Introns provide a platform for intergenic regulatory feedback of RPL22 paralogs in yeast
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29304067
PubMed Central
PMC5755908
DOI
10.1371/journal.pone.0190685
PII: PONE-D-17-30650
Knihovny.cz E-zdroje
- MeSH
- geny hub * MeSH
- introny * MeSH
- Kluyveromyces genetika MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ribosomal protein genes (RPGs) in Saccharomyces cerevisiae are a remarkable regulatory group that may serve as a model for understanding genetic redundancy in evolutionary adaptations. Most RPGs exist as pairs of highly conserved functional paralogs with divergent untranslated regions and introns. We examined the roles of introns in strains with various combinations of intron and gene deletions in RPL22, RPL2, RPL16, RPL37, RPL17, RPS0, and RPS18 paralog pairs. We found that introns inhibited the expression of their genes in the RPL22 pair, with the RPL22B intron conferring a much stronger effect. While the WT RPL22A/RPL22B mRNA ratio was 93/7, the rpl22aΔi/RPL22B and RPL22A/rpl22bΔi ratios were >99/<1 and 60/40, respectively. The intron in RPL2A stimulated the expression of its own gene, but the removal of the other introns had little effect on expression of the corresponding gene pair. Rpl22 protein abundances corresponded to changes in mRNAs. Using splicing reporters containing endogenous intron sequences, we demonstrated that these effects were due to the inhibition of splicing by Rpl22 proteins but not by their RNA-binding mutant versions. Indeed, only WT Rpl22A/Rpl22B proteins (but not the mutants) interacted in a yeast three-hybrid system with an RPL22B intronic region between bp 165 and 236. Transcriptome analysis showed that both the total level of Rpl22 and the A/B ratio were important for maintaining the WT phenotype. The data presented here support the contention that the Rpl22B protein has a paralog-specific role. The RPL22 singleton of Kluyveromyces lactis, which did not undergo whole genome duplication, also responded to Rpl22-mediated inhibition in K. lactis cells. Vice versa, the overproduction of the K. lactis protein reduced the expression of RPL22A/B in S. cerevisiae. The extraribosomal function of of the K. lactis Rpl22 suggests that the loop regulating RPL22 paralogs of S. cerevisiae evolved from autoregulation.
Zobrazit více v PubMed
Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999;24: 437–440. PubMed
Henras AK, Soudet J, Gérus M, Lebaron S, Caizergues-Ferrer M, Mougin A, et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci CMLS. 2008;65: 2334–2359. doi: 10.1007/s00018-008-8027-0 PubMed DOI PMC
Lempiäinen H, Shore D. Growth control and ribosome biogenesis. Curr Opin Cell Biol. 2009;21: 855–863. doi: 10.1016/j.ceb.2009.09.002 PubMed DOI
Woolford JL, Baserga SJ. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae. Genetics. 2013;195: 643–681. doi: 10.1534/genetics.113.153197 PubMed DOI PMC
Sung M-K, Porras-Yakushi TR, Reitsma JM, Huber FM, Sweredoski MJ, Hoelz A, et al. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. eLife. 2016;5: e19105 doi: 10.7554/eLife.19105 PubMed DOI PMC
Sung M-K, Reitsma JM, Sweredoski MJ, Hess S, Deshaies RJ. Ribosomal proteins produced in excess are degraded by the ubiquitin–proteasome system. Mol Biol Cell. 2016;27: 2642–2652. doi: 10.1091/mbc.E16-05-0290 PubMed DOI PMC
Planta RJ, Mager WH. The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast. 1998;14: 471–477. doi: 10.1002/(SICI)1097-0061(19980330)14:5<471::AID-YEA241>3.0.CO;2-U PubMed DOI
Wolfe KH, Shields DC. Molecular evidence for an ancient duplication of the entire yeast genome. Nature. 1997;387: 708–713. doi: 10.1038/42711 PubMed DOI
Byrne KP, Wolfe KH. The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 2005;15: 1456–1461. doi: 10.1101/gr.3672305 PubMed DOI PMC
Marcet-Houben M, Gabaldón T. Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLoS Biol. 2015;13: e1002220 doi: 10.1371/journal.pbio.1002220 PubMed DOI PMC
