Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids
Language English Country Netherlands Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Quantum Theory MeSH
- Magnetics MeSH
- Nuclear Magnetic Resonance, Biomolecular methods MeSH
- Nucleosides chemistry MeSH
- RNA chemical synthesis chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Nucleosides MeSH
- RNA MeSH
Triple resonance HCN and HCNCH experiments are reliable methods of establishing sugar-to-base connectivity in the NMR spectra of isotopicaly labeled oligonucleotides. However, with larger molecules the sensitivity of the experiments is drastically reduced due to relaxation processes. Since the polarization transfer between 13C and 15N nuclei relies on rather small heteronuclear coupling constants (11-12 Hz), the long evolution periods (up to 30-40 ms) in the pulse sequences cannot be avoided. Therefore any effort to enhance sensitivity has to concentrate on manipulating the spin system in such a way that the spin-spin relaxation rates would be minimized. In the present paper we analyze the efficiency of the two known approaches of relaxation rate control, namely the use of multiple-quantum coherence (MQ) and of the relaxation interference between chemical shift anisotropy and dipolar relaxation - TROSY. Both theoretical calculations and experimental results suggest that for the sugar moiety (H1'-C1'-N1/9) the MQ approach is clearly preferable. For the base moiety (H6/8-C6/8-N1/9), however, the TROSY shows results superior to the MQ suppression of the dipole-dipole relaxation at moderate magnetic fields (500 MHz) and the sensitivity improvement becomes dramatically more pronounced at very high fields (800 MHz). The pulse schemes of the triple-resonance HCN experiments with sensitivity optimized performance for unambiguous assignments of intra-residual sugar-to-base connectivities combining both approaches are presented.
See more in PubMed
J Biomol NMR. 1995 Nov;6(3):335-9 PubMed
J Biomol NMR. 1996 May;7(3):251-5 PubMed
J Biomol NMR. 1994 Jan;4(1):129-33 PubMed
Phys Rev B Condens Matter. 1992 Sep 15;46(11):6671-6687 PubMed
J Magn Reson B. 1995 Jan;106(1):89-91 PubMed
J Biomol NMR. 1995 Apr;5(3):315-20 PubMed
J Biomol NMR. 1998 Aug;12(2):345-8 PubMed
J Biomol NMR. 1999 Feb;13(2):139-47 PubMed
J Biomol NMR. 1995 Jan;5(1):82-6 PubMed
J Biomol NMR. 1993 Nov;3(6):721-7 PubMed
J Magn Reson. 1999 Jan;136(1):92-101 PubMed
Biochemistry. 1996 Oct 8;35(40):13250-66 PubMed
Acta Crystallogr B. 1991 Jun 1;47 ( Pt 3):376-83 PubMed
Methods Enzymol. 1994;239:563-96 PubMed
Nucleic Acids Res. 1992 Sep 11;20(17):4515-23 PubMed
J Magn Reson. 1999 Nov;141(1):180-4 PubMed
Phys Rev B Condens Matter. 1992 Jun 15;45(23):13244-13249 PubMed
Nucleic Acids Res. 1992 Sep 11;20(17):4507-13 PubMed
J Biomol NMR. 1996 Mar;7(2):153-6 PubMed
Biochemistry. 1993 Jan 19;32(2):395-400 PubMed
Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12366-71 PubMed
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14147-51 PubMed
Q Rev Biophys. 1987 Feb;19(1-2):51-82 PubMed
J Magn Reson. 1998 Jan;130(1):119-24 PubMed
J Biomol NMR. 1995 Jan;5(1):87-92 PubMed
J Magn Reson. 1998 Aug;133(2):364-7 PubMed
J Biomol NMR. 1995 Dec;6(4):427-32 PubMed
J Biomol NMR. 1996 Jan;7(1):83-7 PubMed
Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13585-90 PubMed
Experiments for correlating quaternary carbons in RNA bases