Entropy-based air quality monitoring network optimization using NINP and Bayesian maximum entropy

. 2023 Jul ; 30 (35) : 84110-84125. [epub] 20230624

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37355508
Odkazy

PubMed 37355508
DOI 10.1007/s11356-023-28270-w
PII: 10.1007/s11356-023-28270-w
Knihovny.cz E-zdroje

Effectual air quality monitoring network (AQMN) design plays a prominent role in environmental engineering. An optimal AQMN design should consider stations' mutual information and system uncertainties for effectiveness. This study develops a novel optimization model using a non-dominated sorting genetic algorithm II (NSGA-II). The Bayesian maximum entropy (BME) method generates potential stations as the input of a framework based on the transinformation entropy (TE) method to maximize the coverage and minimize the probability of selecting stations. Also, the fuzzy degree of membership and the nonlinear interval number programming (NINP) approaches are used to survey the uncertainty of the joint information. To obtain the best Pareto optimal solution of the AQMN characterization, a robust ranking technique, called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) approach, is utilized to select the most appropriate AQMN properties. This methodology is applied to Los Angeles, Long Beach, and Anaheim in California, USA. Results suggest using 4, 4, and 5 stations to monitor CO, NO2, and ozone, respectively; however, implementing this recommendation reduces coverage by 3.75, 3.75, and 3 times for CO, NO2, and ozone, respectively. On the positive side, this substantially decreases TE for CO, NO2, and ozone concentrations by 8.25, 5.86, and 4.75 times, respectively.

Zobrazit více v PubMed

Boubrima A, Bechkit W, Rivano H (2019) On the deployment of wireless sensor networks for air quality mapping: optimization models and algorithms. IEEE/ACM Trans Netw 27(4):1629–1642. https://doi.org/10.1109/TNET.2019.2923737 DOI

Brans JP, Vincke P (1985) Note—A preference ranking organisation method: (the PROMETHEE method for multiple criteria decision-making). Manage Sci 31(6):647–656. https://doi.org/10.1287/mnsc.31.6.647 DOI

Chen CH, Liu WL, Chen CH (2006) Development of a multiple objective planning theory and system for sustainable air quality monitoring networks. Sci Total Environ 354(1):1–19. https://doi.org/10.1016/j.scitotenv.2005.08.018 DOI

Chung SY, Venkatramanan S, Elzain HE, Selvam S, Prasanna MV (2019) Supplement of missing data in groundwater-level variations of peak type using geostatistical methods. GIS and Geostatistical Techniques for Groundwater Science. Elsevier 33–41. https://doi.org/10.1016/B978-0-12-815413-7.00004-3

Dong J, Wang B, Wang X, Cao C, Chen S, Du W (2022) Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2022.06.033 DOI

Elkamel A, Fatehifar E, Taheri M, Al-Rashidi MS, Lohi A (2008) A heuristic optimization approach for air quality monitoring network design with the simultaneous consideration of multiple pollutants. J Environ Manag 88(3):507–516. https://doi.org/10.1016/j.jenvman.2007.03.029 DOI

Galán-Madruga D (2021) A methodological framework for improving air quality monitoring network layout. Applications to environment management. J Environ Sci 102:138–147. https://doi.org/10.1016/j.jes.2020.09.009 DOI

Hadj Sassi MS, Fourati LC (2022) Comprehensive survey on air quality monitoring systems based on emerging computing and communication technologies. Comput Netw 209:108904. https://doi.org/10.1016/j.comnet.2022.108904 DOI

Hao Y, Xie S (2018) Optimal redistribution of an urban air quality monitoring network using atmospheric dispersion model and genetic algorithm. Atmos Environ 177:222–233. https://doi.org/10.1016/j.atmosenv.2018.01.011 DOI

Jiang C, Han X, Liu GR, Liu G (2008) A nonlinear interval number programming method for uncertain optimization problems. European Journal of Operational Research 188(1):1–13. https://doi.org/10.1016/j.ejor.2007.03.031 DOI

Kansal A, Khare M, Sharma CS (2011) Air quality modelling study to analyse the impact of the World Bank emission guidelines for thermal power plants in Delhi. Atmos Pollut Res 2(1):99–105. https://doi.org/10.5094/APR.2011.012 DOI

Kao JJ, Hsieh MR (2006) Utilizing multi-objective analysis to determine an air quality monitoring network in an industrial district. Atmos Environ 40(6):1092–1103. https://doi.org/10.1016/j.atmosenv.2005.11.003 DOI

Li M, Wang WL, Wang ZY, Xue Y (2018) Prediction of PM DOI

Li J, Zhang H, Luo Y, Deng X, Grieneisen ML, Yang F, Di B, Zhan Y (2019) Stepwise genetic algorithm for adaptive management: application to air quality monitoring network optimization. Atmos Environ 215:116894. https://doi.org/10.1016/j.atmosenv.2019.116894 DOI

Liu MK, Avrin J, Pollack RI, Behar JV, McElroy JL (1986) Methodology for designing air quality monitoring networks: I. Theoretical aspects. Environ Monit Assess 6(1):1–11. https://doi.org/10.1007/BF00394284 DOI

