Genomic Insight of VIM-harboring IncA Plasmid from a Clinical ST69 Escherichia coli Strain in Italy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-29239A
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
32806766
PubMed Central
PMC7466171
DOI
10.3390/microorganisms8081232
PII: microorganisms8081232
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli, IncA, blaVIM-1,
- Publikační typ
- časopisecké články MeSH
Background: VIM (Verona Integron-encoded Metallo-beta-lactamase) is a member of the Metallo-Beta-Lactamases (MBLs), and is able to hydrolyze all beta-lactams antibiotics, except for monobactams, and including carbapenems. Here we characterize a VIM-producing IncA plasmid isolated from a clinical ST69 Escherichia coli strain from an Italian Long-Term Care Facility (LTCF) inpatient. Methods: An antimicrobial susceptibility test and conjugation assay were carried out, and the transferability of the blaVIM-type gene was confirmed in the transconjugant. Whole-genome sequencing (WGS) of the strain 550 was performed using the Sequel I platform. Genome assembly was performed using "Microbial Assembly". Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases. Results: Assembly resulted in three complete circular contigs: the chromosome (4,962,700 bp), an IncA plasmid (p550_IncA_VIM_1; 162,608 bp), harboring genes coding for aminoglycoside resistance (aac(6')-Ib4, ant(3″)-Ia, aph(3″)-Ib, aph(3')-XV, aph(6)-Id), beta-lactam resistance (blaSHV-12, blaVIM-1), macrolides resistance (mph(A)), phenicol resistance (catB2), quinolones resistance (qnrS1), sulphonamide resistance (sul1, sul2), and trimethoprim resistance (dfrA14), and an IncK/Z plasmid (p550_IncB_O_K_Z; 100,306 bp), free of antibiotic resistance genes. Conclusions: The increase in reports of IncA plasmids bearing different antimicrobial resistance genes highlights the overall important role of IncA plasmids in disseminating carbapenemase genes, with a preference for the blaVIM-1 gene in Italy.
Biomedical Center Faculty of Medicine in Pilsen Charles University 32300 Pilsen Czech Republic
Clinical Microbiology Laboratory ASP Golgi Redaelli Hospital Via Olmetto 20123 Milan Italy
Zobrazit více v PubMed
Lauretti L., Riccio M.L., Mazzariol A., Cornaglia G., Amicosante G., Fontana R., Rossolini G.M. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 1999;43:1584–1590. doi: 10.1128/AAC.43.7.1584. PubMed DOI PMC
Mojica M.F., Bonomo R.A., Fast W. B1-Metallo-β-Lactamases: Where Do We Stand? Curr. Drug Targets. 2016;17:1029–1050. doi: 10.2174/1389450116666151001105622. PubMed DOI PMC
Hong D.J., Bae I.K., Jang I.H., Jeong S.H., Kang H.K., Lee K. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect. Chemother. 2015;47:81–97. doi: 10.3947/ic.2015.47.2.81. PubMed DOI PMC
Mathers A.J., Peirano G., Pitout J.D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobact. Clin. Microbiol. Rev. 2015;28:565–591. doi: 10.1128/CMR.00116-14. PubMed DOI PMC
Matsumura Y., Peirano G., Devinney R., Bradford P.A., Motyl M.R., Adams M.D., Chen L., Kreiswirth B., Johann D., Pitout D. Genomic epidemiology of global VIM-producing Enterobact. J. Antimicrob. Chemother. 2017;72:2249–2258. doi: 10.1093/jac/dkx148. PubMed DOI PMC
Carattoli A., Aschbacher R., March A., Larcher C., Livermore D.M., Woodford N. Complete nucleotide sequence of the IncN plasmid pKOX105 encoding VIM-1, QnrS1 and SHV-12 proteins in Enterobacteriaceae from Bolzano, Italy compared with IncN plasmids encoding KPC enzymes in the USA. J. Antimicrob. Chemother. 2010;65:2070–2075. doi: 10.1093/jac/dkq269. PubMed DOI
Miriagou V., Papagiannitsis C.C., Kotsakis S.D., Loli A., Tzelepi E., Legakis N.J., Tzouvelekis L.S. Sequence of pNL194, a 79.3-kilobase IncN plasmid carrying the blaVIM-1 metallo-beta-lactamase gene in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2010;54:4497–4502. doi: 10.1128/AAC.00665-10. PubMed DOI PMC
Roschanski N., Guenther S., Vu T.T.T., Fischer J., Semmler T., Huehn S., Alter T., Roesler U. VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016. Euro. Surveill. 2017;22:17-00032. doi: 10.2807/1560-7917.ES.2017.22.43.17-00032. PubMed DOI PMC
