Performance and Robustness of Regional Image Segmentation Driven by Selected Evolutionary and Genetic Algorithms: Study on MR Articular Cartilage Images
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36080793
PubMed Central
PMC9460494
DOI
10.3390/s22176335
PII: s22176335
Knihovny.cz E-zdroje
- Klíčová slova
- ABC, DPSO, K-means clustering, Otsu thresholding, PSO, articular cartilage, medical image segmentation, regional segmentation,
- MeSH
- algoritmy MeSH
- artefakty MeSH
- kloubní chrupavka * diagnostické zobrazování MeSH
- magnetická rezonanční tomografie metody MeSH
- počítačové zpracování obrazu metody MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
The analysis and segmentation of articular cartilage magnetic resonance (MR) images belongs to one of the most commonly routine tasks in diagnostics of the musculoskeletal system of the knee area. Conventional regional segmentation methods, which are based either on the histogram partitioning (e.g., Otsu method) or clustering methods (e.g., K-means), have been frequently used for the task of regional segmentation. Such methods are well known as fast and well working in the environment, where cartilage image features are reliably recognizable. The well-known fact is that the performance of these methods is prone to the image noise and artefacts. In this context, regional segmentation strategies, driven by either genetic algorithms or selected evolutionary computing strategies, have the potential to overcome these traditional methods such as Otsu thresholding or K-means in the context of their performance. These optimization strategies consecutively generate a pyramid of a possible set of histogram thresholds, of which the quality is evaluated by using the fitness function based on Kapur's entropy maximization to find the most optimal combination of thresholds for articular cartilage segmentation. On the other hand, such optimization strategies are often computationally demanding, which is a limitation of using such methods for a stack of MR images. In this study, we publish a comprehensive analysis of the optimization methods based on fuzzy soft segmentation, driven by artificial bee colony (ABC), particle swarm optimization (PSO), Darwinian particle swarm optimization (DPSO), and a genetic algorithm for an optimal thresholding selection against the routine segmentations Otsu and K-means for analysis and the features extraction of articular cartilage from MR images. This study objectively analyzes the performance of the segmentation strategies upon variable noise with dynamic intensities to report a segmentation's robustness in various image conditions for a various number of segmentation classes (4, 7, and 10), cartilage features (area, perimeter, and skeleton) extraction preciseness against the routine segmentation strategies, and lastly the computing time, which represents an important factor of segmentation performance. We use the same settings on individual optimization strategies: 100 iterations and 50 population. This study suggests that the combination of fuzzy thresholding with an ABC algorithm gives the best performance in the comparison with other methods as from the view of the segmentation influence of additive dynamic noise influence, also for cartilage features extraction. On the other hand, using genetic algorithms for cartilage segmentation in some cases does not give a good performance. In most cases, the analyzed optimization strategies significantly overcome the routine segmentation methods except for the computing time, which is normally lower for the routine algorithms. We also publish statistical tests of significance, showing differences in the performance of individual optimization strategies against Otsu and K-means method. Lastly, as a part of this study, we publish a software environment, integrating all the methods from this study.
Zobrazit více v PubMed
