The Inclusion of Hermetia Illucens Larvae Meal in the Diet of Laying Hens (Hy-Line Brown) Affects the Caecal Bacterial Composition and Diversity
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Fondazione di Sardegna
Italy - Italy
FDS2223MONIELLO
CUP J83C22000160007
University of Sassari
Fondo di Ateneo per la Ricerca
PubMed
41117401
PubMed Central
PMC12538631
DOI
10.1002/vms3.70650
Knihovny.cz E-zdroje
- Klíčová slova
- black soldier fly, insect meal, intestinal microbiota, laying hens,
- MeSH
- Bacteria klasifikace genetika MeSH
- cékum * mikrobiologie MeSH
- dieta * veterinární MeSH
- Diptera * chemie MeSH
- krmivo pro zvířata * analýza MeSH
- kur domácí * mikrobiologie MeSH
- larva chemie MeSH
- RNA ribozomální 16S analýza MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
BACKGROUND: The poultry industry is increasingly looking for sustainable feed ingredients which support animal productivity. Insects, such as the larvae of Hermetia illucens, represent a promising alternative protein source that has a positive effect on gut health. AIM: The aim of this study is to evaluate the effects of a partial replacement of soybean meal with H. illucens larvae meal on the caecal microbiota of laying hens. METHODOLOGY: A total of 162 hens were divided equally into three treatment groups: a control group (C) with a diet containing corn-soybean meal and two treatment groups (HI25, HI50) in which 25% and 50% of the soybean meal protein was replaced by H. illucens larvae meal protein. At 40 weeks of age, 30 animals (10 per group) were slaughtered and the bacterial community of the caecal content was analysed by high-throughput sequencing using the V4-V5 region of the 16S rRNA gene. The DNA was extracted using the PowerSoil DNA Kit, the library preparation was performed using the NEBNext Fast DNA Library Prep Set kit and sequencing was performed using the Ion Torrent PGM. The bacterial diversity was assessed by alpha and beta diversity indices, and the differential abundance of taxa was determined using LEfSe analysis. RESULTS: Firmicutes and Bacteroidetes were the dominant phylum in all groups. Alpha diversity indices showed no significant differences between diets, however, beta diversity measures showed statistical dissimilarities between the three studied groups. Several beneficial genera, including Alistipes, Christensenellaceae R-7 group, Parabacteroides, Butyricimonas and Parasutterella, were enriched in the HI50 group, while Lactobacillus, Bifidobacterium, Blautia and the opportunistic pathogen Enterococcus were reduced. CONCLUSION: The consumption of H. illucens larvae meal showed beneficial effect on the microbiota of the caecum of laying hens, with 50% replacement showing the strongest positive effects, suggesting that this is the most effective amount under the given conditions. Further research should explore microbial functions and long-term impacts, and validate the optimal levels of insect meal inclusion.
Department of Veterinary Medicine and Animal Production University of Napoli Federico 2 Napoli Italy
Department of Veterinary Medicine University of Sassari Sassari Italy
Zobrazit více v PubMed
Adhikari, B. , Jun S. R., Kwon Y. M., Kiess A. S., and Adhikari P.. 2020. “Effects of Housing Types on Cecal Microbiota of Two Different Strains of Laying Hens During the Late Production Phase.” Frontiers in Veterinary Science 7: 331. 10.3389/FVETS.2020.00331/BIBTEX. PubMed DOI PMC
Alagawany, M. , Elnesr S. S., Farag M. R., et al. 2021. “Potential Role of Important Nutraceuticals in Poultry Performance and Health—A Comprehensive Review.” Research in Veterinary Science 137: 9–29. 10.1016/j.rvsc.2021.04.009. PubMed DOI
