High resolution parallel sequencing reveals multistrain Campylobacter in broiler chicken flocks testing 'negative' by conventional culture methods: implications for control of Campylobacter infection
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35952602
PubMed Central
PMC9372630
DOI
10.1016/j.psj.2022.102048
PII: S0032-5791(22)00339-X
Knihovny.cz E-zdroje
- Klíčová slova
- broiler, campylobacter, multistrain, parallel sequencing,
- MeSH
- Campylobacter * genetika MeSH
- kampylobakterové infekce * diagnóza mikrobiologie veterinární MeSH
- kur domácí mikrobiologie MeSH
- membránové proteiny MeSH
- nemoci drůbeže * diagnóza mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové proteiny MeSH
Contaminated chicken meat is a major source of human Campylobacteriosis and rates of infection remain high, despite efforts to limit the colonisation of broiler (meat) chicken flocks on farms. Using conventional testing methods of culture or qPCR, Campylobacter is typically detected amongst broiler flocks from 3 wk of age, leading to the assumption that infection is introduced horizontally into chicken rearing houses at this time. In this study, we use parallel sequencing of a fragment of the Campylobacter outer membrane protein, encoded by the porA gene, to test for presence of Campylobacter DNA amongst fresh fecal samples collected from broiler flocks aged 23 to 28 d. Campylobacter DNA was detected in all of the 290 samples tested using the porA target, and in 48% of samples using 16S bacterial profiling, irrespective of whether or not Campylobacter could be detected using conventional qPCR thresholds. A single porAf2 variant was predominant among flocks that would be determined to be Campylobacter 'positive' by conventional means, but a diverse pattern was seen among flocks that were Campylobacter 'negative'. The ability to routinely detect low levels of Campylobacter amongst broiler flocks at a much earlier age than would conventionally be identified requires a re-examination of how and when biosecurity measures are best applied for live birds. In addition, it may be useful to investigate why single Campylobacter variants proliferate in some broiler flocks and not others.
Zobrazit více v PubMed
Anonymous. 2017. Campylobacter data 2008-2017. https://www.gov.uk/government/publications/campylobacter-infection-annual-data/campylobacter-data-2008-to-2017. Accessed Mar. 2022.
Awad W.A., Hess C., Hess M. Re-thinking the chicken-Campylobacter jejuni interaction: a review. Avian Pathol. 2018;47:352–363. PubMed
Best E.L., Powell E.J., Swift C., Grant K.A., Frost J.A. Applicability of a rapid duplex real-time PCR assay for speciation of Campylobacter jejuni and Campylobacter coli directly from culture plates. FEMS Microbiol. Lett. 2003;229:237–241. PubMed
Bloomfield S.J., Midwinter A.C., Biggs P.J., French N.P., Marshall J.C., Hayman D.T.S., Carter P.E., Mather A.E., Fayaz A., Thornley C., Kelly D.J., Benschop J. Genomic adaptations of Campylobacter jejuni to long-term human colonization. Gut Pathog. 2021;13:72. PubMed PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. PubMed PMC
Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I., Huttley G.A., Kelley S.T., Knights D., Koenig J.E., Ley R.E., Lozupone C.A., McDonald D., Muegge B.D., Pirrung M., Reeder J., Sevinsky J.R., Turnbaugh P.J., Walters W.A., Widmann J., Yatsunenko T., Zaneveld J., Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336. PubMed PMC
Cody A.J., Maiden M.J.C., Dingle K.E. Genetic diversity and stability of the porA allele as a genetic marker in human Campylobacter infection. Microbiology. 2009;155:4145–4154. PubMed PMC
Colles F.M., Hedges S.J., Dixon R., Preston S.G., Thornhill P., Barfod K.K., Gebhardt-Henrich S.G., Creach P., Maiden M.C.J., Dawkins M.S., Smith A.L. Parallel sequencing reveals Campylobacter spp in commercial meat chickens less than 8 days old. Appl. Environ. Microbiol. 2021;87:e01060–21. PubMed PMC
Colles F.M., Preston S.G., Barfod K.K., Flammer P.G., Maiden M.C.J., Smith A.L. Parallel sequencing of porA reveals a complex pattern of Campylobacter genotypes that differs between broiler and broiler breeder chickens. Sci. Rep. 2019;9:6204. PubMed PMC
Cox N.A., Richardson L.J., Maurer J.J., Berrang M.E., Fedorka-Cray P.J., Buhr R.J., Byrd J.A., Lee M.D., Hofacre C.L., O'Kane P.M., Lammerding A.M., Clark A.G., Thayer S.G., Doyle M.P. Evidence for horizontal and vertical transmission in Campylobacter passage from hen to her progeny. J. Food Prot. 2012;75:1896–1902. PubMed
European Food Safety Authority Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008. EFSA J. 2010;8:1503–1602.
