Genomic Insight of VIM-harboring IncA Plasmid from a Clinical ST69 Escherichia coli Strain in Italy

. 2020 Aug 12 ; 8 (8) : . [epub] 20200812

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32806766

Grantová podpora
17-29239A Agentura Pro Zdravotnický Výzkum České Republiky

Odkazy

PubMed 32806766
PubMed Central PMC7466171
DOI 10.3390/microorganisms8081232
PII: microorganisms8081232
Knihovny.cz E-zdroje

Background: VIM (Verona Integron-encoded Metallo-beta-lactamase) is a member of the Metallo-Beta-Lactamases (MBLs), and is able to hydrolyze all beta-lactams antibiotics, except for monobactams, and including carbapenems. Here we characterize a VIM-producing IncA plasmid isolated from a clinical ST69 Escherichia coli strain from an Italian Long-Term Care Facility (LTCF) inpatient. Methods: An antimicrobial susceptibility test and conjugation assay were carried out, and the transferability of the blaVIM-type gene was confirmed in the transconjugant. Whole-genome sequencing (WGS) of the strain 550 was performed using the Sequel I platform. Genome assembly was performed using "Microbial Assembly". Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases. Results: Assembly resulted in three complete circular contigs: the chromosome (4,962,700 bp), an IncA plasmid (p550_IncA_VIM_1; 162,608 bp), harboring genes coding for aminoglycoside resistance (aac(6')-Ib4, ant(3″)-Ia, aph(3″)-Ib, aph(3')-XV, aph(6)-Id), beta-lactam resistance (blaSHV-12, blaVIM-1), macrolides resistance (mph(A)), phenicol resistance (catB2), quinolones resistance (qnrS1), sulphonamide resistance (sul1, sul2), and trimethoprim resistance (dfrA14), and an IncK/Z plasmid (p550_IncB_O_K_Z; 100,306 bp), free of antibiotic resistance genes. Conclusions: The increase in reports of IncA plasmids bearing different antimicrobial resistance genes highlights the overall important role of IncA plasmids in disseminating carbapenemase genes, with a preference for the blaVIM-1 gene in Italy.

Zobrazit více v PubMed

Lauretti L., Riccio M.L., Mazzariol A., Cornaglia G., Amicosante G., Fontana R., Rossolini G.M. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 1999;43:1584–1590. doi: 10.1128/AAC.43.7.1584. PubMed DOI PMC

Mojica M.F., Bonomo R.A., Fast W. B1-Metallo-β-Lactamases: Where Do We Stand? Curr. Drug Targets. 2016;17:1029–1050. doi: 10.2174/1389450116666151001105622. PubMed DOI PMC

Hong D.J., Bae I.K., Jang I.H., Jeong S.H., Kang H.K., Lee K. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect. Chemother. 2015;47:81–97. doi: 10.3947/ic.2015.47.2.81. PubMed DOI PMC

Mathers A.J., Peirano G., Pitout J.D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobact. Clin. Microbiol. Rev. 2015;28:565–591. doi: 10.1128/CMR.00116-14. PubMed DOI PMC

Matsumura Y., Peirano G., Devinney R., Bradford P.A., Motyl M.R., Adams M.D., Chen L., Kreiswirth B., Johann D., Pitout D. Genomic epidemiology of global VIM-producing Enterobact. J. Antimicrob. Chemother. 2017;72:2249–2258. doi: 10.1093/jac/dkx148. PubMed DOI PMC

Carattoli A., Aschbacher R., March A., Larcher C., Livermore D.M., Woodford N. Complete nucleotide sequence of the IncN plasmid pKOX105 encoding VIM-1, QnrS1 and SHV-12 proteins in Enterobacteriaceae from Bolzano, Italy compared with IncN plasmids encoding KPC enzymes in the USA. J. Antimicrob. Chemother. 2010;65:2070–2075. doi: 10.1093/jac/dkq269. PubMed DOI

Miriagou V., Papagiannitsis C.C., Kotsakis S.D., Loli A., Tzelepi E., Legakis N.J., Tzouvelekis L.S. Sequence of pNL194, a 79.3-kilobase IncN plasmid carrying the blaVIM-1 metallo-beta-lactamase gene in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2010;54:4497–4502. doi: 10.1128/AAC.00665-10. PubMed DOI PMC

Roschanski N., Guenther S., Vu T.T.T., Fischer J., Semmler T., Huehn S., Alter T., Roesler U. VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016. Euro. Surveill. 2017;22:17-00032. doi: 10.2807/1560-7917.ES.2017.22.43.17-00032. PubMed DOI PMC

Drieux L., Decré D., Frangeul L., Arlet G., Jarlier V., Sougakoff W. Complete nucleotide sequence of the large conjugative pTC2 multireplicon plasmid encoding the VIM-1 metallo-β-lactamase. J. Antimicrob. Chemother. 2013;68:97–100. doi: 10.1093/jac/dks367. PubMed DOI