Alzahrani, O. M. , Fayez M., Alswat A. S., et al. 2022. “Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species From Small Backyard Chicken Flocks.” Antibiotics 11, no. 3: 380. 10.3390/ANTIBIOTICS11030380. PubMed DOI PMC
Aruwa, C. E. , and Sabiu S.. 2024. “Interplay of Poultry‐Microbiome Interactions‐Influencing Factors and Microbes in Poultry Infections and Metabolic Disorders.” British Poultry Science 65, no. 5: 523–537. 10.1080/00071668.2024.2356666. PubMed DOI
Atallah, E. , Mahayri T. M., Fliegerová K. O., et al. 2023. “The Effect of Different Levels of DOI
Atallah, E. , Mahayri T. M., Mrázek J., et al. 2025. “Dietary Inclusion of PubMed PMC
Attia, Y. A. , Bovera F., Asiry K. A., Alqurashi S., and Alrefaei M. S.. 2023. “Fish and Black Soldier Fly Meals as Partial Replacements for Soybean Meal Can Affect Sustainability of Productive Performance, Blood Constituents, Gut Microbiota, and Nutrient Excretion of Broiler Chickens.” Animals 13, no. 17: 2759. 10.3390/ANI13172759. PubMed DOI PMC
Barragan‐Fonseca, K. B. , Dicke M., and van Loon J. J. A.. 2017. “Nutritional Value of the Black Soldier Fly ( DOI
Biasato, I. , Ferrocino I., Dabbou S., et al. 2020. “Black Soldier Fly and Gut Health in Broiler Chickens: Insights Into the Relationship Between Cecal Microbiota and Intestinal Mucin Composition.” Journal of Animal Science and Biotechnology 11, no. 1: 11. 10.1186/s40104-019-0413-y. PubMed DOI PMC
Birkl, P. , Bharwani A., Kjaer J. B., et al. 2018. “Differences in Cecal Microbiome of Selected High and Low Feather‐Pecking Laying Hens.” Poultry Science 97, no. 9: 3009. 10.3382/PS/PEY167. PubMed DOI PMC
Bjerrum, L. , Engberg R. M., Leser T. D., Jensen B. B., Finster K., and Pedersen K.. 2006. “Microbial Community Composition of the Ileum and Cecum of Broiler Chickens as Revealed by Molecular and Culture‐Based Techniques.” Poultry Science 85, no. 7: 1151–1164. 10.1093/PS/85.7.1151. PubMed DOI
Bolyen, E. , Rideout J. R., Dillon M. R., et al. 2019. “Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2, 37.” Nature Biotechnology 37, no. 8: 852857. 10.1038/s41587-019-0209-9. PubMed DOI PMC
Borrelli, L. , Coretti L., Dipineto L., et al. 2017. “Insect‐Based Diet, a Promising Nutritional Source, Modulates Gut Microbiota Composition and SCFAs Production in Laying Hens.” Scientific Reports 7, no. 1: 16269. 10.1038/s41598-017-16560-6. PubMed DOI PMC
Bovera, F. , Loponte R., Pero M. E., et al. 2018. “Laying Performance, Blood Profiles, Nutrient Digestibility and Inner Organs Traits of Hens Fed an Insect Meal From PubMed DOI
Callahan, B. J. , McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., and Holmes S. P.. 2016. “DADA2: High‐Resolution Sample Inference From Illumina Amplicon Data.” Nature Methods 13, no. 7: 581–583. 10.1038/nmeth.3869. PubMed DOI PMC
Cardenas, L. A. C. , Clavijo V., Vives M., and Reyes A.. 2021. “Bacterial Meta‐Analysis of Chicken Cecal Microbiota.” PeerJ 9: e10571. 10.7717/PEERJ.10571/SUPP-10. PubMed DOI PMC
Chang, T. , Ngo J., Vargas J. I., et al. 2022. “Research Note: Orange Corn Altered the Cecal Microbiome in Laying Hens.” Poultry Science 101, no. 3: 101685. 10.1016/J.PSJ.2021.101685. PubMed DOI PMC
Chen, F. , Wang Y., Wang K., et al. 2023. “Effects of PubMed DOI PMC
Clavel, T. , Lepage P., and Charrier C.. 2014. “The Family Coriobacteriaceae.” In The Prokaryotes: Actinobacteria, edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., and Thompson F., 201–238. Springer. 10.1007/978-3-642-30138-4_343. DOI
