• This record comes from PubMed

Long Non-Coding RNAs and Their Potential Roles in the Vector-Host-Pathogen Triad

. 2021 Jan 14 ; 11 (1) : . [epub] 20210114

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Long non-coding (lnc)RNAs have emerged as critical regulators of gene expression and are involved in almost every cellular process. They can bind to other molecules including DNA, proteins, or even other RNA types such messenger RNA or small RNAs. LncRNAs are typically expressed at much lower levels than mRNA, and their expression is often restricted to tissue- or time-specific developmental stages. They are also involved in several inter-species interactions, including vector-host-pathogen interactions, where they can be either vector/host-derived or encoded by pathogens. In these interactions, they function via multiple mechanisms including regulating pathogen growth and replication or via cell-autonomous antimicrobial defense mechanisms. Recent advances suggest that characterizing lncRNAs and their targets in different species may hold the key to understanding the role of this class of non-coding RNA in interspecies crosstalk. In this review, we present a general overview of recent studies related to lncRNA-related regulation of gene expression as well as their possible involvement in regulating vector-host-pathogen interactions.

See more in PubMed

Higgs P.G., Lehman N. The RNA World: Molecular cooperation at the origins of life. Nat. Rev. Genet. 2015;16:7–17. doi: 10.1038/nrg3841. PubMed DOI

Mercer T.R., Dinger M.E., Mattick J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009;10:155–159. doi: 10.1038/nrg2521. PubMed DOI

Djebali S., Davis C.A., Merkel A., Dobin A., Lassmann T., Mortazavi A., Tanzer A., Lagarde J., Lin W., Schlesinger F., et al. Landscape of transcription in human cells. Nature. 2012;489:101–108. doi: 10.1038/nature11233. PubMed DOI PMC

Jarroux J., Morillon A., Pinskaya M. Advances in Experimental Medicine and Biology. Volume 1008. Springer; New York, NY, USA: 2017. History, discovery, and classification of lncRNAs; pp. 1–46. PubMed

Dahariya S., Paddibhatla I., Kumar S., Raghuwanshi S., Pallepati A., Gutti R.K. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol. Immunol. 2019;112:82–92. doi: 10.1016/j.molimm.2019.04.011. PubMed DOI

Fiannaca A., La Rosa M., La Paglia L., Rizzo R., Urso A. NRC: Non-coding RNA Classifier based on structural features. BioData Min. 2017;10:27. doi: 10.1186/s13040-017-0148-2. PubMed DOI PMC

Quinn J.J., Chang H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016;17:47–62. doi: 10.1038/nrg.2015.10. PubMed DOI

Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011;12:861–874. doi: 10.1038/nrg3074. PubMed DOI

Naqvi A.R., Islam M.N., Choudhury N.R., Haq Q.M.R. The fascinating world of RNA interference. Int. J. Biol. Sci. 2009;5:97–117. doi: 10.7150/ijbs.5.97. PubMed DOI PMC

Ma L., Bajic V.B., Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10:924–933. doi: 10.4161/rna.24604. PubMed DOI PMC

Krchňáková Z., Thakur P.K., Krausová M., Bieberstein N., Haberman N., Müller-McNicoll M., Staněk D. Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5′ splice-site sequences due to weak interactions with SR proteins. Nucleic Acids Res. 2019;47:911–928. doi: 10.1093/nar/gky1147. PubMed DOI PMC

Kopp F., Mendell J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell. 2018;172:393–407. doi: 10.1016/j.cell.2018.01.011. PubMed DOI PMC

Yao R.W., Wang Y., Chen L.L. Cellular functions of long noncoding RNAs. Nat. Cell Biol. 2019;21:542–551. doi: 10.1038/s41556-019-0311-8. PubMed DOI

Derrien T., Johnson R., Bussotti G., Tanzer A., Djebali S., Tilgner H., Guernec G., Martin D., Merkel A., Knowles D.G., et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–1789. doi: 10.1101/gr.132159.111. PubMed DOI PMC

Chen L.-L. Linking Long Noncoding RNA Localization and Function. Trends Biochem. Sci. 2016;41:761–772. doi: 10.1016/j.tibs.2016.07.003. PubMed DOI

Wang K.C., Chang H.Y. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell. 2011;43:904–914. doi: 10.1016/j.molcel.2011.08.018. PubMed DOI PMC