Deng X., Zhang H., Yang Y. Ultrasonic Image Segmentation Algorithm of Thyroid Nodules Based on DPCNN; Proceedings of the 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021); Birmingham, UK. 25–26 March 2022; pp. 163–174. Lecture Notes in Electrical Engineering. DOI
Yang X., Xu G., Zhou T. An effective approach for CT lung segmentation using region growing. J. Phys. Conf. Ser. 2021;2082:012001. doi: 10.1088/1742-6596/2082/1/012001. DOI
Fang L., Wang X., Wang M. Superpixel/voxel medical image segmentation algorithm based on the regional interlinked value. Pattern Anal. Appl. 2021;24:1685–1698. doi: 10.1007/s10044-021-01021-8. DOI
Mangrulkar A., Rane S.B., Sunnapwar V. Automated skull damage detection from assembled skull model using computer vision and machine learning. Int. J. Inf. Technol. 2021;13:1785–1790. doi: 10.1007/s41870-021-00752-5. DOI
Le N., Bui T., Vo-Ho V.-K., Yamazaki K., Luu K. Narrow Band Active Contour Attention Model for Medical Segmentation. Diagnostics. 2021;11:1393. doi: 10.3390/diagnostics11081393. PubMed DOI PMC
Filali I., Belkadi M., Aoudjit R., Lalam M. Graph weighting scheme for skin lesion segmentation in macroscopic images. Biomed. Signal Process. Control. 2021;68:102710. doi: 10.1016/j.bspc.2021.102710. DOI
Rebouças E.D.S., de Medeiros F.N.S., Marques R.C.P., Chagas J.V.S., Guimarães M.T., Santos L.O., Medeiros A.G., Peixoto S.A. Level set approach based on Parzen Window and floor of log for edge computing object segmentation in digital images. Appl. Soft Comput. 2021;105:107273. doi: 10.1016/j.asoc.2021.107273. DOI
Qi Y., Li J., Chen H., Guo Y., Yin Y., Gong G., Wang L. Computer-aided diagnosis and regional segmentation of nasopharyngeal carcinoma based on multi-modality medical images. Int. J. Comput. Assist. Radiol. Surg. 2021;16:871–882. doi: 10.1007/s11548-021-02351-y. PubMed DOI
Hu Y.-C., Mageras G., Grossberg M. Multi-class medical image segmentation using one-vs-rest graph cuts and majority voting. J. Med. Imaging. 2021;8:034003. doi: 10.1117/1.JMI.8.3.034003. PubMed DOI PMC
Song M., Kim Y. Manipulating Retinal OCT data for Image Segmentation based on Encoder-Decoder Network; Proceedings of the 2021 15th International Conference on Ubiquitous Information Management and Communication, IMCOM 2021; Seoul, Korea. 4–6 January 2021; DOI
Zheng Z., Oda M., Mori K. Graph Cuts Loss to Boost Model Accuracy and Generalizability for Medical Image Segmentation; Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW); Montreal, BC, Canada. 11–17 October 2021; pp. 3297–3306. DOI
Sheng A., Li A., Xia J., Ye Y. Application of MRI Image Based on Computer Semiautomatic Segmentation Algorithm in the Classification Prediction of Breast Cancer Histology. J. Health Eng. 2021;2021:6088322. doi: 10.1155/2021/6088322. PubMed DOI PMC
Cai L.T., Baida M., Wren-Jarvis J., Bourla I., Mukherjee P. Diffusion MRI Automated Region of Interest Analysis in Standard Atlas Space versus the Individual’s Native Space; Proceedings of the Computational Diffusion MRI: 12th International Workshop, CDMRI 2021; Strasbourg, France. 1 October 2021; pp. 109–120. DOI
Wang L., Song T., Katayama T., Jiang X., Shimamoto T., Leu J.-S. Deep Regional Metastases Segmentation for Patient-Level Lymph Node Status Classification. IEEE Access. 2021;9:129293–129302. doi: 10.1109/ACCESS.2021.3113036. DOI
Kaviani S., Han K.J., Sohn I. Adversarial attacks and defenses on AI in medical imaging informatics: A survey. Expert Syst. Appl. 2022;198:116815. doi: 10.1016/j.eswa.2022.116815. DOI
Esengönül M., Marta A., Beirão J., Pires I.M., Cunha A. A Systematic Review of Artificial Intelligence Applications Used for Inherited Retinal Disease Management. Medicina. 2022;58:504. doi: 10.3390/medicina58040504. PubMed DOI PMC
Loddo A., Putzu L. On the Reliability of CNNs in Clinical Practice: A Computer-Aided Diagnosis System Case Study. Appl. Sci. 2022;12:3269. doi: 10.3390/app12073269. DOI
Avery E., Sanelli P.C., Aboian M., Payabvash S. Radiomics: A Primer on Processing Workflow and Analysis. Semin. Ultrasound CT MRI. 2022;43:142–146. doi: 10.1053/j.sult.2022.02.003. PubMed DOI PMC