Lozano A, Usero J, Vanderlinden E, Raez J, Contreras J, Navarrete B (2009) Air quality monitoring network design to control nitrogen dioxide and ozone, applied in Malaga, Spain. Microchem J 93(2):164–172. https://doi.org/10.1016/j.microc.2009.06.005 DOI

Lu WZ, He HD, Dong LY (2011) Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis. Build Environ 46(3):577–583. https://doi.org/10.1016/j.buildenv.2010.09.004 DOI

Modak PM, Lohani BN (1985) Optimization of ambient air quality monitoring networks. Environ Monit Assess 5(1):1–19. https://doi.org/10.1007/BF00396391 DOI

Mofarrah A, Husain T (2010) A holistic approach for optimal design of air quality monitoring network expansion in an urban area. Atmos Environ 44(3):432–440. https://doi.org/10.1016/j.atmosenv.2009.07.045 DOI

Nematollahi B, Hashempour Bakhtiari P, Talebbeydokhti N, Rakhshandehroo GR, Nikoo MR, Gandomi AH (2022) A stochastic conflict resolution optimization model for flood management in detention basins: application of fuzzy graph model. Water 14(5):774. https://doi.org/10.3390/w14050774 DOI

Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156(2):445–455. https://doi.org/10.1016/S0377-2217(03)00020-1 DOI

Pourshahabi S, Talebbeydokhti N, Rakhshandehroo G, Nikoo MR (2018) Spatio-temporal multi-criteria optimization of reservoir water quality monitoring network using value of information and transinformation entropy. Water Resour Manag 32(10):3489–3504. https://doi.org/10.1007/s11269-018-2003-8 DOI

Rathee M, Kumar S, Gandomi AH, Dilip K, Balusamy B, Patan R (2019) Ant colony optimization based quality of service aware energy balancing secure routing algorithm for wireless sensor networks. IEEE Trans Eng Manag 68(1):170–182. https://doi.org/10.1109/TEM.2019.2953889 DOI

Sharma S, Chandra A (2008) Simulation of air quality using an ISCST3 dispersion model. CLEAN-Soil, Air, Water 36(1):118–124. https://doi.org/10.1002/clen.200700036 DOI

Stolz T, Huertas ME, Mendoza A (2020) Assessment of air quality monitoring networks using an ensemble clustering method in the three major metropolitan areas of Mexico. Atmos Pollut Res 11(8):1271–1280. https://doi.org/10.1016/j.apr.2020.05.005 DOI

Sun C, Li VO, Lam JC, Leslie I (2019) Optimal citizen-centric sensor placement for air quality monitoring: a case study of city of Cambridge, the United Kingdom. IEEE Access 7:47390–47400. https://doi.org/10.1109/ACCESS.2019.2909111 DOI

Trujillo-Ventura A, Ellis JH (1991) Multi-objective air pollution monitoring network design. Atmos Environ A Gen Top 25(2):469–479. https://doi.org/10.1016/0960-1686(91)90318-2 DOI

Ülengin F, Topcu YI, Şahin ŞÖ (2001) An integrated decision aid system for Bosphorus water-crossing problem. Eur J Oper Res 134(1):179–192. https://doi.org/10.1016/S0377-2217(00)00247-2 DOI

U.S. EPA (2022). https://www.epa.gov/outdoor-air-quality-data/download-daily-data

Verghese S, Nema AK (2022) Optimal design of air quality monitoring networks: a systematic review. Stoch Env Res Risk Assess 36(10):1–16. https://doi.org/10.1007/s00477-022-02187-1 DOI

Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30:45–67. https://doi.org/10.1007/s10827-010-0262-3 DOI

Wang F, Liu X, Bergquist R, Lv X, Liu Y, Gao F, Li C, Zhang Z (2021) Bayesian maximum entropy-based prediction of the spatiotemporal risk of schistosomiasis in Anhui Province, China. BMC Infect Dis 21(1):1–12. https://doi.org/10.1186/s12879-021-06854-6 DOI

Yazdandoost F, Razavi H, Izadi A (2022) Optimization of agricultural patterns based on virtual water considerations through integrated water resources management modeling. Int J River Basin Manag 20(2):255–263. https://doi.org/10.1080/15715124.2021.1879093 DOI

Zhao L, Zhou Y, Qian Y, Yang P, Zhou L (2022) A novel assessment framework for improving air quality monitoring network layout. J Air Waste Manag Assoc 72(4):346–360. https://doi.org/10.1080/10962247.2022.2027295 DOI

Zoroufchi Benis K, Fatehifar E, Ahmadi J, Rouhi A (2015) Optimal design of air quality monitoring network and its application in an oil refinery plant: an approach to keep health status of workers. Health Promot Perspect 5(4):269. https://doi.org/10.15171/hpp.2015.032 DOI

Zoroufchi Benis K, Fatehifar E, Shafiei S, Keivani Nahr F, Purfarhadi Y (2016) Design of a sensitive air quality monitoring network using an integrated optimization approach. Stoch Env Res Risk Assess 30(3):779–793. https://doi.org/10.1007/s00477-015-1189-z DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...