The inclusion of insect meal from Hermetia illucens larvae in the diet of laying hens (Hy-line Brown) affects the caecal diversity of methanogenic archaea

. 2025 Mar 15 ; 104 (5) : 105037. [epub] 20250315

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40120250
Odkazy

PubMed 40120250
PubMed Central PMC11987624
DOI 10.1016/j.psj.2025.105037
PII: S0032-5791(25)00276-7
Knihovny.cz E-zdroje

The effect of the dietary inclusion of Hermetia illucens larvae meal on the diversity of the methanogenic archaea in the caecum of laying hens (Hy-line Brown) was investigated using molecular methods. A total of 27 hens, selected equally for slaughter from 162 birds which were divided equally into 3 treatment groups including control group C with a diet containing corn-soybean meal and 2 experimental groups, HI25 and HI50, in which 25% and 50% of the soybean meal protein was replaced by the protein from a Hermetia illucens larvae meal, respectively. At 40 weeks of age, the methanogenic community of caecal content of 9 hens per group was analyzed using a 16S rRNA gene clone library. A total of 108 positive clones, 35 from the control group, 44 from the HI25 group and 29 from the HI50 group, were analyzed by Sanger sequencing. Methanomicrobiales, Methanobacteriales and Methanomassiliicoccales were the main orders found in groups C and HI25. Methanomassiliicoccales was absent in the HI50 group, which was dominated by the order Methanobacteriales. At the species level, Methanobrevibacter woesei was the most prevalent species in all three groups regardless of diet. Some species were found exclusively either in the control group (Methanogenic archaeon CH1270) or in the HI25 group (Methanorbis furvi strain Ag1). Methanogenic diversity was significantly lower in the HI50 group compared to the control and HI25 groups and Methanomassiliicoccaceae archaeon DOK was completely suppressed in HI50 group. Our preliminary results indicate that ingestion of Hermetia illucens larvae meal has considerable effect on the methanogenic community, promoting the abundance of Methanobrevibacter woesei and suppressing Methanomassiliicoccaceae archaeon DOK in the caeca of laying hens.

Zobrazit více v PubMed

Ahmed E., Fukuma N., Hanada M., Nishida T. Insects as novel ruminant feed and a potential mitigation strategy for methane emissions. Animals. 2021;11:1–13. PubMed PMC

Anderson I., Ulrich L.E., Lupa B., Susanti D., Porat I., Hooper S.D., Lykidis A., Sieprawska-Lupa M., Dharmarajan L., Goltsman E., Lapidus A., Saunders E., Han C., Land M., Lucas S., Mukhopadhyay B., Whitman W.B., Woese C., Bristow J., Kyrpides N. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens. PLoS One. 2009;4 PubMed PMC

Aruwa C.E., Pillay C., Nyaga M.M., Sabiu S. Poultry gut health – microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J. Anim. Sci. Biotechnol. 2021;12:1–15. PubMed PMC

Aryee G., Luecke S.M., Dahlen C.R., Swanson K.C., Amat S. Holistic View and Novel Perspective on Ruminal and Extra-Gastrointestinal Methanogens in Cattle. Microorganisms. 2023:11. PubMed PMC

Astill J., Dara R.A., Fraser E.D.G., Roberts B., Sharif S. Smart poultry management: Smart sensors, big data, and the internet of things. Comput. Electron. Agric. 2020;170

Atallah E., Mahayri T.M., Fliegerová K.O., Mrázek J., Addeo N.F., Bovera F., Moniello G. The effect of different levels of Hermetia illucens oil inclusion on caecal microbiota of Japanese quails (Coturnix japonica, Gould, 1837) J. Insects Food Feed. 2023;1:1–19. https://brill.com/view/journals/jiff/aop/article-10.1163-23524588-20230052/article-10.1163-23524588-20230052.xml Available at. verified 21 September 2023.

Belhadj Slimen I., Yerou H., Ben Larbi M., M'Hamdi N., Najar T. Insects as an alternative protein source for poultry nutrition: a review. Front. Vet. Sci. 2023:10. PubMed PMC

Benzertiha A., Kierończyk B., Kołodziejski P., Pruszyńska–Oszmałek E., Rawski M., Józefiak D., Józefiak A. Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poult. Sci. 2020;99:196–206. PubMed PMC

Benzertiha A., Rawski M., Józefiak A., K.K, Jankowski J., Józefiak D. Tenebrio molitor and Zophobas morio Full-Fat Meals in Broiler Chicken Diets: Effects on Nutrients Digestibility, Digestive Enzyme Activities, and Cecal Microbiome. Animals. 2019;5:248–253. PubMed PMC

