Correlation of Autophagosome Formation with Degradation and Endocytosis Arabidopsis Regulator of G-Protein Signaling (RGS1) through ATG8a
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM065989
NIGMS NIH HHS - United States
31170250
National Natural Science Foundation of China
31570256
National Natural Science Foundation of China
PubMed
31461856
PubMed Central
PMC6747245
DOI
10.3390/ijms20174190
PII: ijms20174190
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, BY-2, autophagy, glucose, nutrient starvation, regulator of G signaling protein 1,
- MeSH
- Arabidopsis MeSH
- autofagie MeSH
- autofagozomy metabolismus MeSH
- endocytóza MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny RGS genetika metabolismus MeSH
- proteolýza MeSH
- rodina proteinů Atg8 genetika metabolismus MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ATG8 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- proteiny RGS MeSH
- RGS1 protein, Arabidopsis MeSH Prohlížeč
- rodina proteinů Atg8 MeSH
Damaged or unwanted cellular proteins are degraded by either autophagy or the ubiquitin/proteasome pathway. In Arabidopsis thaliana, sensing of D-glucose is achieved by the heterotrimeric G protein complex and regulator of G-protein signaling 1 (AtRGS1). Here, we showed that starvation increases proteasome-independent AtRGS1 degradation, and it is correlated with increased autophagic flux. RGS1 promoted the production of autophagosomes and autophagic flux; RGS1-yellow fluorescent protein (YFP) was surrounded by vacuolar dye FM4-64 (red fluorescence). RGS1 and autophagosomes co-localized in the root cells of Arabidopsis and BY-2 cells. We demonstrated that the autophagosome marker ATG8a interacts with AtRGS1 and its shorter form with truncation of the seven transmembrane and RGS1 domains in planta. Altogether, our data indicated the correlation of autophagosome formation with degradation and endocytosis of AtRGS1 through ATG8a.
Zobrazit více v PubMed
Limanaqi F., Biagioni F., Busceti C.L., Ryskalin L., Soldani P., Frati A., Fornai F. Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity. Int. J. Mol. Sci. 2019;20:2197. doi: 10.3390/ijms20092197. PubMed DOI PMC
Farré J.-C., Subramani S. Peroxisome turnover by micropexophagy: An autophagy-related process. Trends Cell Biol. 2004;14:515–523. doi: 10.1016/j.tcb.2004.07.014. PubMed DOI
Yan Q., Wang J., Fu Z.Q., Chen W. Endocytosis of AtRGS1 Is Regulated by the Autophagy Pathway after D-Glucose Stimulation. Front. Plant Sci. 2017;8:1229. doi: 10.3389/fpls.2017.01229. PubMed DOI PMC
Kroemer G., Jäättelä M. Lysosomes and autophagy in cell death control. Nat. Rev. Cancer. 2005;5:886. doi: 10.1038/nrc1738. PubMed DOI
Bizargity P., Schröppel B. Autophagy: Basic Principles and Relevance to Transplant Immunity: Autophagy and Transplant Immunity. Am. J. Transplant. 2014;14:1731–1739. doi: 10.1111/ajt.12743. PubMed DOI
Mizushima N., Levine B., Cuervo A.M., Klionsky D.J. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069. doi: 10.1038/nature06639. PubMed DOI PMC
Mehrpour M., Esclatine A., Beau I., Codogno P. Overview of macroautophagy regulation in mammalian cells. Cell Res. 2010;20:748. doi: 10.1038/cr.2010.82. PubMed DOI
Bassham D.C. Plant autophagy—more than a starvation response. Curr. Opin. Plant Biol. 2007;10:587–593. doi: 10.1016/j.pbi.2007.06.006. PubMed DOI
Yang Z., Klionsky D.J. Autophagy in infection and immunity. Springer; Berlin/Heidelberg, Germany: 2009. An overview of the molecular mechanism of autophagy; pp. 1–32. PubMed PMC
Mijaljica D., Prescott M., Devenish R.J. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy. 2011;7:673–682. doi: 10.4161/auto.7.7.14733. PubMed DOI
Orenstein S.J., Cuervo A.M. Proceedings of the Seminars in cell & developmental biology. Elsevier; Amsterdam, The Netherlands: 2010. Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance; pp. 719–726. PubMed PMC
Reumann S., Voitsekhovskaja O., Lillo C. From signal transduction to autophagy of plant cell organelles: Lessons from yeast and mammals and plant-specific features. Protoplasma. 2010;247:233–256. doi: 10.1007/s00709-010-0190-0. PubMed DOI