Coulombe-Huntington J, Xia Y. Network Centrality Analysis in Fungi Reveals Complex Regulation of Lost and Gained Genes. PLoS ONE. 2017;12: e0169459 doi: 10.1371/journal.pone.0169459 PubMed DOI PMC
Wapinski I, Pfeffer A, Friedman N, Regev A. Natural history and evolutionary principles of gene duplication in fungi. Nature. 2007;449: 54–61. doi: 10.1038/nature06107 PubMed DOI
Plocik AM, Guthrie C. Diverse forms of RPS9 splicing are part of an evolving autoregulatory circuit. PLoS Genet. 2012;8: e1002620 doi: 10.1371/journal.pgen.1002620 PubMed DOI PMC
Spingola M, Grate L, Haussler D, Ares M. Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA. 1999;5: 221–234. PubMed PMC
Neuvéglise C, Marck C, Gaillardin C. The intronome of budding yeasts. C R Biol. 2011;334: 662–670. doi: 10.1016/j.crvi.2011.05.015 PubMed DOI
Juneau K, Miranda M, Hillenmeyer ME, Nislow C, Davis RW. Introns Regulate RNA and Protein Abundance in Yeast. Genetics. 2006;174: 511–518. doi: 10.1534/genetics.106.058560 PubMed DOI PMC
Ares M, Grate L, Pauling MH. A handful of intron-containing genes produces the lion’s share of yeast mRNA. RNA. 1999;5: 1138–1139. PubMed PMC
Steffen KK, McCormick MA, Pham KM, MacKay VL, Delaney JR, Murakami CJ, et al. Ribosome Deficiency Protects Against ER Stress in Saccharomyces cerevisiae. Genetics. 2012;191: 107–118. doi: 10.1534/genetics.111.136549 PubMed DOI PMC
Evangelisti AM, Conant GC. Nonrandom Survival of Gene Conversions among Yeast Ribosomal Proteins Duplicated through Genome Doubling. Genome Biol Evol. 2010;2: 826–834. doi: 10.1093/gbe/evq067 PubMed DOI PMC
Yadav A, Radhakrishnan A, Panda A, Singh A, Sinha H, Bhanot G. The Modular Adaptive Ribosome. PLoS ONE. 2016;11: e0166021 doi: 10.1371/journal.pone.0166021 PubMed DOI PMC
Bergkessel M, Whitworth GB, Guthrie C. Diverse environmental stresses elicit distinct responses at the level of pre-mRNA processing in yeast. RNA. 2011;17: 1461–1478. doi: 10.1261/rna.2754011 PubMed DOI PMC
Komili S, Farny NG, Roth FP, Silver PA. Functional Specificity among Ribosomal Proteins Regulates Gene Expression. Cell. 2007;131: 557–571. doi: 10.1016/j.cell.2007.08.037 PubMed DOI PMC
Parenteau J, Durand M, Morin G, Gagnon J, Lucier J-F, Wellinger RJ, et al. Introns within Ribosomal Protein Genes Regulate the Production and Function of Yeast Ribosomes. Cell. 2011;147: 320–331. doi: 10.1016/j.cell.2011.08.044 PubMed DOI
Gilbert WV. Functional specialization of ribosomes? Trends Biochem Sci. 2011;36: 127–132. doi: 10.1016/j.tibs.2010.12.002 PubMed DOI PMC
Mauro VP, Edelman GM. The Ribosome Filter Redux. Cell Cycle. 2007;6: 2246–2251. doi: 10.4161/cc.6.18.4739 PubMed DOI PMC
Shi Z, Barna M. Translating the Genome in Time and Space: Specialized Ribosomes, RNA Regulons, and RNA-Binding Proteins. Annu Rev Cell Dev Biol. 2015;31: 31–54. doi: 10.1146/annurev-cellbio-100814-125346 PubMed DOI
Shi Z, Fujii K, Kovary KM, Genuth NR, Röst HL, Teruel MN, et al. Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide. Mol Cell. 2017;67: 71–83.e7. doi: 10.1016/j.molcel.2017.05.021 PubMed DOI PMC
Rudra D, Mallick J, Zhao Y, Warner JR. Potential Interface between Ribosomal Protein Production and Pre-rRNA Processing. Mol Cell Biol. 2007;27: 4815–4824. doi: 10.1128/MCB.02062-06 PubMed DOI PMC
Albert B, Knight B, Merwin J, Martin V, Ottoz D, Gloor Y, et al. A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis. Mol Cell. 2016;64: 720–733. doi: 10.1016/j.molcel.2016.10.003 PubMed DOI
Fermi B, Bosio MC, Dieci G. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae. Nucleic Acids Res. 2016;44: 6113–6126. doi: 10.1093/nar/gkw194 PubMed DOI PMC
Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C. Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell. 2007;27: 928–937. doi: 10.1016/j.molcel.2007.07.018 PubMed DOI PMC
Vilardell J, Shaoqing JY, Warner JR. Multiple functions of an evolutionarily conserved RNA binding domain. Mol Cell. 2000;5: 761–766. PubMed
Parker R, Patterson B. Architecture of fungal introns: implications for spliceosome assembly In: Inouye M, Dudock BS, editors. Molecular biology of RNA: new perspectives. San Diego: Academic Press; 1987.
