High resolution parallel sequencing reveals multistrain Campylobacter in broiler chicken flocks testing 'negative' by conventional culture methods: implications for control of Campylobacter infection

. 2022 Oct ; 101 (10) : 102048. [epub] 20220709

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35952602
Odkazy

PubMed 35952602
PubMed Central PMC9372630
DOI 10.1016/j.psj.2022.102048
PII: S0032-5791(22)00339-X
Knihovny.cz E-zdroje

Contaminated chicken meat is a major source of human Campylobacteriosis and rates of infection remain high, despite efforts to limit the colonisation of broiler (meat) chicken flocks on farms. Using conventional testing methods of culture or qPCR, Campylobacter is typically detected amongst broiler flocks from 3 wk of age, leading to the assumption that infection is introduced horizontally into chicken rearing houses at this time. In this study, we use parallel sequencing of a fragment of the Campylobacter outer membrane protein, encoded by the porA gene, to test for presence of Campylobacter DNA amongst fresh fecal samples collected from broiler flocks aged 23 to 28 d. Campylobacter DNA was detected in all of the 290 samples tested using the porA target, and in 48% of samples using 16S bacterial profiling, irrespective of whether or not Campylobacter could be detected using conventional qPCR thresholds. A single porAf2 variant was predominant among flocks that would be determined to be Campylobacter 'positive' by conventional means, but a diverse pattern was seen among flocks that were Campylobacter 'negative'. The ability to routinely detect low levels of Campylobacter amongst broiler flocks at a much earlier age than would conventionally be identified requires a re-examination of how and when biosecurity measures are best applied for live birds. In addition, it may be useful to investigate why single Campylobacter variants proliferate in some broiler flocks and not others.

Zobrazit více v PubMed

Anonymous. 2017. Campylobacter data 2008-2017. https://www.gov.uk/government/publications/campylobacter-infection-annual-data/campylobacter-data-2008-to-2017. Accessed Mar. 2022.

Awad W.A., Hess C., Hess M. Re-thinking the chicken-Campylobacter jejuni interaction: a review. Avian Pathol. 2018;47:352–363. PubMed

Best E.L., Powell E.J., Swift C., Grant K.A., Frost J.A. Applicability of a rapid duplex real-time PCR assay for speciation of Campylobacter jejuni and Campylobacter coli directly from culture plates. FEMS Microbiol. Lett. 2003;229:237–241. PubMed

Bloomfield S.J., Midwinter A.C., Biggs P.J., French N.P., Marshall J.C., Hayman D.T.S., Carter P.E., Mather A.E., Fayaz A., Thornley C., Kelly D.J., Benschop J. Genomic adaptations of Campylobacter jejuni to long-term human colonization. Gut Pathog. 2021;13:72. PubMed PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC

Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. PubMed PMC

Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I., Huttley G.A., Kelley S.T., Knights D., Koenig J.E., Ley R.E., Lozupone C.A., McDonald D., Muegge B.D., Pirrung M., Reeder J., Sevinsky J.R., Turnbaugh P.J., Walters W.A., Widmann J., Yatsunenko T., Zaneveld J., Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336. PubMed PMC

Cody A.J., Maiden M.J.C., Dingle K.E. Genetic diversity and stability of the porA allele as a genetic marker in human Campylobacter infection. Microbiology. 2009;155:4145–4154. PubMed PMC

Colles F.M., Hedges S.J., Dixon R., Preston S.G., Thornhill P., Barfod K.K., Gebhardt-Henrich S.G., Creach P., Maiden M.C.J., Dawkins M.S., Smith A.L. Parallel sequencing reveals Campylobacter spp in commercial meat chickens less than 8 days old. Appl. Environ. Microbiol. 2021;87:e01060–21. PubMed PMC

Colles F.M., Preston S.G., Barfod K.K., Flammer P.G., Maiden M.C.J., Smith A.L. Parallel sequencing of porA reveals a complex pattern of Campylobacter genotypes that differs between broiler and broiler breeder chickens. Sci. Rep. 2019;9:6204. PubMed PMC

Cox N.A., Richardson L.J., Maurer J.J., Berrang M.E., Fedorka-Cray P.J., Buhr R.J., Byrd J.A., Lee M.D., Hofacre C.L., O'Kane P.M., Lammerding A.M., Clark A.G., Thayer S.G., Doyle M.P. Evidence for horizontal and vertical transmission in Campylobacter passage from hen to her progeny. J. Food Prot. 2012;75:1896–1902. PubMed

European Food Safety Authority Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008. EFSA J. 2010;8:1503–1602.

