A simple Fourier filter for suppression of the missing wedge ray artefacts in single-axis electron tomographic reconstructions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
DA016602
NIDA NIH HHS - United States
RR04050
NCRR NIH HHS - United States
RR08605
NCRR NIH HHS - United States
P41 RR004050
NCRR NIH HHS - United States
R01 DA016602
NIDA NIH HHS - United States
P41 RR008605
NCRR NIH HHS - United States
Wellcome Trust - United Kingdom
PubMed
24556578
PubMed Central
PMC3991334
DOI
10.1016/j.jsb.2014.02.004
PII: S1047-8477(14)00028-8
Knihovny.cz E-zdroje
- Klíčová slova
- Electron tomography, Missing wedge, Missing wedge artefacts, Single-axis tilting,
- MeSH
- artefakty MeSH
- Fourierova analýza MeSH
- krysa rodu Rattus MeSH
- líska ultrastruktura MeSH
- mozeček ultrastruktura MeSH
- počítačové zpracování obrazu * MeSH
- poměr signál - šum MeSH
- pyl ultrastruktura MeSH
- tomografie elektronová metody MeSH
- Trypanosoma brucei brucei ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
The limited specimen tilting range that is typically available in electron tomography gives rise to a region in the Fourier space of the reconstructed object where experimental data are unavailable - the missing wedge. Since this region is sharply delimited from the area of available data, the reconstructed signal is typically hampered by convolution with its impulse response, which gives rise to the well-known missing wedge artefacts in 3D reconstructions. Despite the recent progress in the field of reconstruction and regularization techniques, the missing wedge artefacts remain untreated in most current reconstruction workflows in structural biology. Therefore we have designed a simple Fourier angular filter that effectively suppresses the ray artefacts in the single-axis tilting projection acquisition scheme, making single-axis tomographic reconstructions easier to interpret in particular at low signal-to-noise ratio in acquired projections. The proposed filter can be easily incorporated into current electron tomographic reconstruction schemes.
Zobrazit více v PubMed
Aganj, L., Bartesaghi, A., Borgnia, M., Liao, H.Y., Sapiro, G., Subramaniam, S., Ieee, 2007. Regularization for inverting the radon transform with wedge consideration, p. 217–220, 2007 4th Ieee International Symposium on Biomedical Imaging: Macro to Nano, vols 1–3, Ieee, New York.
Bartesaghi A., Sprechmann P., Liu J., Randall G., Sapiro G., Subramaniam S. Classification and 3D averaging with missing wedge correction in biological electron tomography. J. Struct. Biol. 2008;162:436–450. PubMed PMC
Batenburg K.J., Bals S., Sijbers J., Kubel C., Midgley P.A., Hernandez J.C., Kaiser U., Encina E.R., Coronado E.A., Van Tendeloo G. 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy. 2009;109:730–740. PubMed
Bellon P.L., Lanzavecchia S., Scatturin V. A two exposures technique of electron tomography from projections with random orientations and a quasi-Boolean angular reconstitution. Ultramicroscopy. 1998;72:177–186.
Capani F., Martone M.E., Deerinck T.J., Ellisman M.H. Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J. Comp. Neurol. 2001;435:156–170. PubMed
Carazo J.M. The fidelity of 3D reconstructions from incomplete data and the use of restoration methods. In: Frank J., editor. Electron Tomography. Plenum Press; New York: 1992. pp. 117–166.
Crowther R.A., DeRosier D.J., Klug A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. (1934–1990) 1970;(31):319–340.
Fanelli D., Oktem O. Electron tomography: a short overview with an emphasis on the absorption potential model for the forward problem. Inverse Probl. 2008;24:013001.
Fernandez J.J. TOMOBFLOW: feature-preserving noise filtering for electron tomography. BMC Bioinformatics. 2009;10:178. PubMed PMC
Fernandez J.J. Computational methods for electron tomography. Micron. 2012;43:1010–1030. PubMed
Forster F., Hegerl R. Structure determination in situ by averaging of tomograms. Elsevier Academic Press Inc.; San Diego: 2007. (Cellular Electron Microscopy). pp. 741–767. PubMed
Forster F., Medalia O., Zauberman N., Baumeister W., Fass D. Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl. Acad. Sci. U.S.A. 2005;102:4729–4734. PubMed PMC
Frangakis A.S., Hegerl R. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 2001;135:239–250. PubMed
Frangakis A.S., Hegerl R. Denoising of electron tomograms. In: Frank J., editor. Electron Tomography. Springer Science + Business Media; LLC, New York: 2006. pp. 331–352.