Goguel V, Rosbash M. Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast. Cell. 1993;72: 893–901. PubMed
Lin C-L, Taggart AJ, Fairbrother WG. RNA structure in splicing: An evolutionary perspective. RNA Biol. 2016;13: 766–771. doi: 10.1080/15476286.2016.1208893 PubMed DOI PMC
Raker VA, Mironov AA, Gelfand MS, Pervouchine DD. Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic Acids Res. 2009;37: 4533–4544. doi: 10.1093/nar/gkp407 PubMed DOI PMC
Singh NN, Singh RN, Androphy EJ. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 2006;35: 371–389. doi: 10.1093/nar/gkl1050 PubMed DOI PMC
Rogic S, Montpetit B, Hoos HH, Mackworth AK, Ouellette BF, Hieter P. Correlation between the secondary structure of pre-mRNA introns and the efficiency of splicing in Saccharomyces cerevisiae. BMC Genomics. 2008;9: 355 doi: 10.1186/1471-2164-9-355 PubMed DOI PMC
Gahura O, Hammann C, Valentová A, Půta F, Folk P. Secondary structure is required for 3’ splice site recognition in yeast. Nucleic Acids Res. 2011;39: 9759–9767. doi: 10.1093/nar/gkr662 PubMed DOI PMC
Dabeva MD, Post-Beittenmiller MA, Warner JR. Autogenous regulation of splicing of the transcript of a yeast ribosomal protein gene. Proc Natl Acad Sci. 1986;83: 5854–5857. PubMed PMC
Dabeva MD, Warner JR. Ribosomal protein L32 of Saccharomyces cerevisiae regulates both splicing and translation of its own transcript. J Biol Chem. 1993;268: 19669–19674. PubMed
Macías S, Bragulat M, Tardiff DF, Vilardell J. L30 Binds the Nascent RPL30 Transcript to Repress U2 snRNP Recruitment. Mol Cell. 2008;30: 732–742. doi: 10.1016/j.molcel.2008.05.002 PubMed DOI
Vilardell J, Warner JR. Regulation of splicing at an intermediate step in the formation of the spliceosome. Genes Dev. 1994;8: 211–220. PubMed
Fewell SW, Woolford JL. Ribosomal Protein S14 of Saccharomyces cerevisiae Regulates Its Expression by Binding to RPS14B Pre-mRNA and to 18S rRNA. Mol Cell Biol. 1999;19: 826–834. doi: 10.1128/MCB.19.1.826 PubMed DOI PMC
Petibon C, Parenteau J, Catala M, Elela SA. Introns regulate the production of ribosomal proteins by modulating splicing of duplicated ribosomal protein genes. Nucleic Acids Res. 2016; 3878–91. doi: 10.1093/nar/gkw140 PubMed DOI PMC
Zhang Y, Duc A-CE, Rao S, Sun X-L, Bilbee AN, Rhodes M, et al. Control of Hematopoietic Stem Cell Emergence by Antagonistic Functions of Ribosomal Protein Paralogs. Dev Cell. 2013;24: 411–425. doi: 10.1016/j.devcel.2013.01.018 PubMed DOI PMC
Kearse MG, Chen AS, Ware VC. Expression of ribosomal protein L22e family members in Drosophila melanogaster: rpL22-like is differentially expressed and alternatively spliced. Nucleic Acids Res. 2011;39: 2701–2716. doi: 10.1093/nar/gkq1218 PubMed DOI PMC
O’Leary MN, Schreiber KH, Zhang Y, Duc A-CE, Rao S, Hale JS, et al. The Ribosomal Protein Rpl22 Controls Ribosome Composition by Directly Repressing Expression of Its Own Paralog, Rpl22l1. PLoS Genet. 2013;9: e1003708 doi: 10.1371/journal.pgen.1003708 PubMed DOI PMC
Zhang Y, O’Leary MN, Peri S, Wang M, Zha J, Melov S, et al. Ribosomal Proteins Rpl22 and Rpl22l1 Control Morphogenesis by Regulating Pre-mRNA Splicing. Cell Rep. 2017;18: 545–556. doi: 10.1016/j.celrep.2016.12.034 PubMed DOI PMC