Arcari G., Di Lella F.M., Bibbolino G., Mengoni F., Beccaccioli M., Antonelli G., Faino L., Carattoli A. A Multispecies Cluster of VIM-1 Carbapenemase-Producing Enterobacterales Linked by a Novel, Highly Conjugative, and Broad-Host-Range IncA Plasmid Forebodes the Reemergence of VIM-1. Antimicrob. Agents Chemother. 2020;64:e02435-19. doi: 10.1128/AAC.02435-19. PubMed DOI PMC

Bitar I., Caltagirone M., Villa L., Mattioni M.V., Nucleo E., Sarti M., Migliavacca R., Carattoli A. Interplay among IncA and blaKPC-Carrying Plasmids in Citrobacter freundii. Antimicrob. Agents Chemother. 2019;63:e02609-18. doi: 10.1128/AAC.02609-18. PubMed DOI PMC

Gaibani P., Ambretti S., Scaltriti E., Cordovana M., Berlingeri A., Pongolini S., Landini M.P., Re M.C. A novel IncA plasmid carrying blaVIM-1 in a Kluyvera cryocrescens strain. J. Antimicrob. Chemother. 2018;73:3206–3208. doi: 10.1093/jac/dky304. PubMed DOI

Rotova V., Papagiannitsis C.C., Skalova A., Chudejova K., Hrabak J. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J. Microbiol. Methods. 2017;137:30–33. doi: 10.1016/j.mimet.2017.04.003. PubMed DOI

Lee K., Lim Y.S., Yong D., Yum J.H., Chong Y. Evaluation of the hodge test and the imipenem-EDTA double-disk synergy test for differentiating Metallo-β-Lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2003;41:4623–4629. doi: 10.1128/JCM.41.10.4623-4629.2003. PubMed DOI PMC

Doi Y., Potoski B.A., Adams-Haduch J.M., Sidjabat H.E., Pasculle A.W., Paterson D.L. Simple disk-based method for detection of Klebsiella pneumoniae Carbapenemase-type -lactamase by use of a boronic acid compound. J. Clin. Microbiol. 2008;46:4083–4086. doi: 10.1128/JCM.01408-08. PubMed DOI PMC

Glupczynski Y., Huang T.D., Bouchahrouf W., Castro R.R.D., Bauraing C., Geérard M., Verbruggen A., Deplano A., Denis O., Bogaerts P. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int. J. Antimicrob. Agents. 2012;39:168–172. doi: 10.1016/j.ijantimicag.2011.10.005. PubMed DOI

Shirani K., Ataei B., Roshandel F. Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes (VIM and IMP) in Pseudomonas aeruginosa strains producing MBL enzyme, isolated from patients with secondary immunodeficiency. Adv. Biomed. Res. 2016;5:124. PubMed PMC

Clermont O., Christenson J.K., Denamur E., Gordon D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013;5:58–65. doi: 10.1111/1758-2229.12019. PubMed DOI

Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Voldby Larsen M. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC

Carattoli A., Zankari E., García-Fernández A., Voldby L.M., Lund O., Villa L., Aarestrup F.M., Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC

Joensen K.G., Scheutz F., Lund O., Hasman H., Kaas R.S., Nielsen E.M., Aarestrup F.M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014;52:1501–1510. doi: 10.1128/JCM.03617-13. PubMed DOI PMC

Liu B., Zheng D., Jin Q., Chen L., Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47:D687–D692. doi: 10.1093/nar/gky1080. PubMed DOI PMC

Joensen K.G., Tetzschner A.M., Iguchi A., Aarestrup F.M., Scheutz F. Rapid and easy in silico serotyping of Escherichia coli using whole genome sequencing (WCS) data. J. Clin. Microbiol. 2015;53:2410–2426. doi: 10.1128/JCM.00008-15. PubMed DOI PMC

Roer L., Tchesnokova V., Allesøe R., Muradova M., Chattopadhyay S., Ahrenfeldt J., Thomsen M.C.F., Lund O., Hansen F., Hammerum A.M., et al. Development of a Web Tool for Escherichia coli Subtyping Based on fimH Alleles. J. Clin. Microbiol. 2017;55:2538–2543. doi: 10.1128/JCM.00737-17. PubMed DOI PMC

Roer L., Johannesen T.B., Hansen F., Stegger M., Tchesnokova V., Sokurenko E., Garibay N., Allesøe R., Thomsen M.C.F., Lund O., et al. CHTyper, a Web Tool for Subtyping of Extraintestinal Pathogenic Escherichia coli Based on the fumC and fimH Alleles. J. Clin. Microbiol. 2018;56:e00063-18. doi: 10.1128/JCM.00063-18. PubMed DOI PMC

Larsen M.V., Cosentino S., Rasmussen S., Friis C., Hasman H., Marvig R.L., Jelsbak L., Sicheritz-Pontén T., Ussery D.W., Aarestrup F.M., et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012;50:1355–1361. doi: 10.1128/JCM.06094-11. PubMed DOI PMC

Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC

Sullivan M.J., Petty N.K., Beatson S.A. Easyfig: A genome comparison visualizer. Bioinformatics. 2011;27:1009–1010. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC

Kjaergaard K., Schembri M.A., Hasman H., Klemm P. Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas Fluoresc. J. Bacteriol. 2000;182:4789–4796. doi: 10.1128/JB.182.17.4789-4796.2000. PubMed DOI PMC

Manges A.R., Johnson J.R., Foxman B., O’Bryan T.T., Fullerton K.E., Riley L.W. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N. Engl. J. Med. 2001;345:1007–1013. doi: 10.1056/NEJMoa011265. PubMed DOI

Johnson J.R., Magistro G., Clabots C., Stephen P., Amee M., Paul T., Sören S. Contribution of yersiniabactin to the virulence of an Escherichia coli sequence type 69 (“clonal group A”) cystitis isolate in murine models of urinary tract infection and sepsis. Microb. Pathog. 2018;120:128–131. doi: 10.1016/j.micpath.2018.04.048. PubMed DOI

Riley L.W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 2014;20:380–390. doi: 10.1111/1469-0691.12646. PubMed DOI

Alghoribi M.F., Gibreel T.M., Dodgson A.R., Beatson S.A., Upton M. Galleria mellonella infection model demonstrates high lethality of ST69 and ST127 uropathogenic E. coli. PLoS ONE. 2014;9:e101547. doi: 10.1371/journal.pone.0101547. PubMed DOI PMC

Giacobbe D.R., Del Bono V., Coppo E., Marchese A., Viscoli C. Emergence of a KPC-3-Producing Escherichia coli ST69 as a Cause of Bloodstream Infections in Italy. Microb. Drug Resist. 2015;21:342–344. doi: 10.1089/mdr.2014.0230. PubMed DOI

Abd E.I., Ghany M., Sharaf H., Al-Agamy M.H., Shibl A., Hill-Cawthorne G.A., Hong P.Y. Genomic characterization of NDM-1 and 5, and OXA-181 carbapenemases in uropathogenic Escherichia coli isolates from Riyadh, Saudi Arabia. PLoS ONE. 2018;13:e0201613. doi: 10.1371/journal.pone.0201613. PubMed DOI PMC

Hammad A.M., Hoffmann M., Gonzalez-Escalona N., Nasser H.A., Yao K., Koenig S., Allué-Guardia A., Eppinger M. Genomic features of colistin resistant Escherichia coli ST69 strain harboring mcr-1 on IncHI2 plasmid from raw milk cheese in Egypt. Infect. Genet. Evol. 2019;73:126–131. doi: 10.1016/j.meegid.2019.04.021. PubMed DOI

Fibke C.D., Croxen M.A., Geum H.M., Glass M., Wong E., Avery B.P., Daignault D., Mulvey M.R., Reid-Smith R.J., Parmley E.J., et al. Genomic Epidemiology of Major Extraintestinal Pathogenic Escherichia coli Lineages Causing Urinary Tract Infections in Young Women Across Canada. Open Forum. Infect. Dis. 2019;6:ofz431. doi: 10.1093/ofid/ofz431. PubMed DOI PMC

Boll E.J., Overballe-Petersen S., Hasman H., Roer L., Ng K., Scheutz F., Hammerum A.M., Dungu A., Hansen F., Johannesen T.B., et al. Emergence of Enteroaggregative Escherichia coli within the ST131 Lineage as a Cause of Extraintestinal Infections. mBio. 2020;11:e00353-20. doi: 10.1128/mBio.00353-20. PubMed DOI PMC

Loconsole D., Accogli M., De Robertis A.L., Capozzo L., Bianco A., Morea A., Mallamaci R., Quarto M., Parisi A., Chironna M. Emerging high-risk ST101 and ST307 carbapenem-resistant Klebsiella pneumoniae clones from bloodstream infections in Southern Italy. Ann. Clin. Microbiol. Antimicrob. 2020;19:24. doi: 10.1186/s12941-020-00366-y. PubMed DOI PMC

Flores C., Bianco K., de Filippis I., Clementino M.M., Romão C.M.C. Genetic Relatedness of NDM-Producing Klebsiella pneumoniae Co-occurring VIM, KPC, and OXA-48 Enzymes from Surveillance Cultures from an Intensive Care Unit. Microb. Drug Resist. 2020 doi: 10.1089/mdr.2019.0483. PubMed DOI

Caltagirone M., Bitar I., Piazza A., Spalla M., Nucleo E., Navarra A., Migliavacca R. Detection of an IncA/C plasmid encoding VIM-4 and CMY-4 β-lactamases in Klebsiella oxytoca and Citrobacter koseri from an inpatient in a cardiac rehabilitation unit. New Microbiol. 2015;38:387–392. PubMed

Johnson T.J., Lang K.S. IncA/C plasmids: An emerging threat to human and animal health? Mob. Genet. Elem. 2012;2:55–58. doi: 10.4161/mge.19626. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genomic Characterization of VIM and MCR Co-Producers: The First Two Clinical Cases, in Italy

. 2021 Jan 06 ; 11 (1) : . [epub] 20210106

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...