Benzertiha A., Rawski M., Józefiak A., K.K, Jankowski J., Józefiak D. Tenebrio molitor and Zophobas morio Full-Fat Meals in Broiler Chicken Diets: Effects on Nutrients Digestibility, Digestive Enzyme Activities, and Cecal Microbiome. Animals. 2019;5:248–253. PubMed PMC

Biasato I., Ferrocino I., Dabbou S., Evangelista R., Gai F., Gasco L., Cocolin L., Capucchio M.T., Schiavone A. Black soldier fly and gut health in broiler chickens: Insights into the relationship between cecal microbiota and intestinal mucin composition. J. Anim. Sci. Biotechnol. 2020;11:1–12. https://jasbsci.biomedcentral.com/articles/10.1186/s40104-019-0413-y Available at. verified 28 April 2023. PubMed DOI PMC

Bovera F., Loponte R., Pero M.E., Cutrignelli M.I., Calabrò S., Musco N., Vassalotti G., Panettieri V., Lombardi P., Piccolo G., Di Meo C., Siddi G., Fliegerova K., Moniello G. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res. Vet. Sci. 2018;120:86–93. PubMed

Cardenas L.A.C., Clavijo V., Vives M., Reyes A. Bacterial meta-analysis of chicken cecal microbiota. PeerJ. 2021;9:e10571. PubMed PMC

Cisek A.A., Dolka B., Bąk I., Cukrowska B. Microorganisms involved in hydrogen sink in the gastrointestinal tract of chickens. Int. J. Mol. Sci. 2023;24:6674. PubMed PMC

Clavijo V., Flórez M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult. Sci. 2018;97:1006–1021. PubMed PMC

Colombino E., Biasato I., Ferrocino I., Oddon S.B., Caimi C., Gariglio M., Dabbou S., Caramori M., Battisti E., Zanet S., Ferroglio E., Cocolin L., Gasco L., Schiavone A., Capucchio M.T. Effect of insect live larvae as environmental enrichment on poultry gut health: gut mucin composition, microbiota and local immune response evaluation. Animals. 2021;11 PubMed PMC

Elahi U., Xu C.C., Wang J., Lin J., Wu S.G., Zhang H.J., Qi G.H. Insect meal as a feed ingredient for poultry. Anim. Biosci. 2022;35:332–346. PubMed PMC

Farrell, D. 2013. Poultry development review.

Franzo G., Legnardi M., Faustini G., Tucciarone C.M., Cecchinato M. When everything becomes bigger: big data for big poultry production. Animals. (Basel) 2023:13. PubMed PMC

Gilroy R., Ravi A., Getino M., Pursley I., Horton D.L., Alikhan N.F., Baker D., Gharbi K., Hall N., Watson M., Adriaenssens E.M., Foster-Nyarko E., Jarju S., Secka A., Antonio M., Oren A., Chaudhuri R.R., La Ragione R., Hildebrand F., Pallen M.J. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ. 2021;9:1–142. PubMed PMC

Guide. 2016. Hy-line Brown Commercial Line Management Guide BRN. COM.ENG.01-16 Rev.:4–5.

Guindo C.O., Davoust B., Drancourt M., Grine G. Diversity of methanogens in animals’ gut. Microorganisms. 2021;9:1–10. PubMed PMC

Hafez H.M., Attia Y.A. Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the COVID-19 Outbreak. Front. Vet. Sci. 2020;7 PubMed PMC

Huang C., Hernandez C.E., Wall H., Tahamtani F.M., Ivarsson E., Sun L. Live black soldier fly (Hermetia illucens) larvae in feed for laying hens: effects on hen gut microbiota and behavior. Poult. Sci. 2024;103 PubMed PMC

Hutcheson K. A test for comparing diversities based on the Shannon formula. J. Theor. Biol. 1970;29:151–154. PubMed

Jayanegara A., Novandri B., Yantina N., Ridla M. Use of black soldier fly larvae (Hermetia illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study. Vet. World. 2017;10:1439–1446. PubMed PMC

Jayanegara A., Yantina N., Novandri B., Laconi E.B., Nahrowi N., Ridla M. Evaluation of some insects as potential feed ingredients for ruminants: chemical composition, in vitro rumen fermentation and methane emissions. J. Indones. Trop. Anim. Agric. 2017;42:247–254.

