Experiments for correlating quaternary carbons in RNA bases
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15243179
DOI
10.1023/b:jnmr.0000034358.12599.d1
PII: 5379397
Knihovny.cz E-zdroje
- MeSH
- magnetická rezonanční spektroskopie metody MeSH
- puriny chemie MeSH
- pyrimidiny chemie MeSH
- RNA chemie MeSH
- uhlík chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- puriny MeSH
- pyrimidiny MeSH
- RNA MeSH
- uhlík MeSH
The paper presents a set of triple-resonance two-dimensional experiments for correlating all quaternary carbons in RNA bases to one or more of the base protons. The experiments make use of either three-bond proton-carbon couplings and one selective INEPT step (the long-range selective HSQC experiment) to transfer the magnetization between a proton and the carbon of interest and back, or they rely on one- and/or two-bond heteronuclear (the H(CN)C and H(N)C experiments) or carbon-carbon (the H(C)C experiment) couplings and multiple INEPT transfer steps. The effect of the large one-bond carbon-carbon coupling in t(1) is removed by a constant time evolution or by a selective refocusing. The performance of the proposed approach is demonstrated on a 0.5 mM 25-mer RNA. The results show that the experiments are applicable to samples containing agents for weak molecular alignment. The design of the correlation experiments has been supported by ab initio calculations of scalar spin-spin couplings in the free bases and the AU and GC base pairs. The ab initio data reveal surprisingly high values of guanine (2)J(N1C5) and uracil (2)J(N3C5) couplings that are in a qualitative agreement with the experimental data. The sensitivity of the spin-spin couplings to base pairing as well as the agreement with the experiment depend strongly on the type of nuclei involved and the number of bonds separating them.
Zobrazit více v PubMed
J Biomol NMR. 1995 Sep;6(2):135-40 PubMed
J Magn Reson. 1999 Aug;139(2):430-3 PubMed
J Biomol NMR. 2000 Apr;16(4):291-302 PubMed
J Biomol NMR. 1994 Jan;4(1):129-33 PubMed
J Biomol NMR. 2001 Jun;20(2):167-72 PubMed
J Biomol NMR. 2003 May;26(1):79-83 PubMed
J Biomol NMR. 2001 Oct;21(2):153-60 PubMed
J Magn Reson B. 1996 Jul;112(1):75-8 PubMed
J Biomol NMR. 2001 Jun;20(2):173-6 PubMed
J Biomol NMR. 1997 Dec;10(4):337-50 PubMed
J Biomol NMR. 1993 Nov;3(6):721-7 PubMed
J Am Chem Soc. 2001 Apr 11;123(14):3395-6 PubMed
J Biomol NMR. 2003 Aug;26(4):297-315 PubMed
J Biomol NMR. 2002 Jan;22(1):9-20 PubMed
J Biomol NMR. 2001 Dec;21(4):289-306 PubMed
J Biomol NMR. 2001 Sep;21(1):11-29 PubMed
J Biomol NMR. 2001 Jul;20(3):275-85 PubMed
J Biomol NMR. 1992 Nov;2(6):661-5 PubMed
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11333-8 PubMed
Phys Rev B Condens Matter. 1986 Jun 15;33(12):8800-8802 PubMed
Phys Rev B Condens Matter. 1986 Jun 15;33(12):8822-8824 PubMed
J Biomol NMR. 1994 Jan;4(1):117-22 PubMed
J Magn Reson. 2001 Dec;153(2):223-6 PubMed
J Biomol NMR. 2002 Sep;24(1):1-14 PubMed
J Am Chem Soc. 2001 Apr 18;123(15):3617-8 PubMed
J Biomol NMR. 1996 Mar;7(2):153-6 PubMed
Acc Chem Res. 2002 Jan;35(1):1-11 PubMed
J Biomol NMR. 2001 Feb;19(2):141-51 PubMed
Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12366-71 PubMed
J Biomol NMR. 2000 Feb;16(2):175-8 PubMed
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14147-51 PubMed
J Biomol NMR. 2001 Apr;19(4):367-70 PubMed
Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 PubMed
Q Rev Biophys. 1987 Feb;19(1-2):51-82 PubMed
J Am Chem Soc. 2002 Sep 11;124(36):10666-7 PubMed
Phys Rev B Condens Matter. 1986 Nov 15;34(10):7406 PubMed
J Biomol NMR. 1996 Jan;7(1):83-7 PubMed
J Biomol NMR. 2004 Jan;28(1):69-79 PubMed
Loss of loop adenines alters human telomere d[AG3(TTAG3)3] quadruplex folding