Drieux L., Decré D., Frangeul L., Arlet G., Jarlier V., Sougakoff W. Complete nucleotide sequence of the large conjugative pTC2 multireplicon plasmid encoding the VIM-1 metallo-β-lactamase. J. Antimicrob. Chemother. 2013;68:97–100. doi: 10.1093/jac/dks367. PubMed DOI
Arcari G., Di Lella F.M., Bibbolino G., Mengoni F., Beccaccioli M., Antonelli G., Faino L., Carattoli A. A Multispecies Cluster of VIM-1 Carbapenemase-Producing Enterobacterales Linked by a Novel, Highly Conjugative, and Broad-Host-Range IncA Plasmid Forebodes the Reemergence of VIM-1. Antimicrob. Agents Chemother. 2020;64:e02435-19. doi: 10.1128/AAC.02435-19. PubMed DOI PMC
Bitar I., Caltagirone M., Villa L., Mattioni M.V., Nucleo E., Sarti M., Migliavacca R., Carattoli A. Interplay among IncA and blaKPC-Carrying Plasmids in Citrobacter freundii. Antimicrob. Agents Chemother. 2019;63:e02609-18. doi: 10.1128/AAC.02609-18. PubMed DOI PMC
Gaibani P., Ambretti S., Scaltriti E., Cordovana M., Berlingeri A., Pongolini S., Landini M.P., Re M.C. A novel IncA plasmid carrying blaVIM-1 in a Kluyvera cryocrescens strain. J. Antimicrob. Chemother. 2018;73:3206–3208. doi: 10.1093/jac/dky304. PubMed DOI
Rotova V., Papagiannitsis C.C., Skalova A., Chudejova K., Hrabak J. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J. Microbiol. Methods. 2017;137:30–33. doi: 10.1016/j.mimet.2017.04.003. PubMed DOI
Lee K., Lim Y.S., Yong D., Yum J.H., Chong Y. Evaluation of the hodge test and the imipenem-EDTA double-disk synergy test for differentiating Metallo-β-Lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2003;41:4623–4629. doi: 10.1128/JCM.41.10.4623-4629.2003. PubMed DOI PMC
Doi Y., Potoski B.A., Adams-Haduch J.M., Sidjabat H.E., Pasculle A.W., Paterson D.L. Simple disk-based method for detection of Klebsiella pneumoniae Carbapenemase-type -lactamase by use of a boronic acid compound. J. Clin. Microbiol. 2008;46:4083–4086. doi: 10.1128/JCM.01408-08. PubMed DOI PMC
Glupczynski Y., Huang T.D., Bouchahrouf W., Castro R.R.D., Bauraing C., Geérard M., Verbruggen A., Deplano A., Denis O., Bogaerts P. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int. J. Antimicrob. Agents. 2012;39:168–172. doi: 10.1016/j.ijantimicag.2011.10.005. PubMed DOI
Shirani K., Ataei B., Roshandel F. Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes (VIM and IMP) in Pseudomonas aeruginosa strains producing MBL enzyme, isolated from patients with secondary immunodeficiency. Adv. Biomed. Res. 2016;5:124. PubMed PMC
Clermont O., Christenson J.K., Denamur E., Gordon D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013;5:58–65. doi: 10.1111/1758-2229.12019. PubMed DOI
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Voldby Larsen M. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC
Carattoli A., Zankari E., García-Fernández A., Voldby L.M., Lund O., Villa L., Aarestrup F.M., Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC
Joensen K.G., Scheutz F., Lund O., Hasman H., Kaas R.S., Nielsen E.M., Aarestrup F.M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014;52:1501–1510. doi: 10.1128/JCM.03617-13. PubMed DOI PMC
Liu B., Zheng D., Jin Q., Chen L., Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47:D687–D692. doi: 10.1093/nar/gky1080. PubMed DOI PMC
Joensen K.G., Tetzschner A.M., Iguchi A., Aarestrup F.M., Scheutz F. Rapid and easy in silico serotyping of Escherichia coli using whole genome sequencing (WCS) data. J. Clin. Microbiol. 2015;53:2410–2426. doi: 10.1128/JCM.00008-15. PubMed DOI PMC
Roer L., Tchesnokova V., Allesøe R., Muradova M., Chattopadhyay S., Ahrenfeldt J., Thomsen M.C.F., Lund O., Hansen F., Hammerum A.M., et al. Development of a Web Tool for Escherichia coli Subtyping Based on fimH Alleles. J. Clin. Microbiol. 2017;55:2538–2543. doi: 10.1128/JCM.00737-17. PubMed DOI PMC
Roer L., Johannesen T.B., Hansen F., Stegger M., Tchesnokova V., Sokurenko E., Garibay N., Allesøe R., Thomsen M.C.F., Lund O., et al. CHTyper, a Web Tool for Subtyping of Extraintestinal Pathogenic Escherichia coli Based on the fumC and fimH Alleles. J. Clin. Microbiol. 2018;56:e00063-18. doi: 10.1128/JCM.00063-18. PubMed DOI PMC
