Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5' splice-site sequences due to weak interactions with SR proteins
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
106954
Wellcome Trust - United Kingdom
PubMed
30445574
PubMed Central
PMC6344860
DOI
10.1093/nar/gky1147
PII: 5184724
Knihovny.cz E-zdroje
- MeSH
- HeLa buňky MeSH
- introny * MeSH
- lidé MeSH
- místa sestřihu RNA * MeSH
- pyrimidiny analýza MeSH
- RNA dlouhá nekódující metabolismus MeSH
- serin-arginin sestřihové faktory metabolismus MeSH
- sestřih RNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- místa sestřihu RNA * MeSH
- pyrimidine MeSH Prohlížeč
- pyrimidiny MeSH
- RNA dlouhá nekódující MeSH
- serin-arginin sestřihové faktory MeSH
Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5'ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5'ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.
Computational Regulatory Genomics MRC London Institute of Medical Sciences London W12 0NN UK
Institute for Cell Biology and Neuroscience Goethe University Frankfurt am Main Germany
Institute of Molecular Genetics Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Bertone P., Stolc V., Royce T.E., Rozowsky J.S., Urban A.E., Zhu X., Rinn J.L., Tongprasit W., Samanta M., Weissman S. et al. . Global identification of human transcribed sequences with genome tiling arrays. Science. 2004; 306:2242–2246. PubMed
Kapranov P., Cheng J., Dike S., Nix D.A., Duttagupta R., Willingham A.T., Stadler P.F., Hertel J., Hackermüller J., Hofacker I.L. et al. . RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007; 316:1484–1488. PubMed
Birney E., Stamatoyannopoulos J.A., Dutta A., Guigo R., Gingeras T.R., Margulies E.H., Weng Z., Snyder M., Dermitzakis E.T., Thurman R.E. et al. . Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007; 447:799–816. PubMed PMC
Mattick J.S., Amaral P.P., Dinger M.E., Mercer T.R., Mehler M.F.. RNA regulation of epigenetic processes. Bioessays. 2009; 31:51–59. PubMed
Wang K.C., Chang H.Y.. Molecular mechanisms of long noncoding RNAs. Mol. Cell. 2011; 43:904–914. PubMed PMC
Patrushev L.I., Kovalenko T.F.. Functions of noncoding sequences in mammalian genomes. Biochem (Mosc.). 2014; 79:1442–1469. PubMed
Ransohoff J.D., Wei Y., Khavari P.A.. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 2017; 19:143. PubMed PMC
Derrien T., Johnson R., Bussotti G., Tanzer A., Djebali S., Tilgner H., Guernec G., Martin D., Merkel A., Knowles D.G. et al. . The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012; 22:1775–1789. PubMed PMC
Djebali S., Davis C.A., Merkel A., Dobin A., Lassmann T., Mortazavi A., Tanzer A., Lagarde J., Lin W., Schlesinger F. et al. . Landscape of transcription in human cells. Nature. 2012; 489:101–108. PubMed PMC
Mukherjee N., Calviello L., Hirsekorn A., de Pretis S., Pelizzola M., Ohler U.. Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nat. Struct. Mol. Biol. 2016; 24:86. PubMed
Wang J., Zhang J., Zheng H., Li J., Liu D., Li H., Samudrala R., Yu J., Wong G.K.-S.. Neutral evolution of ‘non-coding’ complementary DNAs. Nature. 2004; 431:758. PubMed
Cabili M.N., Trapnell C., Goff L., Koziol M., Tazon-Vega B., Regev A., Rinn J.L.. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011; 25:1915–1927. PubMed PMC
Schüler A., Ghanbarian A.T., Hurst L.D.. Purifying selection on Splice-Related motifs, not expression level nor RNA folding, explains nearly all constraint on human lincRNAs. Mol. Biol. Evol. 2014; 31:3164–3183. PubMed PMC
Necsulea A., Soumillon M., Warnefors M., Liechti A., Daish T., Zeller U., Baker J.C., Grutzner F., Kaessmann H.. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature. 2014; 505:635–640. PubMed
Lagarde J., Uszczynska-Ratajczak B., Carbonell S., Pérez-Lluch S., Abad A., Davis C., Gingeras T.R., Frankish A., Harrow J., Guigo R. et al. . High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat. Genet. 2017; 49:1731. PubMed PMC
Cabili M.N., Dunagin M.C., McClanahan P.D., Biaesch A., Padovan-Merhar O., Regev A., Rinn J.L., Raj A.. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 2015; 16:20. PubMed PMC
