.1309990110. PubMed DOI PMC

Munding E. M., Shiue L., Katzman S., Donohue J. P., Ares M. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing. Molecular Cell. 2013;51(3):338–348. doi: 10.1016/j.molcel.2013.06.012. PubMed DOI PMC

Kawashima T., Douglass S., Gabunilas J., Pellegrini M., Chanfreau G. F. Widespread use of non-productive alternative splice sites in saccharomyces cerevisiae. PLoS Genetics. 2014;10(4) doi: 10.1371/journal.pgen.1004249.e1004249 PubMed DOI PMC

Bitton D. A., Rallis C., Jeffares D. C., et al. LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. Genome Research. 2014;24(7):1169–1179. doi: 10.1101/gr.166819.113. PubMed DOI PMC

Herzel L., Neugebauer K. M. Quantification of co-transcriptional splicing from RNA-Seq data. Methods. 2015;85:36–43. doi: 10.1016/j.ymeth.2015.04.024. PubMed DOI

Livesay S. B., Collier S. E., Bitton D. A., Bähler J., Ohi M. D. Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10. Eukaryotic Cell. 2013;12(11):1472–1489. doi: 10.1128/ec.00140-13. PubMed DOI PMC

Grisdale C. J., Bowers L. C., Didier E. S., Fast N. M. Transcriptome analysis of the parasite Encephalitozoon cuniculi: an in-depth examination of pre-mRNA splicing in a reduced eukaryote. BMC Genomics. 2013;14(1, article 207) doi: 10.1186/1471-2164-14-207. PubMed DOI PMC

Gould G. M., Paggi J. M., Guo Y., et al. Identification of new branch points and unconventional introns in Saccharomyces cerevisiae. RNA. 2016;22(10):1522–1534. doi: 10.1261/rna.057216.116. PubMed DOI PMC

Volanakis A., Passoni M., Hector R. D., et al. Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast. Genes and Development. 2013;27(18):2025–2038. doi: 10.1101/gad.221960.113. PubMed DOI PMC

Ozsolak F., Milos P. M. RNA sequencing: advances, challenges and opportunities. Nature Reviews Genetics. 2011;12(2):87–98. doi: 10.1038/nrg2934. PubMed DOI PMC

Reuter J. A., Spacek D. V., Snyder M. P. High-throughput sequencing technologies. Molecular Cell. 2015;58(4):586–597. doi: 10.1016/j.molcel.2015.05.004. PubMed DOI PMC

Jensen T. H., Jacquier A., Libri D. Dealing with pervasive transcription. Molecular Cell. 2013;52(4):473–484. doi: 10.1016/j.molcel.2013.10.032. PubMed DOI

Bolger A. M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Kim D., Langmead B., Salzberg S. L. HISAT: a fast spliced aligner with low memory requirements. Nature Methods. 2015;12(4):357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Thorvaldsdóttir H., Robinson J. T., Mesirov J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics. 2013;14(2):178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC

Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S. L. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology. 2013;14(4, article R36) doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC

Quinlan A. R., Hall I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi: 10.1093/bioinformatics/btq033.btq033 PubMed DOI PMC

Hooks K. B., Naseeb S., Parker S., Griffiths-Jones S., Delneri D. Novel intronic RNA structures contribute to maintenance of phenotype in Saccharomyces cerevisiae. Genetics. 2016;203(3):1469–1481. doi: 10.1534/genetics.115.185363. PubMed DOI PMC

Schmittgen T. D., Livak K. J. Analyzing real-time PCR data by the comparative C T method. Nature Protocols. 2008;3(6):1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Ohi M. D., Link A. J., Ren L., Jennings J. L., McDonald W. H., Gould K. L. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Molecular and Cellular Biology. 2002;22(7):2011–2024. doi: 10.1128/MCB.22.7.2011-2024.2002. PubMed DOI PMC

Wan R., Yan C., Bai R., Huang G., Shi Y. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science. 2016;353(6302):895–904. doi: 10.1126/science.aag2235. PubMed DOI

Gahura O., Abrhámová K., Skružný M., et al. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates. Journal of Cellular Biochemistry. 2009;106(1):139–151. doi: 10.1002/jcb.21989. PubMed DOI

Banroques J., Abelson J. N. PRP4: a protein of the yeast U4/U6 small nuclear ribonucleoprotein particle. Molecular and Cellular Biology. 1989;9(9):3710–3719. doi: 10.1128/mcb.9.9.3710. PubMed DOI PMC

Bjørn S. P., Soltyk A., Beggs J. D., Friesen J. D. PRP4 (RNA4) from Saccharomyces cerevisiae: its gene product is associated with the U4/U6 small nuclear ribonucleoprotein particle. Molecular and Cellular Biology. 1989;9(9):3698–3709. doi: 10.1128/mcb.9.9.3698. PubMed DOI PMC

Hartwell L. H., McLaughlin C. S., Warner J. R. Identification of ten genes that control ribosome formation in yeast. MGG Molecular & General Genetics. 1970;109(1):42–56. doi: 10.1007/bf00334045. PubMed DOI

Ayadi L., Miller M., Banroques J. Mutations within the yeast U4/U6 snRNP protein Prp4 affect a late stage of spliceosome assembly. RNA. 1997;3(2):197–209. PubMed PMC

Clark T. A., Sugnet C. W., Ares M., Jr. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science. 2002;296(5569):907–910. doi: 10.1126/science.1069415. PubMed DOI

Kao H.-Y., Siliciano P. G. Identification of Prp40, a novel essential yeast splicing factor associated with the U1 small nuclear ribonucleoprotein particle. Molecular and Cellular Biology. 1996;16(3):960–967. doi: 10.1128/MCB.16.3.960. PubMed DOI PMC

Becerra S., Andrés-León E., Prieto-Sánchez S., Hernández-Munain C., Suñé C. Prp40 and early events in splice site definition. Wiley Interdisciplinary Reviews: RNA. 2016;7(1):17–32. doi: 10.1002/wrna.1312. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...