Frangakis A.S., Bohm J., Forster F., Nickell S., Nicastro D., Typke D., Hegerl R., Baumeister W. Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl. Acad. Sci. U.S.A. 2002;99:14153–14158. PubMed PMC
Gilbert P. Iterative methods for 3-dimensional reconstruction of an object from projections. J. Theor. Biol. 1972;36:105–117. PubMed
Gordon R., Bender R., Herman G.T. Algebraic reconstruction techniques (Art) for 3-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 1970;29:471–476. PubMed
Gruebnau, A., Stierstorfer, K. 2004. Method for producing images in spiral computed tomography, and a spiral CT unit, G06K 9/00 ed., United States.
Grünewald K., Medalia O., Gross A., Steven A.C., Baumeister W. Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophys. Chem. 2003;100:577–591. PubMed
Hawkes P.W. The electron microscope as a structure projector. In: Frank J., editor. Electron Tomography. Springer Science; New York: 2006. pp. 83–112.
Hoog J.L., Bouchet-Marquis C., McIntosh J.R., Hoenger A., Gull K. Cryo-electron tomography and 3-D analysis of the intact flagellum in Trypanosoma brucei. J. Struct. Biol. 2012;178:189–198. PubMed PMC
Jarisch W.R. Computational approach of high efficiency CT (HECT)™ in TEM/STEM. Microsc. Microanal. 2010;16:1846–1847.
Kawase N., Kato M., Nishioka H., Jinnai H. Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy. 2007;107:8–15. PubMed
Komrska J. Fraunhofer-diffraction from sector stars. Opt. Acta. 1983;30:887–925.
Koster A.J., Barcena M. Cryotomography: low-dose automated tomography of frozen-hydrated specimens. In: Frank J., editor. Electron Tomography. Springer Science + Business Media; LLC, New York: 2006. pp. 113–161.
Kovacik L., Plitzko J.M., Grote M., Reichelt R. Electron tomography of structures in the wall of hazel pollen grains. J. Struct. Biol. 2009;166:263–271. PubMed
Kremer J.R., Mastronarde D.N., McIntosh J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996;116:71–76. PubMed
Lanzavecchia S., Bellon P.L. Electron tomography in conical tilt geometry. The accuracy of a direct Fourier method (DFM) and the suppression of non-tomographic noise. Ultramicroscopy. 1996;63:247–261.
Lanzavecchia S., Bellon P.L., Scatturin V. Spark, a kernel of software programs for spatial reconstruction in electron-microscopy. J. Microsc. Oxford. 1993;171:255–266.
Lanzavecchia S., Cantele F., Bellon P.L., Zampighi L., Kreman M., Wright E., Zampighi G.A. Conical tomography of freeze-fracture replicas: a method for the study of integral membrane proteins inserted in phospholipid bilayers. J. Struct. Biol. 2005;149:87–98. PubMed
Lee E., Fahimian B.P., Iancu C.V., Suloway C., Murphy G.E., Wright E.R., Castano-Diez D., Jensen G.J., Miao J.W. Radiation dose reduction and image enhancement in biological imaging through equally-sloped tomography. J. Struct. Biol. 2008;164:221–227. PubMed PMC
Lu X.Q., Sun Y., Bai G.F. Adaptive wavelet–Galerkin methods for limited angle tomography. Image Vision Comput. 2010;28:696–703.
Marabini R., Rietzel E., Schroeder R., Herman G.T., Carazo J.M. Three-dimensional reconstruction from reduced sets of very noisy images acquired following a single-axis tilt schema: application of a new three-dimensional reconstruction algorithm and objective comparison with weighted backprojection. J. Struct. Biol. 1997;120:363–371. PubMed
Mastronarde D.N. Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 1997;120:343–352. PubMed
Messaoudii C., Boudier T., Sanchez Sorzano C.O., Marco S. TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics. 2007;8:288. PubMed PMC
Miao J.W., Forster F., Levi O. Equally sloped tomography with oversampling reconstruction. Phys. Rev. B. 2005:72.