Quinn J.J., Chang H.Y.. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016; 17:47–62. PubMed
Will C.L., Lührmann R.. Spliceosome Structure and Function. Cold Spring Harb. Perspect. Biol. 2011; 3:a003707. PubMed PMC
Matera A.G., Wang Z.. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 2014; 15:108–121. PubMed PMC
De Conti L., Baralle M., Buratti E.. Exon and intron definition in pre-mRNA splicing. Wiley Interdiscipl. Rev: RNA. 2013; 4:49–60. PubMed
Sahebi M., Hanafi M.M., van Wijnen A.J., Azizi P., Abiri R., Ashkani S., Taheri S.. Towards understanding pre-mRNA splicing mechanisms and the role of SR proteins. Gene. 2016; 587:107–119. PubMed
Ule J., Stefani G., Mele A., Ruggiu M., Wang X., Taneri B., Gaasterland T., Blencowe B.J., Darnell R.B.. An RNA map predicting Nova-dependent splicing regulation. Nature. 2006; 444:580–586. PubMed
Wang Z., Burge C.B.. Splicing regulation: From a parts list of regulatory elements to an integrated splicing code. RNA. 2008; 14:802–813. PubMed PMC
Fu X.-D., Ares M. Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 2014; 15:689–701. PubMed PMC
Brillen A.-L., Schöneweis K., Walotka L., Hartmann L., Müller L., Ptok J., Kaisers W., Poschmann G., Stühler K., Buratti E. et al. . Succession of splicing regulatory elements determines cryptic 5′ss functionality. Nucleic Acids Res. 2017; 45:4202–4216. PubMed PMC
Rot G., Wang Z., Huppertz I., Modic M., Lenče T., Hallegger M., Haberman N., Curk T., von Mering C., Ule J.. High-Resolution RNA Maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Rep. 2017; 19:1056–1067. PubMed PMC
Tilgner H., Knowles D.G., Johnson R., Davis C.A., Chakrabortty S., Djebali S., Curado J., Snyder M., Gingeras T.R., Guigó R.. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 2012; 22:1616–1625. PubMed PMC
Melé M., Mattioli K., Mallard W., Shechner D.M., Gerhardinger C., Rinn J.L.. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res. 2017; 27:27–37. PubMed PMC
Schlackow M., Nojima T., Gomes T., Dhir A., Carmo-Fonseca M., Proudfoot N.J.. Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol. Cell. 2017; 65:25–38. PubMed PMC
Wang Y., Ma M., Xiao X., Wang Z.. Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nat. Struct. Mol. Biol. 2012; 19:1044–1052. PubMed PMC
Corvelo A., Hallegger M., Smith C.W.J., Eyras E.. Genome-Wide association between branch point properties and alternative splicing. PLoS Comp. Biol. 2010; 6:e1001016. PubMed PMC
Pandya-Jones A., Black D.L.. Co-transcriptional splicing of constitutive and alternative exons. RNA. 2009; 15:1896–1908. PubMed PMC
Harrow J., Frankish A., Gonzalez J.M., Tapanari E., Diekhans M., Kokocinski F., Aken B.L., Barrell D., Zadissa A., Searle S. et al. . GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 2012; 22:1760–1774. PubMed PMC
Quinlan A.R., Hall I.M.. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–842. PubMed PMC
Yeo G., Burge C.B.. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 2004; 11:377–394. PubMed
Sloan C.A., Chan E.T., Davidson J.M., Malladi V.S., Strattan J.S., Hitz B.C., Gabdank I., Narayanan A.K., Ho M., Lee B.T. et al. . ENCODE data at the ENCODE portal. Nucleic Acids Res. 2016; 44:D726–D732. PubMed PMC
Převorovský M., Hálová M., Abrhámová K., Libus J., Folk P.. Workflow for Genome-Wide determination of Pre-mRNA splicing efficiency from yeast RNA-seq data. Biomed Res Int. 2016; 2016:4783841. PubMed PMC
Crooks G.E., Hon G., Chandonia J.-M., Brenner S.E.. WebLogo: a sequence logo generator. Genome Res. 2004; 14:1188–1190. PubMed PMC
Lorenz R., Bernhart S.H., Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L.. ViennaRNA package 2.0. Algorith. Mol. Biol. 2011; 6:26. PubMed PMC
Gentleman R.C., Carey V.J., Bates D.M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y., Gentry J. et al. . Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004; 5:R80. PubMed PMC
Lawrence M., Gentleman R., Carey V.. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009; 25:1841–1842. PubMed PMC
Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016; NY: Springer-Verlag.