Colombino, E. , Biasato I., Ferrocino I., et al. 2021. “Effect of Insect Live Larvae as Environmental Enrichment on Poultry Gut Health: Gut Mucin Composition, Microbiota and Local Immune Response Evaluation.” Animals 11, no. 10: 2819. PubMed PMC
Cullere, M. , Tasoniero G., Giaccone V., et al. 2016. “Black Soldier Fly as Dietary Protein Source for Broiler Quails: Apparent Digestibility, Excreta Microbial Load, Feed Choice, Performance, Carcass and Meat Traits.” Animal 10, no. 12: 1923–1930. 10.1017/S1751731116001270. PubMed DOI
Dahiru, S. J. , Azhar B. K., and Asmara B. S.. 2016. “Performance of Spring Chicken Fed Different Inclusion Levels of Black Soldier Fly Larvae Meal.” Entomology, Ornithology & Herpetology: Current Research 05, no. 04: 185–189. 10.4172/2161-0983.1000185. DOI
Dai, D. , Qi G.‐H., Wang J., Zhang H.‐J., Qiu K., and Wu S.‐G.. 2022. “Intestinal Microbiota of Layer Hens and Its Association With Egg Quality and Safety.” Poultry Science 101, no. 9: 102008. 10.1016/j.psj.2022.102008. PubMed DOI PMC
Dai, D. , Wu S.‐G., Zhang H.‐J., Qi G.‐H., and Wang J.. 2020. “Dynamic Alterations in Early Intestinal Development, Microbiota and Metabolome Induced by In Ovo Feeding of PubMed DOI PMC
Daniel, H. 2022. “Diet and Gut Microbiome and the “Chicken or Egg” Problem.” Frontiers in Nutrition 8: 1335. 10.3389/FNUT.2021.828630/BIBTEX. PubMed DOI PMC
de Souza Vilela, J. , Andronicos N. M., Kolakshyapati M., et al. 2021. “Black Soldier Fly Larvae in Broiler Diets Improve Broiler Performance and Modulate the Immune System.” Animal Nutrition 7, no. 3: 695–706. 10.1016/j.aninu.2020.08.014. PubMed DOI PMC
du Sert, N. P. , Hurst V., Ahluwalia A., et al. 2020. “The Arrive Guidelines 2.0: Updated Guidelines for Reporting Animal Research.” PLoS Biology 18, no. 7: e3000410. 10.1371/journal.pbio.3000410. PubMed DOI PMC
Elahi, U. , Xu C. C., Wang J., et al. 2022. “Insect Meal as a Feed Ingredient for Poultry.” Animal Bioscience 35, no. 2: 332–346. 10.5713/ab.21.0435. PubMed DOI PMC
El‐Hack, A. , Shafi M. E., Alghamdi W. Y., et al. 2020. “Black Soldier Fly ( DOI
Elling‐Staats, M. L. , Gilbert M. S., Smidt H., and Kwakkel R. P.. 2022. “Caecal Protein Fermentation in Broilers: A Review.” World's Poultry Science Journal 78, no. 1: 103–123. 10.1080/00439339.2022.2003170. DOI
El‐Sabrout, K. , Aggag S., and Mishra B.. 2022. “Advanced Practical Strategies to Enhance Table Egg Production.” Scientifica 2022: 1393392. 10.1155/2022/1393392. PubMed DOI PMC
FAO . 2022. “Gateway to Poultry Production and Products.” https://www.fao.org/poultry‐production‐products/products‐processing/poultry‐in‐human‐nutrition.
Ferronato, N. , Paoli R., Romagnoli F., Tettamanti G., Bruno D., and Torretta V.. 2024. “Environmental Impact Scenarios of Organic Fraction Municipal Solid Waste Treatment With Black Soldier Fly Larvae Based on a Life Cycle Assessment.” Environmental Science and Pollution Research 31, no. 12: 17651–17669. 10.1007/s11356-023-27140-9. PubMed DOI PMC
Fliegerova, K. , Tapio I., Bonin A., et al. 2014. “Effect of DNA Extraction and Sample Preservation Method on Rumen Bacterial Population.” Anaerobe 29: 80–84. 10.1016/j.anaerobe.2013.09.015. PubMed DOI
Gong, J. , Forster R. J., Yu H., et al. 2002. “Molecular Analysis of Bacterial Populations in the Ileum of Broiler Chickens and Comparison With Bacteria in the Cecum.” FEMS Microbiology Ecology 41, no. 3: 171–179. 10.1016/S0168-6496(02)00291-X. PubMed DOI
Guide . 2016. Hy‐line Brown Commercial Line Management Guide BRN.COM.ENG.01‐16 Rev. 4–5. https://www.scopus.com/inward/record.uri?eid=2‐s2.0‐85054889602&partnerID=40&md5=4ba712dd39e59dbc2d1c5edaeb40f140.