Józefiak A., Benzertiha A., Kierończyk B., Łukomska A., Wesołowska I., Rawski M. Improvement of cecal commensal microbiome following the insect additive into chicken diet. Animals. 2020;10:577. https://www.mdpi.com/2076-2615/10/4/577/htm Available at. verified 24 March 2023. PubMed PMC

Józefiak A., Benzertiha A., Kierończyk B., Łukomska A., Wesołowska I., Rawski M. Improvement of cecal commensal microbiome following the insect additive into chicken diet. Animals. 2020;10:577. PubMed PMC

Józefiak A., Kierończyk B., Rawski M., Mazurkiewicz J., Benzertiha A., Gobbi P., Nogales-Mérida S., Świątkiewicz S., Józefiak D. Full-fat insect meals as feed additive – the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J. Anim. Feed Sci. 2018;27:131–139.

Kawasaki K., Hashimoto Y., Hori A., Kawasaki T., Hirayasu H., Iwase S.I., Hashizume A., Ido A., Miura C., Miura T., Nakamura S., Seyama T., Matsumoto Y., Kasai K., Fujitani Y. Evaluation of Black Soldier Fly (Hermetia illucens) Larvae and Pre-Pupae Raised on Household Organic Waste, as Potential Ingredients for Poultry Feed. Animals. 2019;9 2019Page 98 9:98. PubMed PMC

Kim H.J., Kim H.S., Yun Y.S., Shin H., Do Lee W., Son J., Hong E.C., Jeon I.S., Kang H.K. Microbiome Changes in Layer Pullets Reared in Floor Pens along the Growth Period. Life. 2023;13 PubMed PMC

Kohl K.D. Diversity and function of the avian gut microbiota. J. Comp. Physiol. B. 2012;182:591–602. PubMed

Li Z., Wang X., Zhang T., Si H., Xu C., Wright A.D.G., Li G. Heterogeneous development of methanogens and the correlation with bacteria in the rumen and cecum of sika deer (Cervus nippon) during early life suggest different ecology relevance. BMC. Microbiol. 2019;19 PubMed PMC

Liu Y., Whitman W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 2008;1125:171–189. PubMed

Luo Y.H., Wright A.D.G., Li Y.L., Li H., Yang Q.H., Luo L.J., Yang M.X. Diversity of methanogens in the hindgut of captive white rhinoceroses, Ceratotherium simum. BMC. Microbiol. 2013;13:1–8. PubMed PMC

Mackie R.I., Kim H., Kim N.K., Cann I. Hydrogen production and hydrogen utilization in the rumen: key to mitigating enteric methane production. Anim. Biosci. 2024;37:323–336. PubMed PMC

Magdelaine P. Improving the Safety and Quality of Eggs and Egg Products: Egg Chemistry, Production and Consumption. 2011. Egg and egg product production and consumption in Europe and the rest of the world; pp. 3–16.

Mahayri T.M., Atallah E., Fliegerová K.O., Mrázek J., Piccolo G., Bovera F., Moniello G. Inclusion of Tenebrio molitor larvae meal in the diet of barbary partridge (Alectoris barbara) improves caecal bacterial diversity and composition. Sci. Rep. 2024;14 PubMed PMC

Malematja E., Manyelo T.G., Sebola N.A., Mabelebele M. The role of insects in promoting the health and gut status of poultry. Comp. Clin. Path. 2023;32:501–513.

Miller T.L., Lin C. Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol. 2002;52:819–822. PubMed

Miller T.L., Wolin M.J., Kusel E.A. Isolation and characterization of methanogens from animal feces. Syst. Appl. Microbiol. 1986;8:234–238.

Misiukiewicz A., Gao M., Filipiak W., Cieslak A., Patra A.K., Szumacher-Strabel M. Review: Methanogens and methane production in the digestive systems of nonruminant farm animals. Animal. 2021;15 PubMed

Mottet A., Tempio G. Global poultry production: Current state and future outlook and challenges. Worlds. Poult. Sci. J. 2017;73:245–256.

Murru F., Fliegerova K., Mura E., Mrázek J., Kopečný J., Moniello G. A comparison of methanogens of different regions of the equine hindgut. Anaerobe. 2018;54:104–110. PubMed

Oakley B.B., Lillehoj H.S., Kogut M.H., Kim W.K., Maurer J.J., Pedroso A., Lee M.D., Collett S.R., Johnson T.J., Cox N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 2014;360:100–112. PubMed

Ohkuma M., Noda S., Horikoshi K., Kudo T. Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol. Lett. 1995;134:45–50. PubMed

Pan D., Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut. Microbes. 2014;5:108. PubMed PMC

Phesatcha B., Phesatcha K., Viennaxay B., Matra M., Totakul P., Wanapat M. Cricket Meal (Gryllus bimaculatus) as a Protein Supplement on In Vitro Fermentation Characteristics and Methane Mitigation. Insects. 2022;13:2–11. PubMed PMC