Botti V., McNicoll F., Steiner M.C., Richter F.M., Solovyeva A., Wegener M., Schwich O.D., Poser I., Zarnack K., Wittig I. et al. . Cellular differentiation state modulates the mRNA export activity of SR proteins. J. Cell Biol. 2017; 216:1993–2009. PubMed PMC
König J., Zarnack K., Rot G., Curk T., Kayikci M., Zupan B., Turner D.J., Luscombe N.M., Ule J.. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 2010; 17:909. PubMed PMC
Lawrence M., Gentleman R., Carey V.. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009; 25:1841–1842. PubMed PMC
Lawrence M., Huber W., Pagès H., Aboyoun P., Carlson M., Gentleman R., Morgan M.T., Carey V.J.. Software for computing and annotating genomic ranges. PLoS Comp. Biol. 2013; 9:e1003118. PubMed PMC
Xue Y., Zhou Y., Wu T., Zhu T., Ji X., Kwon Y.-S., Zhang C., Yeo G., Black D.L., Sun H. et al. . Genome-wide Analysis of PTB-RNA Interactions Reveals a Strategy Used by the General Splicing Repressor to Modulate Exon Inclusion or Skipping. Mol. Cell. 2009; 36:996–1006. PubMed PMC
Zarnack K., König J., Tajnik M., Martincorena I., Eustermann S., Stévant I., Reyes A., Anders S., Luscombe N.M., Ule J.. Direct Competition between hnRNP C and U2AF65 Protects the Transcriptome from the Exonization of Alu Elements. Cell. 2013; 152:453–466. PubMed PMC
Haberman N., Huppertz I., Attig J., König J., Wang Z., Hauer C., Hentze M.W., Kulozik A.E., Le Hir H., Curk T. et al. . Insights into the design and interpretation of iCLIP experiments. Genome Biol. 2017; 18:7. PubMed PMC
Chakrabarti A.M., Haberman N., Praznik A., Luscombe N.M., Ule J.. Data science issues in studying Protein–RNA interactions with CLIP technologies. Annu. Rev. Biomed. Data Sci. 2018; 1:235–261. PubMed PMC
Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O. et al. . DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotech. 2013; 827–832. PubMed PMC
Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A. et al. . Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339:819–823. PubMed PMC
Kasparek P., Krausova M., Haneckova R., Kriz V., Zbodakova O., Korinek V., Sedlacek R.. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett. 2014; 588:3982–3988. PubMed
Ørom U.A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., Lai F., Zytnicki M., Notredame C., Huang Q. et al. . Long noncoding RNAs with Enhancer-like function in human cells. Cell. 2010; 143:46–58. PubMed PMC
Hnilicová J., Hozeifi S., Dusková E., Icha J., Tománková T., Stanek D.. Histone deacetylase activity modulates alternative splicing. PLoS One. 2011; 6:1–11. PubMed PMC
Dušková E., Hnilicová J., Staněk D.. CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation. RNA Biol. 2014; 11:865–874. PubMed PMC
Salton M., Voss T.C., Misteli T.. Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing. Nucleic Acids Res. 2014; 42:13662–13673. PubMed PMC
Nieto Moreno N., Giono L.E., Cambindo Botto A.E., Muñoz M.J., Kornblihtt A.R.. Chromatin, DNA structure and alternative splicing. FEBS Lett. 2015; 589:3370–3378. PubMed
Curado J., Iannone C., Tilgner H., Valcárcel J., Guigó R.. Promoter-like epigenetic signatures in exons displaying cell type-specific splicing. Genome Biol. 2015; 16:236. PubMed PMC
Bieberstein N.I., Kozáková E., Huranová M., Thakur P.K., Krchňáková Z., Krausová M., Carrillo Oesterreich F., Staněk D.. TALE-directed local modulation of H3K9 methylation shapes exon recognition. Sci. Rep. 2016; 6:29961. PubMed PMC