Hrdlickova B., de Almeida R.C., Borek Z., Withoff S. Genetic variation in the non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease. Biochim. Biophys. Acta Mol. Basis Dis. 2014;1842:1910–1922. doi: 10.1016/j.bbadis.2014.03.011. PubMed DOI

Srijyothi L., Ponne S., Prathama T., Ashok C., Baluchamy S. Roles of Non-Coding RNAs in Transcriptional Regulation. Transcr. Post-Transc. Regul. 2018;12:55. doi: 10.5772/intechopen.76125. DOI

Harrow J., Frankish A., Gonzalez J.M., Tapanari E., Diekhans M., Kokocinski F., Aken B.L., Barrell D., Zadissa A., Searle S., et al. GENCODE: The reference human genome annotation for the ENCODE project. Genome Res. 2012;22:1760–1774. doi: 10.1101/gr.135350.111. PubMed DOI PMC

Bär C., Chatterjee S., Thum T. Long Noncoding RNAs in Cardiovascular Pathology, Diagnosis, and Therapy. Circulation. 2016;134:1484–1499. doi: 10.1161/CIRCULATIONAHA.116.023686. PubMed DOI

Gomes A.Q., Nolasco S., Soares H. Non-coding RNAs: Multi-tasking molecules in the cell. Int. J. Mol. Sci. 2013;14:16010–16039. doi: 10.3390/ijms140816010. PubMed DOI PMC

Duval M., Cossart P., Lebreton A. Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk. Semin. Cell Dev. Biol. 2017;65:11–19. doi: 10.1016/j.semcdb.2016.06.016. PubMed DOI PMC

Ding Y.Z., Zhang Z.W., Liu Y.L., Shi C.X., Zhang J., Zhang Y.G. Relationship of long noncoding RNA and viruses. Genomics. 2016;107:150–154. doi: 10.1016/j.ygeno.2016.01.007. PubMed DOI

Blythe A.J., Fox A.H., Bond C.S. The ins and outs of lncRNA structure: How, why and what comes next? Biochim. Biophys. Acta Gene Regul. Mech. 2016;1859:46–58. doi: 10.1016/j.bbagrm.2015.08.009. PubMed DOI

Ruan X., Li P., Chen Y., Shi Y., Pirooznia M., Seifuddin F., Suemizu H., Ohnishi Y., Yoneda N., Nishiwaki M., et al. In vivo functional analysis of non-conserved human lncRNAs associated with cardiometabolic traits. Nat. Commun. 2020;11:1–13. doi: 10.1038/s41467-019-13688-z. PubMed DOI PMC

Johnsson P., Lipovich L., Grandér D., Morris K.V. Evolutionary conservation of long non-coding RNAs; Sequence, structure, function. Biochim. Biophys. Acta Gen. Subj. 2014;1840:1063–1071. doi: 10.1016/j.bbagen.2013.10.035. PubMed DOI PMC

Nekrutenko A., Li W.H. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 2001;17:619–621. doi: 10.1016/S0168-9525(01)02445-3. PubMed DOI

Kapusta A., Kronenberg Z., Lynch V.J., Zhuo X., Ramsay L.A., Bourque G., Yandell M., Feschotte C. Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs. PLoS Genet. 2013;9:e1003470. doi: 10.1371/journal.pgen.1003470. PubMed DOI PMC

Kung J.T.Y., Colognori D., Lee J.T. Long noncoding RNAs: Past, present, and future. Genetics. 2013;193:651–669. doi: 10.1534/genetics.112.146704. PubMed DOI PMC

Bassett A.R., Akhtar A., Barlow D.P., Bird A.P., Brockdorff N., Duboule D., Ephrussi A., Ferguson-Smith A.C., Gingeras T.R., Haerty W., et al. Considerations when investigating lncRNA function in vivo. eLife. 2014;3:1–14. doi: 10.7554/eLife.03058. PubMed DOI PMC

Kotake Y., Nakagawa T., Kitagawa K., Suzuki S., Liu N., Kitagawa M., Xiong Y. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene. 2011;30:1956–1962. doi: 10.1038/onc.2010.568. PubMed DOI PMC