Bárány I., Berenguer E., Solís M.-T., Pérez-Pérez Y., Santamaría M.E., Crespo J.L., Risueño M.C., Díaz I., Testillano P.S. Autophagy is activated and involved in cell death with participation of cathepsins during stress-induced microspore embryogenesis in barley. J. Exp. Bot. 2018;69:1387–1402. doi: 10.1093/jxb/erx455. PubMed DOI PMC
Rolland F., Moore B., Sheen J. Sugar sensing and signaling in plants. The plant cell. 2002;14:S185–S205. doi: 10.1105/tpc.010455. PubMed DOI PMC
Rolland F., Winderickx J., Thevelein J.M. Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 2001;26:310–317. doi: 10.1016/S0968-0004(01)01805-9. PubMed DOI
Huang J.-P., Tunc-Ozdemir M., Chang Y., Jones A.M. Cooperative control between AtRGS1 and AtHXK1 in a WD40-repeat protein pathway in Arabidopsis thaliana. Front. Plant Sci. 2015;6:851. doi: 10.3389/fpls.2015.00851. PubMed DOI PMC
Johnston C.A., Taylor J.P., Gao Y., Kimple A.J., Grigston J.C., Chen J.-G., Siderovski D.P., Jones A.M., Willard F.S. GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc. Natl. Acad. Sci. USA. 2007;104:17317–17322. doi: 10.1073/pnas.0704751104. PubMed DOI PMC
Jones J.C., Duffy J.W., Machius M., Temple B.R., Dohlman H.G., Jones A.M. The crystal structure of a self-activating G protein α subunit reveals its distinct mechanism of signal initiation. Sci. Signal. 2011;4:ra8. doi: 10.1126/scisignal.2001446. PubMed DOI PMC
Chen J.-G., Willard F.S., Huang J., Liang J., Chasse S.A., Jones A.M., Siderovski D.P. A seven-transmembrane RGS protein that modulates plant cell proliferation. Science. 2003;301:1728–1731. doi: 10.1126/science.1087790. PubMed DOI
Chen J.-G., Jones A.M. Methods in enzymology. Elsevier; Amsterdam, The Netherlands: 2004. AtRGS1 function in Arabidopsis thaliana; pp. 338–350. PubMed
Urano D., Chen J.-G., Botella J.R., Jones A.M. Heterotrimeric G protein signalling in the plant kingdom. Open Biol. 2013;3:120186. doi: 10.1098/rsob.120186. PubMed DOI PMC
Zhong C.-L., Zhang C., Liu J.-Z. Heterotrimeric G protein signaling in plant immunity. J. Exp. Bot. 2018;70:1109–1118. doi: 10.1093/jxb/ery426. PubMed DOI
Thompson A.R., Doelling J.H., Suttangkakul A., Vierstra R.D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 2005;138:2097–2110. doi: 10.1104/pp.105.060673. PubMed DOI PMC
Klionsky D.J., Baehrecke E.H., Brumell J.H., Chu C.T., Codogno P., Cuervo A.M., Debnath J., Deretic V., Elazar Z., Eskelinen E.-L., et al. A comprehensive glossary of autophagy-related molecules and processes. Autophagy. 2011;7:1273–1294. doi: 10.4161/auto.7.11.17661. PubMed DOI PMC
Kim J., Lee H., Lee H.N., Kim S.-H., Shin K.D., Chung T. Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth. Plant Cell. 2013;25:4956–4966. doi: 10.1105/tpc.113.117960. PubMed DOI PMC
Shin K.D., Lee H.N., Chung T. A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy. Mol. Cells. 2014;37:399. doi: 10.14348/molcells.2014.0042. PubMed DOI PMC
Meijer A.J. Autophagy research: Lessons from metabolism. Taylor & Francis. 2009;5:3–5. PubMed
Wang X., Gao Y., Yan Q., Chen W. Salicylic acid promotes autophagy via NPR3 and NPR4 in Arabidopsis senescence and innate immune response. Acta Physiol. Plant. 2016;38:241. doi: 10.1007/s11738-016-2257-9. DOI
Gao Y., Wang X., Ma C., Chen W. EDS1-mediated activation of autophagy regulates Pst DC3000 (AvrRps4)-induced programmed cell death in Arabidopsis. Acta Physiol. Plant. 2016;38:150. doi: 10.1007/s11738-016-2160-4. DOI
Klionsky D.J. For the last time, it is GFP-Atg8, not Atg8-GFP (and the same goes for LC3) Taylor & Francis. 2011;7:1093–1094. PubMed PMC
Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–326. doi: 10.1016/j.cell.2010.01.028. PubMed DOI PMC
Agholme L., Hallbeck M., Benedikz E., Marcusson J., Kagedal K. Amyloid-β secretion, generation, and lysosomal sequestration in response to proteasome inhibition: Involvement of autophagy. J. Alzheimer’s Dis. 2012;31:343–358. doi: 10.3233/JAD-2012-120001. PubMed DOI
Watanabe-Asano T., Kuma A., Mizushima N. Cycloheximide inhibits starvation-induced autophagy through mTORC1 activation. Biochem. and Biophys. Res. Commun. 2014;445:334–339. PubMed