Larsen M.V., Cosentino S., Rasmussen S., Friis C., Hasman H., Marvig R.L., Jelsbak L., Sicheritz-Pontén T., Ussery D.W., Aarestrup F.M., et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012;50:1355–1361. doi: 10.1128/JCM.06094-11. PubMed DOI PMC
Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC
Sullivan M.J., Petty N.K., Beatson S.A. Easyfig: A genome comparison visualizer. Bioinformatics. 2011;27:1009–1010. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC
Kjaergaard K., Schembri M.A., Hasman H., Klemm P. Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas Fluoresc. J. Bacteriol. 2000;182:4789–4796. doi: 10.1128/JB.182.17.4789-4796.2000. PubMed DOI PMC
Manges A.R., Johnson J.R., Foxman B., O’Bryan T.T., Fullerton K.E., Riley L.W. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N. Engl. J. Med. 2001;345:1007–1013. doi: 10.1056/NEJMoa011265. PubMed DOI
Johnson J.R., Magistro G., Clabots C., Stephen P., Amee M., Paul T., Sören S. Contribution of yersiniabactin to the virulence of an Escherichia coli sequence type 69 (“clonal group A”) cystitis isolate in murine models of urinary tract infection and sepsis. Microb. Pathog. 2018;120:128–131. doi: 10.1016/j.micpath.2018.04.048. PubMed DOI
Riley L.W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 2014;20:380–390. doi: 10.1111/1469-0691.12646. PubMed DOI
Alghoribi M.F., Gibreel T.M., Dodgson A.R., Beatson S.A., Upton M. Galleria mellonella infection model demonstrates high lethality of ST69 and ST127 uropathogenic E. coli. PLoS ONE. 2014;9:e101547. doi: 10.1371/journal.pone.0101547. PubMed DOI PMC
Giacobbe D.R., Del Bono V., Coppo E., Marchese A., Viscoli C. Emergence of a KPC-3-Producing Escherichia coli ST69 as a Cause of Bloodstream Infections in Italy. Microb. Drug Resist. 2015;21:342–344. doi: 10.1089/mdr.2014.0230. PubMed DOI
Abd E.I., Ghany M., Sharaf H., Al-Agamy M.H., Shibl A., Hill-Cawthorne G.A., Hong P.Y. Genomic characterization of NDM-1 and 5, and OXA-181 carbapenemases in uropathogenic Escherichia coli isolates from Riyadh, Saudi Arabia. PLoS ONE. 2018;13:e0201613. doi: 10.1371/journal.pone.0201613. PubMed DOI PMC
Hammad A.M., Hoffmann M., Gonzalez-Escalona N., Nasser H.A., Yao K., Koenig S., Allué-Guardia A., Eppinger M. Genomic features of colistin resistant Escherichia coli ST69 strain harboring mcr-1 on IncHI2 plasmid from raw milk cheese in Egypt. Infect. Genet. Evol. 2019;73:126–131. doi: 10.1016/j.meegid.2019.04.021. PubMed DOI
Fibke C.D., Croxen M.A., Geum H.M., Glass M., Wong E., Avery B.P., Daignault D., Mulvey M.R., Reid-Smith R.J., Parmley E.J., et al. Genomic Epidemiology of Major Extraintestinal Pathogenic Escherichia coli Lineages Causing Urinary Tract Infections in Young Women Across Canada. Open Forum. Infect. Dis. 2019;6:ofz431. doi: 10.1093/ofid/ofz431. PubMed DOI PMC
Boll E.J., Overballe-Petersen S., Hasman H., Roer L., Ng K., Scheutz F., Hammerum A.M., Dungu A., Hansen F., Johannesen T.B., et al. Emergence of Enteroaggregative Escherichia coli within the ST131 Lineage as a Cause of Extraintestinal Infections. mBio. 2020;11:e00353-20. doi: 10.1128/mBio.00353-20. PubMed DOI PMC
Loconsole D., Accogli M., De Robertis A.L., Capozzo L., Bianco A., Morea A., Mallamaci R., Quarto M., Parisi A., Chironna M. Emerging high-risk ST101 and ST307 carbapenem-resistant Klebsiella pneumoniae clones from bloodstream infections in Southern Italy. Ann. Clin. Microbiol. Antimicrob. 2020;19:24. doi: 10.1186/s12941-020-00366-y. PubMed DOI PMC
Flores C., Bianco K., de Filippis I., Clementino M.M., Romão C.M.C. Genetic Relatedness of NDM-Producing Klebsiella pneumoniae Co-occurring VIM, KPC, and OXA-48 Enzymes from Surveillance Cultures from an Intensive Care Unit. Microb. Drug Resist. 2020 doi: 10.1089/mdr.2019.0483. PubMed DOI
Caltagirone M., Bitar I., Piazza A., Spalla M., Nucleo E., Navarra A., Migliavacca R. Detection of an IncA/C plasmid encoding VIM-4 and CMY-4 β-lactamases in Klebsiella oxytoca and Citrobacter koseri from an inpatient in a cardiac rehabilitation unit. New Microbiol. 2015;38:387–392. PubMed
Johnson T.J., Lang K.S. IncA/C plasmids: An emerging threat to human and animal health? Mob. Genet. Elem. 2012;2:55–58. doi: 10.4161/mge.19626. PubMed DOI PMC
Genomic Characterization of VIM and MCR Co-Producers: The First Two Clinical Cases, in Italy