Hung T., Wang Y., Lin M.F., Koegel A.K., Kotake Y., Grant G.D., Horlings H.M., Shah N., Umbricht C., Wang P., et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat. Genet. 2011;43:621–629. doi: 10.1038/ng.848. PubMed DOI PMC

Baldassarre A., Masotti A. Long Non-Coding RNAs and p53 Regulation. Int. J. Mol. Sci. 2012;13:16708–16717. doi: 10.3390/ijms131216708. PubMed DOI PMC

Thomson D.W., Dinger M.E. Endogenous microRNA sponges: Evidence and controversy. Nat. Rev. Genet. 2016;17:272–283. doi: 10.1038/nrg.2016.20. PubMed DOI

Pandey R.R., Mondal T., Mohammad F., Enroth S., Redrup L., Komorowski J., Nagano T., Mancini-Dinardo D., Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell. 2008;32:232–246. doi: 10.1016/j.molcel.2008.08.022. PubMed DOI

Chen J., Wang H., Yao Y. Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction. Ultrasonics. 2016;69:19–24. doi: 10.1016/j.ultras.2016.03.001. PubMed DOI

Vance K.W., Ponting C.P. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 2014;30:348–355. doi: 10.1016/j.tig.2014.06.001. PubMed DOI PMC

Grote P., Wittler L., Hendrix D., Koch F., Währisch S., Beisaw A., Macura K., Bläss G., Kellis M., Werber M., et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell. 2013;24:206–214. doi: 10.1016/j.devcel.2012.12.012. PubMed DOI PMC

Davidovich C., Cech T.R. The recruitment of chromatin modifiers by long noncoding RNAs: Lessons from PRC2. RNA. 2015;21:2007–2022. doi: 10.1261/rna.053918.115. PubMed DOI PMC

Lee J.T. Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat. Rev. Mol. Cell Biol. 2011;12:815–826. doi: 10.1038/nrm3231. PubMed DOI

Gupta R.A., Shah N., Wang K.C., Kim J., Horlings H.M., Wong D.J., Tsai M.-C., Hung T., Argani P., Rinn J.L., et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–1076. doi: 10.1038/nature08975. PubMed DOI PMC

Yang L., Froberg J.E., Lee J.T. Long noncoding RNAs: Fresh perspectives into the RNA world. Trends Biochem. Sci. 2014;39:35–43. doi: 10.1016/j.tibs.2013.10.002. PubMed DOI PMC

Zappulla D.C., Cech T.R. Yeast telomerase RNA: A flexible scaffold for protein subunits. Proc. Natl. Acad. Sci. USA. 2004;101:10024–10029. doi: 10.1073/pnas.0403641101. PubMed DOI PMC

Yap K.L., Li S., Muñoz-Cabello A.M., Raguz S., Zeng L., Mujtaba S., Gil J., Walsh M.J., Zhou M.-M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell. 2010;38:662–674. doi: 10.1016/j.molcel.2010.03.021. PubMed DOI PMC

Luisa Pedroso Ayub A., D’Angelo Papaiz D., da Silva Soares R., Galvonas Jasiulionis M. The Function of lncRNAs as Epigenetic Regulators. Non-Coding RNAs. 2020;2020 doi: 10.5772/intechopen.88071. DOI

Kim D.-H., Xi Y., Sung S. Modular function of long noncoding RNA, COLDAIR, in the vernalization response. PLoS Genet. 2017;13:e1006939. doi: 10.1371/journal.pgen.1006939. PubMed DOI PMC

Hou Y., Zhang R., Sun X. Enhancer lncrnas influence chromatin interactions in different ways. Front. Genet. 2019;10:936. doi: 10.3389/fgene.2019.00936. PubMed DOI PMC

Rosenberg R., Beard C. Ben Vector-borne infections. Emerg. Infect. Dis. 2011;17:769–770. doi: 10.3201/eid1705.110310. PubMed DOI PMC

Berenger J.-M., Parola P. Infectious Diseases. Elsevier; Amsterdam, The Netherlands: 2017. Arthropod Vectors of Medical Importance; pp. 104–112.e1.

Nuttall P.A., Labuda M. Ticks: Biology, Disease and Control. Cambridge University Press; Cambridge, UK: 2008. Saliva-assisted transmission of tick-borne pathogens; pp. 205–219.