Evans S.J., Sayers A.R. A longitudinal study of Campylobacter infection of broiler flocks in Great Britain. Prev. Vet. Med. 2000;46:209–223. PubMed
Gebhardt-Henrich S.G., Stratmann A., Dawkins M.S. Groups and individuals: optical flow patterns of broiler chicken flocks are correlated with the behavior of individual birds. Animals (Basel) 2021;11:568. PubMed PMC
Han Z., Willer T., Pielsticker C., Gerzova L., Rychlik I., Rautenschlein S. Differences in host breed and diet influence colonization by Campylobacter jejuni and induction of local immune responses in chicken. Gut Pathog. 2016;8:56. PubMed PMC
Hsieh T.C., M K.H., Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers) Methods Ecol. Evol. 2016;7:1451–1456.
Hunter P.R. Reproducibility and indices of discriminatory power of microbial typing methods. J. Clin. Microbiol. 1990;28:1903–1905. PubMed PMC
Ijaz U.Z., Sivaloganathan L., McKenna A., Richmond A., Kelly C., Linton M., Stratakos A.C., Lavery U., Elmi A., Wren B.W., Dorrell N., Corcionivoschi N., Gundogdu O. Comprehensive longitudinal microbiome analysis of the chicken cecum reveals a shift from competitive to environmental drivers and a window of opportunity for Campylobacter. Front. Microbiol. 2018;9:2452. PubMed PMC
Jolley K.A., Bliss C.M., Bennett J.S., Bratcher H.B., Brehony C., Colles F.M., Wimalarathna H., Harrison O.B., Sheppard S.K., Cody A.J., Maiden M.C.J. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology. 2012;158:1005–1015. PubMed PMC
Jorgensen, F., A. Charlett, C. Swift, N. Corcionivoschi, and N. C. Elviss. 2019. A microbiological survey of Campylobacter contamination in fresh whole UK- produced chilled chicken at retail sale. Accessed July 2022. https://www.food.gov.uk/sites/default/files/media/document/antimicrobial-resistance-in-campylobacter-jejuni-and-campylobacter-coli-from-retail-chilled-chicken-in-the-uk-year-4-2017-18.pdf.
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Pokorna A., Cizek A., Rychlik I. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS One. 2019;14 PubMed PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. PubMed PMC
Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. Accessed July 2022. https://journal.embnet.org/index.php/embnetjournal/article/view/200.
McMurdie P.J., Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. PubMed PMC
Newell D.G., Fearnley C. Sources of Campylobacter colonization in broiler chickens. Appl. Environ. Microbiol. 2003;69:4343–4351. PubMed PMC
Rawson T., Paton R.S., Colles F.M., Maiden M.C.J., Dawkins M.S., Bonsall M.B. A mathematical modeling approach to uncover factors influencing the spread of Campylobacter in a flock of broiler-breeder chickens. Front. Microbiol. 2020;11 PubMed PMC
Rushton S.P., Humphrey T.J., Shirley M.D., Bull S., Jorgensen F. Campylobacter in housed broiler chickens: a longitudinal study of risk factors. Epidemiol. Infect. 2009;137:1099–1110. PubMed
Rychlik I. Composition and function of chicken gut microbiota. Animals (Basel) 2020;10:103. PubMed PMC
Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425. PubMed
Shannon C.E. A mathematical theory of communication. AT&T Tech. J. 1948;27:379–423.
Sheppard S.K., Colles F., Richardson J., Cody A.J., Elson R., Lawson A., Brick G., Meldrum R., Little C.L., Owen R.J., Maiden M.C., McCarthy N.D. Host association of Campylobacter genotypes transcends geographic variation. Appl. Environ. Microbiol. 2010;76:5269–5277. PubMed PMC
Sheppard S.K., Dallas J.F., Strachan N.J., MacRae M., McCarthy N.D., Wilson D.J., Gormley F.J., Falush D., Ogden I.D., Maiden M.C., Forbes K.J. Campylobacter genotyping to determine the source of human infection. Clin. Infect. Dis. 2009;48:1072–1078. PubMed PMC
Wickham H. Springer-Verlag; New York, NY: 2016. ggplot2: Elegant Graphics for Data Analysis.