Hayat, Z. , Riaz T., Attia Y. A., Hameed F., and Siddiqui F. J.. 2024. “Analysing the Effects of Feeding Black Soldier Fly on Broiler Growth Performance: A Meta‐Analysis.” Animal Production Science 64, no. 15: 1028–1045. 10.1071/AN24106. DOI
He, C. , Lei J., Yao Y., et al. 2021. “Black Soldier Fly ( PubMed DOI PMC
Huang, C. B. , Xiao L., Xing S. C., et al. 2019. “The Microbiota Structure in the Cecum of Laying Hens Contributes to Dissimilar H2S Production.” BMC Genomics [Electronic Resource] 20, no. 1: 770. 10.1186/s12864-019-6115-1. PubMed DOI PMC
Joat, N. , Van T. T. H., Stanley D., Moore R. J., and Chousalkar K.. 2021. “Temporal Dynamics of Gut Microbiota in Caged Laying Hens: a Field Observation From Hatching to End of Lay.” Applied Microbiology and Biotechnology 105, no. 11: 4719–4730. 10.1007/S00253-021-11333-8. PubMed DOI
Józefiak, A. , Benzertiha A., Kierończyk B., Łukomska A., Wesołowska I., and Rawski M.. 2020. “Improvement of Cecal Commensal Microbiome Following the Insect Additive Into Chicken Diet.” Animals 10, no. 4: 577. 10.3390/ani10040577. PubMed DOI PMC
Józefiak, A. , Kierończyk B., Rawski M., et al. 2018. “Full‐Fat Insect Meals as Feed Additive—The Effect on Broiler Chicken Growth Performance and Gastrointestinal Tract Microbiota.” Journal of Animal and Feed Sciences 27, no. 2: 131–139. 10.22358/jafs/91967/2018. DOI
Ju, T. , Kong J. Y., Stothard P., and Willing B. P.. 2019. “Defining the Role of Parasutterella, a Previously Uncharacterized Member of the Core Gut Microbiota.” ISME Journal 13, no. 6: 1520–1534. 10.1038/S41396-019-0364-5. PubMed DOI PMC
Kawasaki, K. , Hashimoto Y., Hori A., et al. 2019. “Evaluation of Black Soldier Fly ( PubMed DOI PMC
Kogut, M. H. 2022. “Role of Diet‐Microbiota Interactions in Precision Nutrition of the Chicken: Facts, Gaps, and New Concepts.” Poultry Science 101, no. 3: 101673. 10.1016/j.psj.2021.101673. PubMed DOI PMC
Lee, J. , Kim Y. M., Park Y. K., Yang Y. C., Jung B. G., and Lee B. J.. 2018. “Black Soldier Fly ( PubMed DOI PMC
Liceaga, A. M. , Aguilar‐Toalá J. E., Vallejo‐Cordoba B., González‐Córdova A. F., and Hernández‐Mendoza A.. 2022. “Insects as an Alternative Protein Source.” Annual Review of Food Science and Technology 13: 19–34. 10.1146/ANNUREV-FOOD-052720-112443. PubMed DOI
Liu, J. , Stewart S. N., Robinson K., et al. 2021. “Linkage Between the Intestinal Microbiota and Residual Feed Intake in Broiler Chickens.” Journal of Animal Science and Biotechnology 12, no. 1: 22. 10.1186/s40104-020-00542-2. PubMed DOI PMC
Loponte, R. , Nizza S., Bovera F., et al. 2017. “Growth Performance, Blood Profiles and Carcass Traits of Barbary Partridge ( PubMed DOI
Lundberg, R. , Scharch C., and Sandvang D.. 2021. “The Link Between Broiler Flock Heterogeneity and Cecal Microbiome Composition.” Animal Microbiome 3, no. 1: 54. 10.1186/S42523-021-00110-7. PubMed DOI PMC
Mahayri, T. M. , Atallah E., Fliegerovás K. O., et al. 2024. “Inclusion of PubMed DOI PMC
Mahayri, T. M. , Mrázek J., Bovera F., et al. 2025. “The Inclusion of Insect Meal From PubMed DOI PMC
Marcolla, C. S. , Ju T., Lantz H. L., and Willing B. P.. 2023. “Investigating the Cecal Microbiota of Broilers Raised in Extensive and Intensive Production Systems.” Microbiology Spectrum 11, no. 5: e02352–23. 10.1128/spectrum.02352-23. PubMed DOI PMC