Nocarova E., Fischer L. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression. BMC Plant Biol. 2009;9:44. doi: 10.1186/1471-2229-9-44. PubMed DOI PMC
Hanamata S., Kurusu T., Okada M., Suda A., Kawamura K., Tsukada E., Kuchitsu K. In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells. Plant Signaling Behav. 2013;8:e22510. doi: 10.4161/psb.22510. PubMed DOI PMC
Munafó D.B., Colombo M.I. A novel assay to study autophagy: Regulation of autophagosome vacuole size by amino acid deprivation. J. Cell Sci. 2001;114:3619–3629. PubMed
Liu Y., Schiff M., Czymmek K., Tallóczy Z., Levine B., Dinesh-Kumar S. Autophagy regulates programmed cell death during the plant innate immune response. Cell. 2005;121:567–577. doi: 10.1016/j.cell.2005.03.007. PubMed DOI
Dong J., Chen W. The role of autophagy in chloroplast degradation and chlorophagy in immune defenses during Pst DC3000 (AvrRps4) infection. PLoS ONE. 2013;8:e73091. doi: 10.1371/journal.pone.0073091. PubMed DOI PMC
Yano K., Matsui S., Tsuchiya T., Maeshima M., Kutsuna N., Hasezawa S., Moriyasu Y. Contribution of the plasma membrane and central vacuole in the formation of autolysosomes in cultured tobacco cells. Plant Cell Physiol. 2004;45:951–957. doi: 10.1093/pcp/pch105. PubMed DOI
Journo D., Winter G., Abeliovich H. Monitoring Autophagy in Yeast using FM 4–64 Fluorescence. Methods Enzymol. 2008;451:79–88. PubMed
Oh-ye Y., Inoue Y., Moriyasu Y. Detecting autophagy in Arabidopsis roots by membrane-permeable cysteine protease inhibitor E-64d and endocytosis tracer FM4–64. Plant Signaling Behav. 2011;6:1946–1949. doi: 10.4161/psb.6.12.18297. PubMed DOI PMC
Wang Y., Nishimura M.T., Zhao T., Tang D. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J. 2011;68:74–87. doi: 10.1111/j.1365-313X.2011.04669.x. PubMed DOI
De Vries L., Fischer T., Tronchere H., Brothers G.M., Strockbine B., Siderovski D.P., Farquhar M.G. Activator of G protein signaling 3 is a guanine dissociation inhibitor for Gαi subunits. Proc. Natl. Acad. Sci. USA. 2000;97:14364–14369. doi: 10.1073/pnas.97.26.14364. PubMed DOI PMC
Zheng Y., Brockie P.J., Mellem J.E., Madsen D.M., Maricq A.V. Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron. 1999;24:347–361. doi: 10.1016/S0896-6273(00)80849-1. PubMed DOI
Lee J.-K., Kannarkat G.T., Chung J., Lee H.J., Graham K.L., Tansey M.G. RGS10 deficiency ameliorates the severity of disease in experimental autoimmune encephalomyelitis. J. Neuroinflamm. 2016;13:24. doi: 10.1186/s12974-016-0491-0. PubMed DOI PMC
Xiong Y., Sheen J. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J. Biol. Chem. 2012;287:2836–2842. doi: 10.1074/jbc.M111.300749. PubMed DOI PMC
Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
Urano D., Phan N., Jones J.C., Yang J., Huang J., Grigston J., Taylor J.P., Jones A.M. Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis. Nat. Cell Biol. 2012;14:1079. doi: 10.1038/ncb2568. PubMed DOI PMC
Fu Y., Lim S., Urano D., Tunc-Ozdemir M., Phan N.G., Elston T.C., Jones A.M. Reciprocal encoding of signal intensity and duration in a glucose-sensing circuit. Cell. 2014;156:1084–1095. doi: 10.1016/j.cell.2014.01.013. PubMed DOI PMC
Klopffleisch K., Phan N., Augustin K., Bayne R.S., Booker K.S., Botella J.R., Carpita N.C., Carr T., Chen J.-G., Cooke T.R., et al. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol. Syst. Biol. 2011;7:532. doi: 10.1038/msb.2011.66. PubMed DOI PMC
Grigston J.C., Osuna D., Scheible W.-R., Liu C., Stitt M., Jones A.M. D-glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett. 2008;582:3577–3584. doi: 10.1016/j.febslet.2008.08.038. PubMed DOI PMC
Nagata T., Nemoto Y., Hasezawa S. International Review of Cytology. Volume 132. Elsevier; Amsterdam, The Netherlands: 1992. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants; pp. 1–30.
Hu G., Suo Y., Huang J. A crucial role of the RGS domain in trans-Golgi network export of AtRGS1 in the protein secretory pathway. Mol. Plant. 2013;6:1933–1944. doi: 10.1093/mp/sst109. PubMed DOI
Liu L., Zhang Y., Tang S., Zhao Q., Zhang Z., Zhang H., Dong L., Guo H., Xie Q. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J. 2010;61:893–903. doi: 10.1111/j.1365-313X.2009.04109.x. PubMed DOI