Gu W., Bai S., Kong L. A review on 2D instance segmentation based on deep neural networks. Image Vis. Comput. 2022;120:104401. doi: 10.1016/j.imavis.2022.104401. DOI
Abdou M.A. Literature review: Efficient deep neural networks techniques for medical image analysis. Neural Comput. Appl. 2022;34:5791–5812. doi: 10.1007/s00521-022-06960-9. DOI
Jeong J.J., Tariq A., Adejumo T., Trivedi H., Gichoya J.W., Banerjee I. Systematic Review of Generative Adversarial Networks (GANs) for Medical Image Classification and Segmentation. J. Digit. Imaging. 2022;35:137–152. doi: 10.1007/s10278-021-00556-w. PubMed DOI PMC
Zhang J., Li C., Rahaman M., Yao Y., Ma P., Zhang J., Zhao X., Jiang T., Grzegorzek M. A comprehensive review of image analysis methods for microorganism counting: From classical image processing to deep learning approaches. Artif. Intell. Rev. 2022;55:2875–2944. doi: 10.1007/s10462-021-10082-4. PubMed DOI PMC
Bhalodiya J.M., Keung S.N.L.C., Arvanitis T.N. Magnetic resonance image-based brain tumour segmentation methods: A systematic review. Digit. Health. 2022;8:20552076221074122. doi: 10.1177/20552076221074122. PubMed DOI PMC
Ahmed S.M., Mstafa R.J. A Comprehensive Survey on Bone Segmentation Techniques in Knee Osteoarthritis Research: From Conventional Methods to Deep Learning. Diagnostics. 2022;12:611. doi: 10.3390/diagnostics12030611. PubMed DOI PMC
Ebert L., Dobay A., Franckenberg S., Thali M., Decker S., Ford J. Image segmentation of post-mortem computed tomography data in forensic imaging: Methods and applications. Forensic Imaging. 2022;28:200483. doi: 10.1016/j.fri.2021.200483. DOI
Guan H., Liu M. Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans. Biomed. Eng. 2022;69:1173–1185. doi: 10.1109/TBME.2021.3117407. PubMed DOI PMC
Spadarella G., Perillo T., Ugga L., Cuocolo R. Radiomics in Cardiovascular Disease Imaging: From Pixels to the Heart of the Problem. Curr. Cardiovasc. Imaging Rep. 2022;15:11–21. doi: 10.1007/s12410-022-09563-z. DOI
Muntarina K., Shorif S.B., Uddin M.S. Notes on edge detection approaches. Evol. Syst. 2022;13:169–182. doi: 10.1007/s12530-021-09371-8. DOI
Mishra I., Aravinda K., Kumar J.A., Keerthi C., Shree R.D., Srikumar S. Medical Imaging using Signal Processing: A Comprehensive Review; Proceedings of the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS); Coimbatore, India. 23–25 February 2022; pp. 623–630. DOI
Rafi A., Khan Z., Aslam F., Jawed S., Shafique A., Ali H. A Review: Recent Automatic Algorithms for the Segmentation of Brain Tumor MRI. In: Boulouard Z., Ouaissa M., Ouaissa M., El Himer S., editors. AI and IoT for Sustainable Development in Emerging Countries. Volume 105. Springer; Cham, Switzerland: 2022. p. 522. Lecture Notes on Data Engineering and Communications Technologies. DOI
Mo Y., Wu Y., Yang X., Liu F., Liao Y. Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing. 2022;493:626–646. doi: 10.1016/j.neucom.2022.01.005. DOI
Vizcarra J.C., Burlingame E.A., Hug C.B., Goltsev Y., White B.S., Tyson D.R., Sokolov A. A community-based approach to image analysis of cells, tissues and tumors. Comput. Med. Imaging Graph. 2022;95:102013. doi: 10.1016/j.compmedimag.2021.102013. PubMed DOI PMC
Skupski D.W., Duzyj C.M., Scholl J., Perez-Delboy A., Ruhstaller K., Plante L.A., Hart L.A., Palomares K.T.S., Ajemian B., Rosen T., et al. Evaluation of classic and novel ultrasound signs of placenta accreta spectrum. Ultrasound Obstet. Gynecol. 2022;59:465–473. doi: 10.1002/uog.24804. PubMed DOI
Radhika R., Mahajan R. Medical Image Enhancement: A Review. Proc. Int. Conf. Data Sci. Appl. 2022;288:105–118. doi: 10.1007/978-981-16-5120-5_9. DOI
Zaki M.Z.A.A., Som M.H.M., Yazid H., Basaruddin K.S., Basah S.N., Ali M.S.A.M. A Review on Edge Detection on Osteogenesis Imperfecta (OI) Image using Fuzzy Logic. J. Phys. Conf. Ser. 2021;2071:012040. doi: 10.1088/1742-6596/2071/1/012040. DOI
Biswas S., Hazra R. State-of-the-Art Level Set Models and Their Performances in Image Segmentation: A Decade Review. Arch. Comput. Methods Eng. 2021;29:2019–2042. doi: 10.1007/s11831-021-09646-y. DOI