Medvecky, M. , Cejkova D., Polansky O., et al. 2018. “Whole Genome Sequencing and Function Prediction of 133 Gut Anaerobes Isolated From Chicken Caecum in Pure Cultures.” BMC Genomics [Electronic Resource] 19, no. 1: 561. 10.1186/s12864-018-4959-4. PubMed DOI PMC
Meslier, V. , Plaza Oñate F., Ania M., et al. 2022. “Draft Genome Sequence of Isolate POC01, a Novel Anaerobic Member of the Oscillospiraceae Family, Isolated From Human Feces.” Microbiology Resource Announcements 11, no. 1: e01134–21. 10.1128/mra.01134-21.</. PubMed DOI PMC
Morotomi, M. , Nagai F., and Watanabe Y.. 2011. “Description of PubMed DOI
Moula, N. , Scippo M. L., Douny C., et al. 2018. “Performances of Local Poultry Breed Fed Black Soldier Fly Larvae Reared on Horse Manure.” Animal Nutrition 4, no. 1: 73–78. 10.1016/J.ANINU.2017.10.002. PubMed DOI PMC
Mwaniki, Z. , Neijat M., and Kiarie E.. 2018. “Egg Production and Quality Responses of Adding up to 7.5% Defatted Black Soldier Fly Larvae Meal in a Corn–Soybean Meal Diet Fed to Shaver White Leghorns From Wk 19 to 27 of Age.” Poultry Science 97, no. 8: 2829–2835. 10.3382/PS/PEY118. PubMed DOI PMC
Ndotono, E. W. , Khamis F. M., Bargul J. L., and Tanga C. M.. 2022. “Gut Microbiota Shift in Layer Pullets Fed on Black Soldier Fly Larvae‐based Feeds towards Enhancing Healthy Gut Microbial Community.” Scientific Reports 12, no. 1: 16714. 10.1038/s41598-022-20736-0. PubMed DOI PMC
Pan, D. , and Yu Z.. 2014. “Intestinal Microbiome of Poultry and Its Interaction With Host and Diet.” Gut Microbes 5, no. 1: 108. 10.4161/GMIC.26945. PubMed DOI PMC
Papouskova, A. , Rychlik I., Harustiakova D., and Cizek A.. 2023. “Research Note: A Mixture of Bacteroides spp. And Other Probiotic Intestinal Anaerobes Reduces Colonization by Pathogenic PubMed DOI PMC
Poeker, S. A. , Geirnaert A., Berchtold L., et al. 2018. “Understanding the Prebiotic Potential of Different Dietary Fibers Using an In Vitro Continuous Adult Fermentation Model (PolyFermS).” Scientific Reports 8, no. 1: 4318. 10.1038/S41598-018-22438-Y. PubMed DOI PMC
Polansky, O. , Sekelova Z., Faldynova M., Sebkova A., Sisak F., and Rychlik I.. 2016. “Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota.” Applied and Environmental Microbiology 82, no. 5: 1569–1576. 10.1128/AEM.03473-15. PubMed DOI PMC
Raksasat, R. , Lim J. W., Kiatkittipong W., et al. 2020. “A Review of Organic Waste Enrichment for Inducing Palatability of Black Soldier Fly Larvae: Wastes to Valuable Resources.” Environmental Pollution 267: 115488. 10.1016/j.envpol.2020.115488. PubMed DOI
Ramasamy, D. , Dubourg G., Robert C., et al. 2014. “Non Contiguous‐Finished Genome Sequence and Description of PubMed DOI PMC
Rinttilä, T. , and Apajalahti J.. 2013. “Intestinal Microbiota and Metabolites—Implications for Broiler Chicken Health and Performance.” Journal of Applied Poultry Research 22, no. 3: 647–658. 10.3382/JAPR.2013-00742. DOI
Rognes, T. , Flouri T., Nichols B., Quince C., and Mahé F.. 2016. “VSEARCH: A Versatile Open Source Tool for Metagenomics.” PeerJ 4, no. 10: e2584. 10.7717/peerj.2584. PubMed DOI PMC
Ruhnke, I. , Normant C., Campbell D. L. M., et al. 2018. “Impact of On‐Range Choice Feeding With Black Soldier Fly Larvae ( PubMed DOI PMC
Rychlik, I. 2020. “Composition and Function of Chicken Gut Microbiota.” Animals 10, no. 1: 103. 10.3390/ani10010103. PubMed DOI PMC
Rychlik, I. , Karasova D., and Crhanova M.. 2023. “Microbiota of Chickens and Their Environment in Commercial Production.” Avian Diseases 67, no. 1: 1–9. 10.1637/AVIANDISEASES-D-22-00048. PubMed DOI