Kanopka A., Mühlemann O., Akusjärvi G.. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature. 1996; 381:535. PubMed
Gallego M.E., Gattoni R., Stévenin J., Marie J., Expert–Bezançon A.. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the β-tropomyosin alternative exon 6A. EMBO J. 1997; 16:1772–1784. PubMed PMC
Jiang Z.-H., Zhang W.-J., Rao Y., Wu J.Y.. Regulation of Ich-1 pre-mRNA alternative splicing and apoptosis by mammalian splicing factors. Proc. Natl. Acad. Sci. U.S.A. 1998; 95:9155–9160. PubMed PMC
ten Dam G.B., Zilch C.F., Wallace D., Wieringa B., Beverley P.C.L., Poels L.G., Screaton G.R.. Regulation of alternative splicing of CD45 by antagonistic effects of SR protein splicing factors. J. Immunol. 2000; 164:5287–5295. PubMed
Simard M.J., Chabot B.. SRp30c is a repressor of 3′ splice site utilization. Mol. Cell. Biol. 2002; 22:4001–4010. PubMed PMC
Wang Y., Wang J., Gao L., Lafyatis R., Stamm S., Andreadis A.. Tau exons 2 and 10, which are misregulated in neurodegenerative diseases, are partly regulated by silencers which bind a SRp30c·SRp55 complex that either recruits or antagonizes htra2β1. J. Biol. Chem. 2005; 280:14230–14239. PubMed
Buratti E., Stuani C., De Prato G., Baralle F.E.. SR protein-mediated inhibition of CFTR exon 9 inclusion: molecular characterization of the intronic splicing silencer. Nucleic Acids Res. 2007; 35:4359–4368. PubMed PMC
McCullough A.J., Berget S.M.. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol. Cell. Biol. 1997; 17:4562–4571. PubMed PMC
Chou M.-Y., Rooke N., Turck C.W., Black D.L.. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol. Cell. Biol. 1999; 19:69–77. PubMed PMC
McCullough A.J., Berget S.M.. An intronic splicing enhancer binds U1 snRNPs to enhance splicing and select 5′ splice sites. Mol. Cell. Biol. 2000; 20:9225–9235. PubMed PMC
Wang E., Dimova N., Cambi F.. PLP/DM20 ratio is regulated by hnRNPH and F and a novel G-rich enhancer in oligodendrocytes. Nucleic Acids Res. 2007; 35:4164–4178. PubMed PMC
Xiao X., Wang Z., Jang M., Nutiu R., Wang E.T., Burge C.B.. Splice site strength–dependent activity and genetic buffering by poly-G runs. Nat. Struct. Mol. Biol. 2009; 16:1094. PubMed PMC
Wang E., Mueller W.F., Hertel K.J., Cambi F.. G Run-mediated recognition of proteolipid protein and DM20 5′ splice sites by U1 small nuclear RNA is regulated by context and proximity to the splice site. J. Biol. Chem. 2011; 286:4059–4071. PubMed PMC
Wagner E.J., Garcia-Blanco M.A.. Polypyrimidine tract binding protein antagonizes exon definition. Mol. Cell. Biol. 2001; 21:3281–3288. PubMed PMC
Mulligan G.J., Guo W., Wormsley S., Helfman D.M.. Polypyrimidine tract binding protein interacts with sequences involved in alternative splicing of beta-tropomyosin pre-mRNA. J. Biol. Chem. 1992; 267:25480–25487. PubMed
Klinz F.-J., Gallwitz D.. Size and position of intervening sequences are critical for the splicing efficiency of pre-mRNA in the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 1985; 13:3791–3804. PubMed PMC
Bell M.V., Cowper A.E., Lefranc M.-P., Bell J.I., Screaton G.R.. Influence of intron length on alternative splicing of CD44. Mol. Cell. Biol. 1998; 18:5930–5941. PubMed PMC