Gaddam V.K., Boddapati R., Kumar T., Kulkarni A.V., Bjornsson H. Application of “OTSU”—An image segmentation method for differentiation of snow and ice regions of glaciers and assessment of mass budget in Chandra basin, Western Himalaya using Remote Sensing and GIS techniques. Environ. Monit. Assess. 2022;194:337. doi: 10.1007/s10661-022-09945-2. PubMed DOI
Chen M., Zhang Z., Wu H., Xie S., Wang H. Otsu-Kmeans gravity-based multi-spots center extraction method for microlens array imaging system. Opt. Lasers Eng. 2022;152:106968. doi: 10.1016/j.optlaseng.2022.106968. DOI
Deng Q., Shi Z., Ou C. Self-Adaptive Image Thresholding within Nonextensive Entropy and the Variance of the Gray-Level Distribution. Entropy. 2022;24:319. doi: 10.3390/e24030319. PubMed DOI PMC
Uplaonkar D.S., Virupakshappa. Patil N. Modified Otsu thresholding based level set and local directional ternary pattern technique for liver tumor segmentation. Int. J. Syst. Assur. Eng. Manag. 2022:1–11. doi: 10.1007/s13198-022-01637-x. DOI
Kanthavel R., Dhaya R., Venusamy K. Detection of Osteoarthritis Based on EHO Thresholding. Comput. Mater. Contin. 2022;71:5783–5798. doi: 10.32604/cmc.2022.023745. DOI
Mattheus J., Grobler H., Abu-Mahfouz A.M. A Review of Motion Segmentation: Approaches and Major Challenges; Proceedings of the 2020 2nd International Multidisciplinary Information Technology and Engineering Conference, IMITEC 2020; Kimberley, South Africa. 25–27 November 2020; pp. 1–8. DOI
Jayalakshmi D., Dheeba J. Border Detection in Skin Lesion Images Using an Improved Clustering Algorithm. Int. J. e-Collab. 2020;16:15–29. doi: 10.4018/IJeC.2020100102. DOI
Anilkumar K., Manoj V., Sagi T. A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of Leukemia. Biocybern. Biomed. Eng. 2020;40:1406–1420. doi: 10.1016/j.bbe.2020.08.010. DOI
Chen Z., Guo B., Lib C., Liu H. Review on Superpixel Generation Algorithms Based on Clustering; Proceedings of the 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE); Dalian, China. 27–29 September 2020; pp. 532–537. DOI
Hu X., Chen Q., Ye X., Zhang D., Tang Y., Ye J. Research on the Region-Growing and Segmentation Technology of Micro-Particle Microscopic Images Based on Color Features. Symmetry. 2021;13:2325. doi: 10.3390/sym13122325. DOI
Ali N.H., Abdullah A.R., Saad N.M., Muda A.S., Sutikno T., Jopri M.H. Brain stroke computed tomography images analysis using image processing: A Review. IAES Int. J. Artif. Intell. (IJAI) 2021;10:1048–1059. doi: 10.11591/ijai.v10.i4.pp1048-1059. DOI
Kordt J., Brachmann P., Limberger D., Lippert C. Interactive Volumetric Region Growing for Brain Tumor Segmentation on MRI using WebGL; Proceedings of the Web3D 2021: 26th ACM International Conference on 3D Web Technology; Pisa, Italy. 8–12 November 2021; DOI
Habib H., Amin R., Ahmed B., Hannan A. Hybrid algorithms for brain tumor segmentation, classification and feature extraction. J. Ambient Intell. Humaniz. Comput. 2022;13:2763–2784. doi: 10.1007/s12652-021-03544-8. DOI
Rmili M., El Moutaouakkil A., Saleck M.M. Hybrid Mammogram Segmentation Using Watershed and Region Growing. In: Maleh Y., Alazab M., Gherabi N., Tawalbeh L., Abd El-Latif A.A., editors. Advances in Information, Communication and Cybersecurity. Volume 357. Springer; Cham, Switzerland: 2022. pp. 23–32. Lecture Notes in Networks and Systems. DOI
Krishnammal P.M., Therase L.M., Devi E.A., Joany R.M. Wavelets and Convolutional Neural Networks-Based Automatic Segmentation and Prediction of MRI Brain Images. IOT Smart Syst. 2022;251:229–241. doi: 10.1007/978-981-16-3945-6_23. DOI
Su M., Shi W., Zhao D., Cheng D., Zhang J. A High-Precision Method for Segmentation and Recognition of Shopping Mall Plans. Sensors. 2022;22:2510. doi: 10.3390/s22072510. PubMed DOI PMC
Luisi J.D., Lin J.L., Ameredes B.T., Motamedi M. Spatial-Temporal Speckle Variance in the En-Face View as a Contrast for Optical Coherence Tomography Angiography (OCTA) Sensors. 2022;22:2447. doi: 10.3390/s22072447. PubMed DOI PMC