Martone M.E., Gupta A., Wong M., Qian X., Sosinsky G., Ludascher B., Ellisman M.H. A cell-centered database for electron tomographic data. J. Struct. Biol. 2002;138:145–155. PubMed
Narasimha R., Aganj I., Bennett A.E., Borgnia M.J., Zabransky D., Sapiro G., McLaughlin S.W., Milne J.L.S., Subramaniam S. Evaluation of denoising algorithms for biological electron tomography. J. Struct. Biol. 2008;164:7–17. PubMed PMC
Natterer F. Fourier reconstruction in tomography. Numer. Math. 1985;47:343–353.
Norlen L., Oktem O., Skoglund U. Molecular cryo-electron tomography of vitreous tissue sections: current challenges. J. Microsc. Oxford. 2009;235:293–307. PubMed
Ofverstedt L.G., Zhang K., Isaksson L.A., Bricogne G., Skoglund U. Automated correlation and averaging of three-dimensional reconstructions obtained by electron tomography. J. Struct. Biol. 1997;120:329–342. PubMed
Penczek P., Marko M., Buttle K., Frank J. Double-tilt electron tomography. Ultramicroscopy. 1995;60:393–410. PubMed
Penczek P.A., Frank J. Resolution in electron tomography. In: Frank J., editor. Electron Tomography. Springer Science + Business Media; LLC, New York: 2006. pp. 307–330.
Persson M., Bone D., Elmqvist H. Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography. Phys. Med. Biol. 2001;46:853–866. PubMed
Quinto E.T., Skoglund U., Oktem O. Electron lambda-tomography. Proc. Natl. Acad. Sci. U.S.A. 2009;106:21842–21847. PubMed PMC
Radermacher M. 3-Dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron. Micr. Tech. 1988;9:359–394. PubMed
Radermacher M. Weighted back-projection methods. In: Frank J., editor. Electron Tomography. Plenum Press; New York: 1992. pp. 91–115.
Radermacher M. Weighted back-projection methods. In: Frank J., editor. Electron Tomography. Springer Science + Business Media; LLC, New York: 2006. pp. 245–275.
Schroeter J.P., Bretaudiere J.P. SUPRIM: easily modified image processing software. J. Struct. Biol. 1996;116:131–137. PubMed
Skoglund U., Ofverstedt L.G., Burnett R.M., Bricogne G. Maximum-entropy three-dimensional reconstruction with deconvolution of the contrast transfer function: a test application with adenovirus. J. Struct. Biol. 1996;117:173–188. PubMed
Smigova J., Juda P., Cmarko D., Raska I. Fine structure of the “PcG body” in human U-2 OS cells established by correlative light-electron microscopy. Nucleus. 2011;2:219–228. PubMed PMC
Sorzano C.O.S., Marabini R., Boisset N., Rietzel E., Schroder R., Herman G.T., Carazo J.M. The effect of overabundant projection directions on 3D reconstruction algorithms. J. Struct. Biol. 2001;133:108–118. PubMed
Straubel R. Zwei allgemeine Sätze über Frauhofer‘sche Beugungserscheinungen. Annal. Phys. Chem. 1895;56:746–761.
Tam K.C., Perez-Mendez V. Tomographical imaging with limited-angle input. J. Opt. Soc. Am. 1981;71:582–592.
Tam K.C., Perez-Mendez V. Limited-angle 3-dimensional reconstructions using Fourier-transform iterations and radon-transform iterations. Opt. Eng. 1981;20:586–589.
Turner J.N., Valdre U. Tilting stages for biological applications. In: Frank J., editor. Electron Tomography. Plenum Press; New York: 1992. pp. 167–196.
Zampighi G.A., Zampighi L., Fain N., Wright E.M., Cantele F., Lanzavecchia S. Conical tomography II: a method for the study of cellular organelles in thin sections. J. Struct. Biol. 2005;151:263–274. PubMed