Evans S.J., Sayers A.R. A longitudinal study of Campylobacter infection of broiler flocks in Great Britain. Prev. Vet. Med. 2000;46:209–223. PubMed

Gebhardt-Henrich S.G., Stratmann A., Dawkins M.S. Groups and individuals: optical flow patterns of broiler chicken flocks are correlated with the behavior of individual birds. Animals (Basel) 2021;11:568. PubMed PMC

Han Z., Willer T., Pielsticker C., Gerzova L., Rychlik I., Rautenschlein S. Differences in host breed and diet influence colonization by Campylobacter jejuni and induction of local immune responses in chicken. Gut Pathog. 2016;8:56. PubMed PMC

Hsieh T.C., M K.H., Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers) Methods Ecol. Evol. 2016;7:1451–1456.

Hunter P.R. Reproducibility and indices of discriminatory power of microbial typing methods. J. Clin. Microbiol. 1990;28:1903–1905. PubMed PMC

Ijaz U.Z., Sivaloganathan L., McKenna A., Richmond A., Kelly C., Linton M., Stratakos A.C., Lavery U., Elmi A., Wren B.W., Dorrell N., Corcionivoschi N., Gundogdu O. Comprehensive longitudinal microbiome analysis of the chicken cecum reveals a shift from competitive to environmental drivers and a window of opportunity for Campylobacter. Front. Microbiol. 2018;9:2452. PubMed PMC

Jolley K.A., Bliss C.M., Bennett J.S., Bratcher H.B., Brehony C., Colles F.M., Wimalarathna H., Harrison O.B., Sheppard S.K., Cody A.J., Maiden M.C.J. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology. 2012;158:1005–1015. PubMed PMC

Jorgensen, F., A. Charlett, C. Swift, N. Corcionivoschi, and N. C. Elviss. 2019. A microbiological survey of Campylobacter contamination in fresh whole UK- produced chilled chicken at retail sale. Accessed July 2022. https://www.food.gov.uk/sites/default/files/media/document/antimicrobial-resistance-in-campylobacter-jejuni-and-campylobacter-coli-from-retail-chilled-chicken-in-the-uk-year-4-2017-18.pdf.

Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Pokorna A., Cizek A., Rychlik I. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS One. 2019;14 PubMed PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. PubMed PMC

Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. Accessed July 2022. https://journal.embnet.org/index.php/embnetjournal/article/view/200.

McMurdie P.J., Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. PubMed PMC

Newell D.G., Fearnley C. Sources of Campylobacter colonization in broiler chickens. Appl. Environ. Microbiol. 2003;69:4343–4351. PubMed PMC

Rawson T., Paton R.S., Colles F.M., Maiden M.C.J., Dawkins M.S., Bonsall M.B. A mathematical modeling approach to uncover factors influencing the spread of Campylobacter in a flock of broiler-breeder chickens. Front. Microbiol. 2020;11 PubMed PMC

Rushton S.P., Humphrey T.J., Shirley M.D., Bull S., Jorgensen F. Campylobacter in housed broiler chickens: a longitudinal study of risk factors. Epidemiol. Infect. 2009;137:1099–1110. PubMed

Rychlik I. Composition and function of chicken gut microbiota. Animals (Basel) 2020;10:103. PubMed PMC

Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425. PubMed

Shannon C.E. A mathematical theory of communication. AT&T Tech. J. 1948;27:379–423.

Sheppard S.K., Colles F., Richardson J., Cody A.J., Elson R., Lawson A., Brick G., Meldrum R., Little C.L., Owen R.J., Maiden M.C., McCarthy N.D. Host association of Campylobacter genotypes transcends geographic variation. Appl. Environ. Microbiol. 2010;76:5269–5277. PubMed PMC

Sheppard S.K., Dallas J.F., Strachan N.J., MacRae M., McCarthy N.D., Wilson D.J., Gormley F.J., Falush D., Ogden I.D., Maiden M.C., Forbes K.J. Campylobacter genotyping to determine the source of human infection. Clin. Infect. Dis. 2009;48:1072–1078. PubMed PMC

Wickham H. Springer-Verlag; New York, NY: 2016. ggplot2: Elegant Graphics for Data Analysis.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...