Khan A.-M., Haque F., Hasan K.R., Alajmani S.H., Baz M., Masud M., Nahid A.-A. LLDNet: A Lightweight Lane Detection Approach for Autonomous Cars Using Deep Learning. Sensors. 2022;22:5595. doi: 10.3390/s22155595. PubMed DOI PMC
Bai K., Wang J., Wang H. A Pupil Segmentation Algorithm Based on Fuzzy Clustering of Distributed Information. Sensors. 2021;21:4209. doi: 10.3390/s21124209. PubMed DOI PMC
Shia W.-C., Hsu F.-R., Dai S.-T., Guo S.-L., Chen D.-R. Semantic Segmentation of the Malignant Breast Imaging Reporting and Data System Lexicon on Breast Ultrasound Images by Using DeepLab v3+ Sensors. 2022;22:5352. doi: 10.3390/s22145352. PubMed DOI PMC
Giang T.T.H., Khai T.Q., Im D.-Y., Ryoo Y.-J. Fast Detection of Tomato Sucker Using Semantic Segmentation Neural Networks Based on RGB-D Images. Sensors. 2022;22:5140. doi: 10.3390/s22145140. PubMed DOI PMC
Ciecholewski M., Kassjański M. Computational Methods for Liver Vessel Segmentation in Medical Imaging: A Review. Sensors. 2021;21:2027. doi: 10.3390/s21062027. PubMed DOI PMC
Zhu Y., Zhang F., Li L., Lin Y., Zhang Z., Shi L., Tao H., Qin T. Research on Classification Model of Panax notoginseng Taproots Based on Machine Vision Feature Fusion. Sensors. 2021;21:7945. doi: 10.3390/s21237945. PubMed DOI PMC
Liu Y., Zhu M., Wang J., Guo X., Yang Y., Wang J. Multi-Scale Deep Neural Network Based on Dilated Convolution for Spacecraft Image Segmentation. Sensors. 2022;22:4222. doi: 10.3390/s22114222. PubMed DOI PMC
Kweon J., Yoo J., Kim S., Won J., Kwon S. A Novel Method Based on GAN Using a Segmentation Module for Oligodendroglioma Pathological Image Generation. Sensors. 2022;22:3960. doi: 10.3390/s22103960. PubMed DOI PMC
Yamanakkanavar N., Choi J.Y., Lee B. Multiscale and Hierarchical Feature-Aggregation Network for Segmenting Medical Images. Sensors. 2022;22:3440. doi: 10.3390/s22093440. PubMed DOI PMC
Ali R., Hardie R.C., Narayanan B.N., Kebede T.M. IMNets: Deep Learning Using an Incremental Modular Network Synthesis Approach for Medical Imaging Applications. Appl. Sci. 2022;12:5500. doi: 10.3390/app12115500. DOI
Jimenez-Castaño C.A., Álvarez-Meza A.M., Aguirre-Ospina O.D., Cárdenas-Peña D.A., Orozco-Gutiérrez A. Random Fourier Features-Based Deep Learning Improvement with Class Activation Interpretability for Nerve Structure Segmentation. Sensors. 2021;21:7741. doi: 10.3390/s21227741. PubMed DOI PMC
Ali R., Hardie R.C., Ragb H.K. Ensemble Lung Segmentation System Using Deep Neural Networks; Proceedings of the 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR); Washington, DC, USA. 13–15 October 2020; pp. 1–5. DOI
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979;9:62–66. doi: 10.1109/TSMC.1979.4310076. DOI
Kubicek J., Valosek J., Penhaker M., Bryjova I., Grepl J. Extraction of Blood Vessels Using Multilevel Thresholding with Color Coding. In: Sulaiman H., Othman M., Othman M., Rahim Y., Pee N., editors. Advanced Computer and Communication Engineering Technology. Volume 362. Springer; Cham, Switzerland: 2015. pp. 397–406. Lecture Notes in Electrical Engineering. DOI
MacQueen J. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. Volume 5.1. University of California Press; Berkeley, CA, USA: 1967. Some methods for classification and analysis of multivariate observations; pp. 281–298.
Kapur J.N., Sahoo P.K., Wong A.K.C. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985;29:273–285. doi: 10.1016/0734-189X(85)90125-2. DOI
Lang C., Jia H. Kapur’s Entropy for Color Image Segmentation Based on a Hybrid Whale Optimization Algorithm. Entropy. 2019;21:318. doi: 10.3390/e21030318. PubMed DOI PMC
NIMH Data Archive—OAI (The Osteoarthritis Initiative). National Institutes of Health. U.S. Department of Health and Human Services. [(accessed on 15 May 2022)]; Available online: https://nda.nih.gov/oai/
Xue Y.-P., Jang H., Byra M., Cai Z.-Y., Wu M., Chang E.Y., Ma Y.-J., Du J. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks. Eur. Radiol. 2021;31:7653–7663. doi: 10.1007/s00330-021-07853-6. PubMed DOI PMC