Houmani JL, Davis CI, Ruf IK. Growth-Promoting Properties of Epstein-Barr Virus EBER-1 RNA Correlate with Ribosomal Protein L22 Binding. J Virol. 2009;83: 9844–9853. doi: 10.1128/JVI.01014-09 PubMed DOI PMC
Le S, Sternglanz R, Greider CW. Identification of Two RNA-binding Proteins Associated with Human Telomerase RNA. Mol Biol Cell. 2000;11: 999–1010. doi: 10.1091/mbc.11.3.999 PubMed DOI PMC
Dai M-S, Shi D, Jin Y, Sun X-X, Zhang Y, Grossman SR, et al. Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem. 2006;281: 24304–24313. doi: 10.1074/jbc.M602596200 PubMed DOI PMC
Cao B, Fang Z, Liao P, Zhou X, Xiong J, Zeng S, et al. Cancer-mutated ribosome protein L22 (RPL22/eL22) suppresses cancer cell survival by blocking p53-MDM2 circuit. Oncotarget. 2017;8: 90651 doi: 10.18632/oncotarget.21544 PubMed DOI PMC
Rao S, Lee S-Y, Gutierrez A, Perrigoue J, Thapa RJ, Tu Z, et al. Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood. 2012;120: 3764–3773. doi: 10.1182/blood-2012-03-415349 PubMed DOI PMC
Chan CTY, Pang YLJ, Deng W, Babu IR, Dyavaiah M, Begley TJ, et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun. 2012;3: 937 doi: 10.1038/ncomms1938 PubMed DOI PMC
Delaney JR, Ahmed U, Chou A, Sim S, Carr D, Murakami CJ, et al. Stress profiling of longevity mutants identifies Afg3 as a mitochondrial determinant of cytoplasmic mRNA translation and aging. Aging Cell. 2013;12: 156–166. doi: 10.1111/acel.12032 PubMed DOI PMC
An J, Kwon H, Kim E, Lee YM, Ko HJ, Park H, et al. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene. Environ Microbiol. 2015;17: 656–669. doi: 10.1111/1462-2920.12489 PubMed DOI
Kim SJ, Strich R. Rpl22 is required for IME1 mRNA translation and meiotic induction in S. cerevisiae. Cell Div. 2016;11: doi: 10.1186/s13008-016-0024-3 PubMed DOI PMC
Gabunilas J, Chanfreau G. Splicing-Mediated Autoregulation Modulates Rpl22p Expression in Saccharomyces cerevisiae. PLoS Genet. 2016;12: e1005999 doi: 10.1371/journal.pgen.1005999 PubMed DOI PMC
Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2: 31–34. doi: 10.1038/nprot.2007.13 PubMed DOI
Storici F, Lewis LK, Resnick MA. In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol. 2001;19: 773–776. doi: 10.1038/90837 PubMed DOI
Längle-Rouault F, Jacobs E. A method for performing precise alterations in the yeast genome using a recyclable selectable marker. Nucleic Acids Res. 1995;23: 3079–3081. PubMed PMC
Heinisch JJ, Buchwald U, Gottschlich A, Heppeler N, Rodicio R. A tool kit for molecular genetics of Kluyveromyces lactis comprising a congenic strain series and a set of versatile vectors: Kluyveromyces lactis molecular tool kit. FEMS Yeast Res. 2010;10: 333–342. doi: 10.1111/j.1567-1364.2009.00604.x PubMed DOI
Houmani JL, Ruf IK. Clusters of Basic Amino Acids Contribute to RNA Binding and Nucleolar Localization of Ribosomal Protein L22. PLoS ONE. 2009;4: e5306 doi: 10.1371/journal.pone.0005306 PubMed DOI PMC
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3: 1101–1108. PubMed
Siatecka M, Reyes JL, Konarska MM. Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center. Genes Dev. 1999;13: 1983–1993. PubMed PMC