Bensaoud C., Hackenberg M., Kotsyfakis M. Noncoding RNAs in Parasite–Vector–Host Interactions. Trends Parasitol. 2019;35 doi: 10.1016/j.pt.2019.06.012. PubMed DOI

Bayer-Santos E., Marini M.M., da Silveira J.F. Non-coding RNAs in Host–Pathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.00474. PubMed DOI PMC

Dragomir M., Chen B., Calin G.A. Exosomal lncRNAs as new players in cell-to-cell communication. Transl. Cancer Res. 2018;7:S243–S252. doi: 10.21037/tcr.2017.10.46. PubMed DOI PMC

Willms E., Cabañas C., Mäger I., Wood M.J.A., Vader P. Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol. 2018;9:1. doi: 10.3389/fimmu.2018.00738. PubMed DOI PMC

Schneider A., Simons M. Exosomes: Vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res. 2013;352:33–47. doi: 10.1007/s00441-012-1428-2. PubMed DOI PMC

Zhou W., Tahir F., Wang J.C.-Y., Woodson M., Sherman M.B., Karim S., Neelakanta G., Sultana H. Discovery of Exosomes From Tick Saliva and Salivary Glands Reveals Therapeutic Roles for CXCL12 and IL-8 in Wound Healing at the Tick–Human Skin Interface. Front. Cell Dev. Biol. 2020;8:554. doi: 10.3389/fcell.2020.00554. PubMed DOI PMC

Roiz D., Wilson A.L., Scott T.W., Fonseca D.M., Jourdain F., Müller P., Velayudhan R., Corbel V. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 2018;12:e0006845. doi: 10.1371/journal.pntd.0006845. PubMed DOI PMC

Etebari K., Asad S., Zhang G., Asgari S. Identification of Aedes aegypti Long Intergenic Non-coding RNAs and Their Association with Wolbachia and Dengue Virus Infection. PLoS Negl. Trop. Dis. 2016;10 doi: 10.1371/journal.pntd.0005069. PubMed DOI PMC

Azlan A., Obeidat S.M., Theva Das K., Amir Yunus M. Genome-wide identification of Aedes albopictus long noncoding RNAs 2 and their association with dengue and zika virus infection. bioRxiv. 2020 doi: 10.1101/2020.05.13.093880. PubMed DOI PMC

Gubler D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998;11:480–496. doi: 10.1128/CMR.11.3.480. PubMed DOI PMC

Wang X.J., Jiang S.C., Wei H.X., Deng S.Q., He C., Peng H.J. The differential expression and possible function of long noncoding RNAs in liver cells infected by dengue virus. Am. J. Trop. Med. Hyg. 2017;97:1904–1912. doi: 10.4269/ajtmh.17-0307. PubMed DOI PMC

Jenkins A.M., Waterhouse R.M., Muskavitch M.A.T. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex. BMC Genom. 2015;16:337. doi: 10.1186/s12864-015-1507-3. PubMed DOI PMC

de Castro M.H., de Klerk D., Pienaar R., Latif A.A., Rees D.J.G., Mans B.J. De novo assembly and annotation of the salivary gland transcriptome of Rhipicephalus appendiculatus male and female ticks during blood feeding. Ticks Tick. Borne. Dis. 2016;7:536–548. doi: 10.1016/j.ttbdis.2016.01.014. PubMed DOI

Aounallah H., Bensaoud C., M’ghirbi Y., Faria F., Chmelar J., Kotsyfakis M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front. Immunol. 2020;11:2440. doi: 10.3389/fimmu.2020.583845. PubMed DOI PMC

Menard K.L., Haskins B.E., Colombo A.P., Denkers E.Y. Toxoplasma gondii Manipulates Expression of Host Long Noncoding RNA during Intracellular Infection. Sci. Rep. 2018;8:15017. doi: 10.1038/s41598-018-33274-5. PubMed DOI PMC

Menard K.L., Haskins B.E., Denkers E.Y. Impact of toxoplasma gondii infection on host non-coding RNA responses. Front. Cell. Infect. Microbiol. 2019;9:132. doi: 10.3389/fcimb.2019.00132. PubMed DOI PMC

Hadjicharalambous M.R., Lindsay M.A. Long non-coding RNAs and the innate immune response. Non-Coding RNA. 2019;5:34. doi: 10.3390/ncrna5020034. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...