Fine structure of the "PcG body" in human U-2 OS cells established by correlative light-electron microscopy

. 2011 May-Jun ; 2 (3) : 219-28.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21818415

Polycomb group (PcG) proteins of the Polycomb repressive complex 1 (PRC1) are found to be diffusely distributed in nuclei of cells from various species. However they can also be localized in intensely fluorescent foci, whether imaged using GFP fusions to proteins of PRC1 complex, or by conventional immunofluorescence microscopy. Such foci are termed PcG bodies, and are believed to be situated in the nuclear intechromatin compartment. However, an ultrastructural description of the PcG body has not been reported to date. To establish the ultrastructure of PcG bodies in human U-2 OS cells stably expressing recombinant polycomb BMI1-GFP protein, we used correlative light-electron microscopy (CLEM) implemented with high-pressure freezing, cryosubstitution and on-section labeling of BMI1 protein with immunogold. This approach allowed us to clearly identify fluorescent PcG bodies, not as distinct nuclear bodies, but as nuclear domains enriched in separated heterochromatin fascicles. Importantly, high-pressure freezing and cryosubstitution allowed for a high and clear-cut immunogold BMI1 labeling of heterochromatin structures throughout the nucleus. The density of immunogold labeled BMI1 in the heterochromatin fascicles corresponding to fluorescent "PcG bodies" did not differ from the density of labeling of heterochromatin fascicles outside of the "PcG bodies". Accordingly, an appearance of the fluorescent "PcG bodies" seems to reflect a local accumulation of the labeled heterochromatin structures in the investigated cells. The results of this study should allow expansion of the knowledge about the biological relevance of the "PcG bodies" in human cells.

Zobrazit více v PubMed

Tuckfield A, Clouston DR, Wilanowski TM, Zhao LL, Cunningham JM, Jane SM. Binding of the RING polycomb proteins to specific target genes in complex with the grainyhead-like family of developmental transcription factors. Mol Cell Biol. 2002;22:1936–1946. PubMed PMC

Sawarkar R, Paro R. Interpretation of developmental signaling at chromatin: the Polycomb perspective. Dev Cell. 2010;19:651–661. PubMed

Hodgson JW, Brock HW. Are polycomb group bodies gene silencing factories? Cell. 2011;144:170–171. PubMed

Liang Z, Biggin MD. Eve and ftz regulate a wide array of genes in blastoderm embryos: the selector homeoproteins directly or indirectly regulate most genes in Drosophila. Development. 1998;125:4471–4482. PubMed

Plath K, Talbot D, Hamer KM, Otte AP, Yang TP, Jaenisch R, et al. Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome. J Cell Biol. 2004;167:1025–1035. PubMed PMC

Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846–856. PubMed

Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E, et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell. 2007;11:513–525. PubMed

Boukarabila H, Saurin AJ, Batsche E, Mossadegh N, van Lohuizen M, Otte AP, et al. The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev. 2009;23:1195–1206. PubMed PMC

Martinez AM, Cavalli G. The role of polycomb group proteins in cell cycle regulation during development. Cell Cycle. 2006;5:1189–1197. PubMed

Enderle D, Beisel C, Stadler MB, Gerstung M, Athri P, Paro R. Polycomb preferentially targets stalled promoters of coding and noncoding transcripts. Genome Res. 2011 doi: 10.1101/gr.114348.110. PubMed DOI PMC

Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–1043. PubMed

Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell. 2002;111:185–196. PubMed

Trojer P, Reinberg D. Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell. 2007;28:1–13. PubMed

Lund AH, van Lohuizen M. Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol. 2004;16:239–246. PubMed

Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet. 2004;38:413–443. PubMed

Levine SS, King IF, Kingston RE. Division of labor in polycomb group repression. Trends Biochem Sci. 2004;29:478–485. PubMed

Gunster MJ, Satijn DP, Hamer KM, den Blaauwen JL, de Bruijn D, Alkema MJ, et al. Identification and characterization of interactions between the vertebrate polycomb-group protein BMI1 and human homologs of polyhomeotic. Mol Cell Biol. 1997;17:2326–2335. PubMed PMC

Satijn DP, Gunster MJ, van der Vlag J, Hamer KM, Schul W, Alkema MJ, et al. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol. 1997;17:4105–4113. PubMed PMC

Schoorlemmer J, Marcos-Gutierrez C, Were F, Martinez R, Garcia E, Satijn DP, et al. Ring1A is a transcriptional repressor that interacts with the Polycomb-M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain. EMBO J. 1997;16:5930–5942. PubMed PMC

Buchenau P, Hodgson J, Strutt H, Arndt-Jovin DJ. The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J Cell Biol. 1998;141:469–481. PubMed PMC

Saurin AJ, Shiels C, Williamson J, Satijn DP, Otte AP, Sheer D, et al. The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J Cell Biol. 1998;142:887–898. PubMed PMC

Zhang T, Sun Y, Tian E, Deng H, Zhang Y, Luo X, et al. RNA-binding proteins SOP-2 and SOR-1 form a novel PcG-like complex in C. elegans. Development. 2006;133:1023–1033. PubMed

Otte AP, Kwaks TH. Gene repression by Polycomb group protein complexes: a distinct complex for every occasion? Curr Opin Genet Dev. 2003;13:448–454. PubMed

Voncken JW, Schweizer D, Aagaard L, Sattler L, Jantsch MF, van Lohuizen M. Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status. J Cell Sci. 1999;112:4627–4639. PubMed

Raska I. Nuclear ultrastructures associated with the RNA synthesis and processing. J Cell Biochem. 1995;59:11–26. PubMed

Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK. Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell. 2009;17:639–647. PubMed PMC

Lamond AI, Earnshaw WC. Structure and function in the nucleus. Science. 1998;280:547–553. PubMed

Spector DL. Nuclear domains. J Cell Sci. 2001;114:2891–2893. PubMed

Gall JG. The centennial of the Cajal body. Nat Rev Mol Cell Biol. 2003;4:975–980. PubMed

Craig JM. Heterochromatin—many flavours, common themes. Bioessays. 2005;27:17–28. PubMed

Zhao R, Bodnar MS, Spector DL. Nuclear neighborhoods and gene expression. Curr Opin Genet Dev. 2009;19:172–179. PubMed PMC

Carmo-Fonseca M, Berciano MT, Lafarga M. Orphan nuclear bodies. Cold Spring Harb Perspect Biol. 2010;2:703. PubMed PMC

Hernandez-Munoz I, Taghavi P, Kuijl C, Neefjes J, van Lohuizen M. Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol Cell Biol. 2005;25:11047–11058. PubMed PMC

Schweizer D, Ambros PF. Gosden JR. Methods in Molecular Biology. Chromosome Analysis Protocols. Vol. 29. Totowa, New Jersey: Humana Press; 1994. Chromosome banding: stain combinations for specific regions; pp. 97–112. PubMed

Hu Y, Kireev I, Plutz M, Ashourian N, Belmont AS. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. J Cell Biol. 2009;185:87–100. PubMed PMC

Fricker M, Hollinshead M, White N, Vaux D. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol. 1997;136:531–544. PubMed PMC

Raska I, Rychter Z, Smetana K. Fibrillar centres and condensed nucleolar chromatin in resting and stimulated human lymphocytes. Z Mikrosk Anat Forsch. 1983;97:15–32. PubMed

Raska I, Armbruster BL, Frey JR, Smetana K. Analysis of ring-shaped nucleoli in serially sectioned human lymphocytes. Cell Tissue Res. 1983;234:707–711. PubMed

Raska I, Dundr M, Koberna K, Melcak I, Risueno MC, Torok I. Does the synthesis of ribosomal RNA take place within nucleolar fibrillar centers or dense fibrillar components? J Struct Biol. 1995;114:1–22. PubMed

Raska I. Oldies but goldies: searching for Christmas trees within the nucleolar architecture. Trends Cell Biol. 2003;13:517–525. PubMed

Armbruster BL, Wunderli H, Turner BM, Raska I, Kellenberger E. Immunocytochemical localization of cytoskeletal proteins and histone 2B in isolated membrane-depleted nuclei, metaphase chromatin and whole Chinese hamster ovary cells. J Histochem Cytochem. 1983;31:1385–1393. PubMed

Dubochet J, Sartori Blanc N. The cell in absence of aggregation artifacts. Micron. 2001;32:91–99. PubMed

Hancock R. Internal organisation of the nucleus: assembly of compartments by macromolecular crowding and the nuclear matrix model. Biol Cell. 2004;96:595–601. PubMed

Richter K, Nessling M, Lichter P. Experimental evidence for the influence of molecular crowding on nuclear architecture. J Cell Sci. 2007;120:1673–1680. PubMed

Maeshima K, Hihara S, Eltsov M. Chromatin structure: does the 30 nm fibre exist in vivo? Curr Opin Cell Biol. 2010;22:291–297. PubMed

Matsuda A, Shao L, Boulanger J, Kervrann C, Carlton PM, Kner P, et al. Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP-histones. PloS one. 2010;5:12768. PubMed PMC

Alkema MJ, Bronk M, Verhoeven E, Otte A, van't Veer LJ, Berns A, et al. Identification of Bmi1-interacting proteins as constituents of a multimeric mammalian polycomb complex. Genes Dev. 1997;11:226–240. PubMed

McDonald KL, Morphew M, Verkade P, Muller-Reichert T. Recent advances in high-pressure freezing: equipment- and specimen-loading methods. Methods Mol Biol. 2007;369:143–173. PubMed

Muller-Reichert T, Srayko M, Hyman A, O'Toole ET, McDonald K. Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Mol Biol. 2007;79:101–119. PubMed

Verkade P, Moving EM. The Rapid Transfer System as a new tool for correlative light and electron microscopy and high throughput for high-pressure freezing. J Microsc. 2008;230:317–328. PubMed

Misteli T. Protein dynamics: implications for nuclear architecture and gene expression. Science. 2001;291:843–847. PubMed

Phair RD, Scaffidi P, Elbi C, Vecerova J, Dey A, Ozato K, et al. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol. 2004;24:6393–6402. PubMed PMC

Cmarko D, Verschure PJ, Otte AP, van Driel R, Fakan S. Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus. J Cell Sci. 2003;116:335–343. PubMed

Cavalli G. Chromosome kissing. Curr Opin Genet Dev. 2007;17:443–450. PubMed

Sexton T, Umlauf D, Kurukuti S, Fraser P. The role of transcription factories in large-scale structure and dynamics of interphase chromatin. Semin Cell Dev Biol. 2007;18:691–697. PubMed

Platero JS, Hartnett T, Eissenberg JC. Functional analysis of the chromo domain of HP1. EMBO J. 1995;14:3977–3986. PubMed PMC

Cavalli G, Paro R. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell. 1998;93:505–518. PubMed

Dellino GI, Schwartz YB, Farkas G, McCabe D, Elgin SC, Pirrotta V. Polycomb silencing blocks transcription initiation. Mol Cell. 2004;13:887–893. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...