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol Cell Proteomics. 2014;13: 2513–2526. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC
SenGupta DJ, Zhang B, Kraemer B, Pochart P, Fields S, Wickens M. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci. 1996;93: 8496–8501. PubMed PMC
Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6: 26 doi: 10.1186/1748-7188-6-26 PubMed DOI PMC
Swaminathan S, Masek T, Molin C, Pospisek M, Sunnerhagen P. Rck2 Is Required for Reprogramming of Ribosomes during Oxidative Stress. Mol Biol Cell. 2006;17: 1472–1482. doi: 10.1091/mbc.E05-07-0632 PubMed DOI PMC
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12: 357–360. doi: 10.1038/nmeth.3317 PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550 doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12: 115–121. doi: 10.1038/nmeth.3252 PubMed DOI PMC
Převorovský M, Hálová M, Abrhámová K, Libus J, Folk P. Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data. BioMed Res Int. 2016;2016: 1–9. doi: 10.1155/2016/4783841 PubMed DOI PMC
Quinlan AR. BEDTools: the Swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics 2014;47: 11.12.1–11.12.34. doi: 10.1002/0471250953.bi1112s47 PubMed DOI PMC
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285: 901–906. PubMed
Hálová M, Gahura O, Převorovský M, Cit Z, Novotný M, Valentová A, et al. Nineteen complex-related factor Prp45 is required for the early stages of cotranscriptional spliceosome assembly. RNA. 2017; rna–061986. PubMed PMC
Geiduschek EP, Tocchini-Valentini GP. Transcription by RNA polymerase III. Annu Rev Biochem. 1988;57: 873–914. doi: 10.1146/annurev.bi.57.070188.004301 PubMed DOI
Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res. 2003;3: 417–432. doi: 10.1016/S1567-1356(03)00012-6 PubMed DOI
Scannell DR, Butler G, Wolfe KH. Yeast genome evolution—the origin of the species. Yeast. 2007;24: 929–942. doi: 10.1002/yea.1515 PubMed DOI
Kawashima T, Douglass S, Gabunilas J, Pellegrini M, Chanfreau GF. Widespread Use of Non-productive Alternative Splice Sites in Saccharomyces cerevisiae. PLoS Genet. 2014;10: e1004249 doi: 10.1371/journal.pgen.1004249 PubMed DOI PMC
Mattenberger F, Sabater-Muñoz B, Toft C, Fares MA. The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations. GenesGenomesGenetics. 2017;7: 63–75. doi: 10.1534/g3.116.035329 PubMed DOI PMC
Halbeisen RE, Gerber AP. Stress-Dependent Coordination of Transcriptome and Translatome in Yeast. PLoS Biol. 2009;7: e1000105 doi: 10.1371/journal.pbio.1000105 PubMed DOI PMC
Amunts A, Brown A, Bai X, Llácer JL, Hussain T, Emsley P, et al. Structure of the Yeast Mitochondrial Large Ribosomal Subunit. Science. 2014;343: 1485–1489. doi: 10.1126/science.1249410 PubMed DOI PMC
Desai N, Brown A, Amunts A, Ramakrishnan V. The structure of the yeast mitochondrial ribosome. Science. 2017;355: 528–531. doi: 10.1126/science.aal2415 PubMed DOI PMC
Patra B, Kon Y, Yadav G, Sevold AW, Frumkin JP, Vallabhajosyula RR, et al. A genome wide dosage suppressor network reveals genomic robustness. Nucleic Acids Res. 2017;45: 255–270. doi: 10.1093/nar/gkw1148 PubMed DOI PMC