Qu A., Brulc J.M., Wilson M.K., Law B.F., Theoret J.R., Joens L.A., Konkel M.E., Angly F., Dinsdale E.A., Edwards R.A., Nelson K.E., White B.A. Comparative Metagenomics Reveals Host Specific Metavirulomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome. PLoS. One. 2008;3:e2945. PubMed PMC

Rychlik I. Composition and function of chicken gut microbiota. Animals. 2020;10 PubMed PMC

Saengkerdsub S., Anderson R.C., Wilkinson H.H., Kim W.K., Nisbet D.J., Ricke S.C. Identification and quantification of methanogenic archaea in adult chicken ceca. Appl. Environ. Microbiol. 2007;73:353–356. PubMed PMC

Saengkerdsub S., Ricke S.C. Ecology and characteristics of methanogenic archaea in animals and humans. Crit. Rev. Microbiol. 2014;40:97–116. PubMed

Sergeant M.J., Constantinidou C., Cogan T.A., Bedford M.R., Penn C.W., Pallen M.J. Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome. PLoS. One. 2014;9:e91941. PubMed PMC

Shang Y., Kumar S., Oakley B., Kim W.K. Chicken Gut Microbiota: Importance and Detection Technology. Front. Vet. Sci. 2018;5 PubMed PMC

Shannon C.E. A Mathematical Theory of Communication. Bell System Technical Journal. 1948;27:379–423.

Tamura K., Nei M., Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. u S. a. 2004;101:11030–11035. PubMed PMC

Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021;38:3022–3027. PubMed PMC

Tetteh H., Bala A., Fullana-i-Palmer P., Balcells M., Margallo M., Aldaco R., Puig R. Carbon Footprint: The Case of Four Chicken Meat Products Sold on the Spanish Market. Foods. 2022;11:3712. PubMed PMC

Thomas C.M., Desmond-Le Quéméner E., Gribaldo S., Borrel G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat. Commun. 2022;13:1–16. PubMed PMC

Vasilopoulos S., Giannenas I., Mellidou I., Stylianaki I., Antonopoulou E., Tzora A., Skoufos I., Athanassiou C.G., Papadopoulos E., Fortomaris P. Diet replacement with whole insect larvae affects intestinal morphology and microbiota of broiler chickens. Sci. Rep. 2024;14:1–16. PubMed PMC

Vilela J.de S., Kheravii S.K., Bajagai Y.S., Kolakshyapati M., Sibanda T.Z., Wu S.B., Andrew N.R., Ruhnke I. Inclusion of up to 20% Black Soldier Fly larvae meal in broiler chicken diet has a minor effect on caecal microbiota. PeerJ. 2023;11:e15857. PubMed PMC

Volmer J.G., Soo R.M., Evans P.N., Hoedt E.C., Astorga Alsina A.L., Woodcroft B.J., Tyson G.W., Hugenholtz P., Morrison M. Isolation and characterisation of novel Methanocorpusculum species indicates the genus is ancestrally host-associated. BMC. Biol. 2023;21:1–17. PubMed PMC

Wang Y., Qu M., Bi Y., Liu W.J., Ma S., Wan B., Hu Y., Zhu B., Zhang G., Gao G.F. The multi-kingdom microbiome catalog of the chicken gastrointestinal tract. Biosaf. Health. 2024;6:101–115. PubMed PMC

Wang J., Yue H., Wu S., Zhang H., Qi G. Nutritional modulation of health, egg quality and environmental pollution of the layers. Animal Nutrition. 2017;3:91. PubMed PMC

Welte C., Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2014;1837:1130–1147. PubMed

World, P. The latest global poultry developments - Poultry World. Available at https://www.poultryworld.net/(verified 14 October 2024).

Wright A.D.G., Pimm C. Improved strategy for presumptive identification of methanogens using 16S riboprinting. J. Microbiol. Methods. 2003;55:337–349. PubMed

Wright E.S., Yilmaz L.S., Noguera D.R. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 2012;78:717–725. PubMed PMC

Xie F., Zhao S., Zhan X., Zhou Y., Li Y., Zhu W., Pope P.B., Attwood G.T., Jin W., Mao S. Unraveling the phylogenomic diversity of Methanomassiliicoccales and implications for mitigating ruminant methane emissions. Genome Biol. 2024;25:1–31. PubMed PMC

Yan Y., Zhang J., Chen X., Wang Z. Effects of Black Soldier Fly Larvae (Hermetia illucens Larvae) Meal on the Production Performance and Cecal Microbiota of Hens. Vet. Sci. 2023;10:364. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...