Sterner D.A., Carlo T., Berget S.M.. Architectural limits on split genes. Proc. Natl. Acad. Sci. U.S.A. 1996; 93:15081–15085. PubMed PMC
Fox-Walsh K.L., Dou Y., Lam B.J., Hung S.-p., Baldi P.F., Hertel K.J.. The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:16176–16181. PubMed PMC
Dewey C.N., Rogozin I.B., Koonin E.V.. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns. Bmc Genomics. 2006; 7:311. PubMed PMC
Louloupi A., Ntini E., Conrad T., Ørom U.A.V.. Transient N-6-Methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep. 2018; 23:3429–3437. PubMed
Haerty W., Ponting C.P.. Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci. RNA. 2015; 21:333–346. PubMed PMC
Paz I., Akerman M., Dror I., Kosti I., Mandel-Gutfreund Y.. SFmap: a web server for motif analysis and prediction of splicing factor binding sites. Nucleic Acids Res. 2010; 38:W281–W285. PubMed PMC
Mueller W.F., Hertel K.J.. Lorkovic Z. The role of SR and SR-related proteins in pre-mRNA splicing. RNA Binding Proteins. 2011; I:NY: Landes Bioscience and Springer Science+Business Media; 1–21.
Müller-McNicoll M., Botti V., de Jesus Domingues A.M., Brandl H., Schwich O.D., Steiner M.C., Curk T., Poser I., Zarnack K., Neugebauer K.M.. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev. 2016; 30:553–566. PubMed PMC
Fairbrother W.G., Holste D., Burge C.B., Sharp P.A.. Single nucleotide Polymorphism–Based validation of exonic splicing enhancers. PLoS Biol. 2004; 2:e268. PubMed PMC
Xiao X., Wang Z., Jang M., Burge C.B.. Coevolutionary networks of splicing cis-regulatory elements. Proc. Natl. Acad. Sci. U.S.A. 2007; 104:18583–18588. PubMed PMC
Erkelenz S., Mueller W.F., Evans M.S., Busch A., Schöneweis K., Hertel K.J., Schaal H.. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA. 2013; 19:96–102. PubMed PMC
Yin Y., Yan P., Lu J., Song G., Zhu Y., Li Z., Zhao Y., Shen B., Huang X., Zhu H. et al. . Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell Stem Cell. 2015; 16:504–516. PubMed
Engreitz J.M., Haines J.E., Perez E.M., Munson G., Chen J., Kane M., McDonel P.E., Guttman M., Lander E.S.. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016; 539:452–455. PubMed PMC
Seidl C.I., Stricker S.H., Barlow D.P.. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO J. 2006; 25:3565–3575. PubMed PMC
Long J.C., Caceres J.F.. The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 2009; 417:15–27. PubMed
Graveley B.R. Sorting out the complexity of SR protein functions. RNA. 2000; 6:1197–1211. PubMed PMC
Wong M.S., Kinney J.B., Krainer A.R.. Quantitative activity profile and context dependence of all human 5′ splice sites. Mol. Cell. 2018; 71:1012–1026.e1013. PubMed PMC
Nakai K., Sakamoto H.. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene. 1994; 141:171–177. PubMed
Franke V., Ganesh S., Karlic R., Malik R., Pasulka J., Horvat F., Kuzman M., Fulka H., Cernohorska M., Urbanova J. et al. . Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res. 2017; 27:1384–1394. PubMed PMC
Královicová J., Christensen M.B., Vorechovský I.. Biased exon/intron distribution of cryptic and de novo 3′ splice sites. Nucleic Acids Res. 2005; 33:4882–4898. PubMed PMC
Dynamic interaction of spliceosomal snRNPs with coilin explains Cajal body characteristics
Long Non-Coding RNAs and Their Potential Roles in the Vector-Host-Pathogen Triad