Zhang J. Evolution by gene duplication: an update. Trends Ecol Evol. 2003;18: 292–298. doi: 10.1016/S0169-5347(03)00033-8 DOI
Freeberg MA, Han T, Moresco JJ, Kong A, Yang Y-C, Lu ZJ, et al. Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae. Genome Biol. 2013;14: R13 doi: 10.1186/gb-2013-14-2-r13 PubMed DOI PMC
Dong D, Yuan Z, Zhang Z. Evidences for increased expression variation of duplicate genes in budding yeast: from cis- to trans- regulation effects. Nucleic Acids Res. 2011;39: 837–847. doi: 10.1093/nar/gkq874 PubMed DOI PMC
Segev N, Gerst JE. Specialized ribosomes and specific ribosomal protein paralogs control translation of mitochondrial proteins. J Cell Biol. 2017; jcb.201706059. doi: 10.1083/jcb.201706059 PubMed DOI PMC
Kachroo AH, Laurent JM, Yellman CM, Meyer AG, Wilke CO, Marcotte EM. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science. 2015;348: 921–925. doi: 10.1126/science.aaa0769 PubMed DOI PMC
Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods. 2014;11: 319–324. doi: 10.1038/nmeth.2834 PubMed DOI
Dobbelstein M, Shenk T. In vitro selection of RNA ligands for the ribosomal L22 protein associated with Epstein-Barr virus-expressed RNA by using randomized and cDNA-derived RNA libraries. J Virol. 1995;69: 8027–8034. PubMed PMC
Ben-Shem A, Loubresse NG de, Melnikov S, Jenner L, Yusupova G, Yusupov M. The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution. Science. 2011;334: 1524–1529. doi: 10.1126/science.1212642 PubMed DOI
Venkataramanan S, Douglass S, Galivanche AR, Johnson TL. The chromatin remodeling complex Swi/Snf regulates splicing of meiotic transcripts in Saccharomyces cerevisiae. Nucleic Acids Res. 2017;45: 7708–7721. doi: 10.1093/nar/gkx373 PubMed DOI PMC
Knight B, Kubik S, Ghosh B, Bruzzone MJ, Geertz M, Martin V, et al. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev. 2014;28: 1695–1709. doi: 10.1101/gad.244434.114 PubMed DOI PMC
Weissenbach J, Dirheimer G. Pairing properties of the methylester of 5-carboxymethyl uridine in the wobble position of yeast tRNAArg3. Biochim Biophys Acta BBA-Nucleic Acids Protein Synth. 1978;518: 530–534. PubMed
Lin K, Kuang Y, Joseph JS, Kolatkar PR. Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: lessons from supervised machine learning in functional genomics. Nucleic Acids Res. 2002;30: 2599–2607. PubMed PMC
Warner JR, McIntosh KB. How Common Are Extraribosomal Functions of Ribosomal Proteins? Mol Cell. 2009;34: 3–11. doi: 10.1016/j.molcel.2009.03.006 PubMed DOI PMC
Konikkat S, Woolford JL. Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast. Biochem J. 2017;474: 195–214. doi: 10.1042/BCJ20160516 PubMed DOI PMC
Pratte D, Singh U, Murat G, Kressler D. Mak5 and Ebp2 Act Together on Early Pre-60S Particles and Their Reduced Functionality Bypasses the Requirement for the Essential Pre-60S Factor Nsa1. PLoS ONE. 2013;8: e82741 doi: 10.1371/journal.pone.0082741 PubMed DOI PMC
Sharov AA. Evolutionary constraints or opportunities? Biosystems. 2014;123: 9–18. doi: 10.1016/j.biosystems.2014.06.004 PubMed DOI
Ni J-Q, Liu L-P, Hess D, Rietdorf J, Sun F-L. Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription. Genes Dev. 2006;20: 1959–1973. doi: 10.1101/gad.390106 PubMed DOI PMC