Secondary structure is required for 3' splice site recognition in yeast
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21893588
PubMed Central
PMC3239191
DOI
10.1093/nar/gkr662
PII: gkr662
Knihovny.cz E-zdroje
- MeSH
- Ascomycota genetika MeSH
- fungální RNA chemie MeSH
- introny * MeSH
- kofilin 1 genetika MeSH
- konformace nukleové kyseliny MeSH
- místa sestřihu RNA * MeSH
- molekulární sekvence - údaje MeSH
- Saccharomyces cerevisiae - proteiny genetika MeSH
- Saccharomyces cerevisiae genetika MeSH
- sekvence nukleotidů MeSH
- sestřih RNA * MeSH
- teplota MeSH
- ubikvitin konjugující enzymy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- COF1 protein, S cerevisiae MeSH Prohlížeč
- fungální RNA MeSH
- kofilin 1 MeSH
- místa sestřihu RNA * MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- UBC13 protein, S cerevisiae MeSH Prohlížeč
- ubikvitin konjugující enzymy MeSH
Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3' splice site (3'ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3'ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3'ss distance and masked potential 3'ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3'ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3'ss recognition.
Zobrazit více v PubMed
Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 2009;10:741–754. PubMed PMC
Munroe SH. Secondary structure of splice sites in adenovirus mRNA precursors. Nucleic Acids Res. 1984;12:8437–8456. PubMed PMC
Solnick D. Alternative splicing caused by RNA secondary structure. Cell. 1985;43:667–676. PubMed
Buratti E, Baralle FE. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol.Cell. Biol. 2004;24:10505–10514. PubMed PMC
Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci. 2010;35:169–178. PubMed PMC
Singh NN, Singh RN, Androphy EJ. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 2007;35:371–389. PubMed PMC
Howe KJ, Ares M., Jr Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA. Proc. Natl Acad. Sci. USA. 1997;94:12467–12472. PubMed PMC
Raker VA, Mironov AA, Gelfand MS, Pervouchine DD. Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic Acids Res. 2009;37:4533–4544. PubMed PMC
Blouin S, Mulhbacher J, Penedo JC, Lafontaine DA. Riboswitches: ancient and promising genetic regulators. Chembiochem. 2009;10:400–416. PubMed
Macias S, Bragulat M, Tardiff DF, Vilardell J. L30 binds the nascent RPL30 transcript to repress U2 snRNP recruitment. Mol. Cell. 2008;30:732–742. PubMed
Scannell DR, Butler G, Wolfe KH. Yeast genome evolution—the origin of the species. Yeast. 2007;24:929–942. PubMed
Irimia M, Roy SW. Evolutionary convergence on highly-conserved 3′ intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome. PLoS Genet. 2008;4:e1000148. PubMed PMC
Libri D, Stutz F, McCarthy T, Rosbash M. RNA structural patterns and splicing: molecular basis for an RNA-based enhancer. RNA. 1995;1:425–436. PubMed PMC
Charpentier B, Rosbash M. Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. RNA. 1996;2:509–522. PubMed PMC
Rogic S, Montpetit B, Hoos HH, Mackworth AK, Ouellette BF, Hieter P. Correlation between the secondary structure of pre-mRNA introns and the efficiency of splicing in Saccharomyces cerevisiae. BMC Genomics. 2008;9:355. PubMed PMC
Cellini A, Felder E, Rossi JJ. Yeast pre-messenger RNA splicing efficiency depends on critical spacing requirements between the branch point and 3' splice site. EMBO J. 1986;5:1023–1030. PubMed PMC
Golemis EA, Gyuris J, Brent R. Interaction trap/two-hybrid system to identify interacting proteins. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JD, Smith JA, Struhl K, editors. Current Protocols in Molecular Biology. 1996. Wiley, New York, Unit 20.1.
Lesser CF, Guthrie C. Mutational analysis of pre-mRNA splicing in Saccharomyces cerevisiae using a sensitive new reporter gene, CUP1. Genetics. 1993;133:851–863. PubMed PMC
Regulski EE, Breaker RR. In-line probing analysis of riboswitches. Methods Mol. Biol. 2008;419:53–67. PubMed
Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–W74. PubMed PMC
Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R. RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics. 2006;22:500–503. PubMed
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. PubMed PMC
Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature. 2008;452:51–55. PubMed
Deshler JO, Rossi JJ. Unexpected point mutations activate cryptic 3' splice sites by perturbing a natural secondary structure within a yeast intron. Genes Dev. 1991;5:1252–1263. PubMed
Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136:701–718. PubMed
Rymond BC, Torrey DD, Rosbash M. A novel role for the 3' region of introns in pre-mRNA splicing of Saccharomyces cerevisiae. Genes Dev. 1987;1:238–246. PubMed
Cheng SC. Formation of the yeast splicing complex A1 and association of the splicing factor PRP19 with the pre-mRNA are independent of the 3' region of the intron. Nucleic Acids Res. 1994;22:1548–1554. PubMed PMC
Wu S, Romfo CM, Nilsen TW, Green MR. Functional recognition of the 3' splice site AG by the splicing factor U2AF35. Nature. 1999;402:832–835. PubMed
Anderson K, Moore MJ. Bimolecular exon ligation by the human spliceosome bypasses early 3' splice site AG recognition and requires NTP hydrolysis. RNA. 2000;6:16–25. PubMed PMC
Robberson BL, Cote GJ, Berget SM. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell Biol. 1990;10:84–94. PubMed PMC
Berget SM. Exon recognition in vertebrate splicing. J. Biol. Chem. 1995;270:2411–2414. PubMed
Gooding C, Clark F, Wollerton MC, Grellscheid SN, Groom H, Smith CW. A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones. Genome Biol. 2006;7:R1. PubMed PMC
Smith CW, Chu TT, Nadal-Ginard B. Scanning and competition between AGs are involved in 3' splice site selection in mammalian introns. Mol. Cell Biol. 1993;13:4939–4952. PubMed PMC
Hallegger M, Sobala A, Smith CW. Four exons of the serotonin receptor 4 gene are associated with multiple distant branch points. RNA. 2010;16:839–851. PubMed PMC
Patterson B, Guthrie C. A U-rich tract enhances usage of an alternative 3' splice site in yeast. Cell. 1991;64:181–187. PubMed
Luukkonen BG, Seraphin B. The role of branchpoint-3' splice site spacing and interaction between intron terminal nucleotides in 3' splice site selection in Saccharomyces cerevisiae. EMBO J. 1997;16:779–792. PubMed PMC
Liu ZR, Laggerbauer B, Luhrmann R, Smith CW. Crosslinking of the U5 snRNP-specific 116-kDa protein to RNA hairpins that block step 2 of splicing. RNA. 1997;3:1207–1219. PubMed PMC
Collins L, Penny D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol. Biol. Evol. 2005;22:1053–1066. PubMed