Secci, G. , Moniello G., Gasco L., Bovera F., and Parisi G.. 2018. “Barbary Partridge Meat Quality as Affected by PubMed DOI
Segata, N. , Izard J., Waldrons L., et al. 2011. “Metagenomic Biomarker Discovery and Explanation.” Genome Biology 12, no. 6: R60. 10.1186/gb-2011-12-6-r60. PubMed DOI PMC
Segura‐Wang, M. , Grabner N., Koestelbauer A., Klose V., and Ghanbari M.. 2021. “Genome‐Resolved Metagenomics of the Chicken Gut Microbiome.” Frontiers in Microbiology 12: 726923. 10.3389/FMICB.2021.726923/BIBTEX. PubMed DOI PMC
Sergeant, M. J. , Constantinidou C., Cogan T. A., Bedford M. R., Penn C. W., and Pallen M. J.. 2014. “Extensive Microbial and Functional Diversity Within the Chicken Cecal Microbiome.” PLoS ONE 9, no. 3: e91941. 10.1371/JOURNAL.PONE.0091941. PubMed DOI PMC
Shang, Y. , Kumar S., Oakley B., and Kim W. K.. 2018. “Chicken Gut Microbiota: Importance and Detection Technology.” Frontiers in Veterinary Science 5: 254. 10.3389/FVETS.2018.00254. PubMed DOI PMC
Siddiqui, S. A. , Ristow B., Rahayu T., et al. 2022. “Black Soldier Fly Larvae (BSFL) and Their Affinity for Organic Waste Processing.” Waste Management 140: 1–13. 10.1016/j.wasman.2021.12.044. PubMed DOI
Slimen, B. , Yerou H., Larbi B., M'Hamdi N., and Najar T.. 2023. “Insects as an Alternative Protein Source for Poultry Nutrition: A Review.” Frontiers in Veterinary Science 10: 1200031. 10.3389/fvets.2023.1200031. PubMed DOI PMC
Souillard, R. , Laurentie J., Kempf I., et al. 2022. “Increasing Incidence of Enterococcus‐Associated Diseases in Poultry in France Over the Past 15 Years.” Veterinary Microbiology 269: 109426. 10.1016/J.VETMIC.2022.109426. PubMed DOI
Stamilla, A. , Ruiz‐Ruiz S., Artacho A., et al. 2021. “Analysis of the Microbial Intestinal Tract in Broiler Chickens During the Rearing Period.” Biology 10, no. 9: 942. 10.3390/BIOLOGY10090942/S1. PubMed DOI PMC
Vázquez‐Baeza, Y. , Pirrung M., Gonzalez A., and Knight R.. 2013. “EMPeror: A Tool for Visualizing High‐Throughput Microbial Community Data.” GigaScience 2: 2047–217X. PubMed PMC
Vilela, J. , de S., Kheravii S. K., et al. 2023. “Inclusion of up to 20% Black Soldier Fly Larvae Meal in Broiler Chicken Diet Has a Minor Effect on Caecal Microbiota.” PeerJ 11: e15857. 10.7717/PEERJ.15857/SUPP-2. PubMed DOI PMC
Volf, J. , Kaspers B., Schusser B., et al. 2024. “Immunoglobulin Secretion Influences the Composition of Chicken Caecal Microbiota.” Scientific Reports 14, no. 1: 25410. 10.1038/s41598-024-76856-2. PubMed DOI PMC
Wang, Y. , Xu L., Sun X., et al. 2020. “Characteristics of the Fecal Microbiota of High‐ and Low‐Yield Hens and Effects of Fecal Microbiota Transplantation on Egg Production Performance.” Research in Veterinary Science 129: 164–173. 10.1016/J.RVSC.2020.01.020. PubMed DOI
Wei, S. , Morrison M., and Yu Z.. 2013. “Bacterial Census of Poultry Intestinal Microbiome.” Poultry Science 92, no. 3: 671–683. 10.3382/PS.2012-02822. PubMed DOI
Wei, X. , Wu H., Wang Z., et al. 2023. “Rumen‐Protected Lysine Supplementation Improved Amino Acid Balance, Nitrogen Utilization and Altered Hindgut Microbiota of Dairy Cows.” Animal Nutrition 15: 320–331. 10.1016/J.ANINU.2023.08.001. PubMed DOI PMC
Xia, J. , Ge C., and Yao H.. 2021. “Antimicrobial Peptides From Black Soldier Fly ( PubMed DOI PMC
Xing, S. , Wang X., Diao H., Zhang M., Zhou Y., and Feng J.. 2019. “Changes in the Cecal Microbiota of Laying Hens During Heat Stress Is Mainly Associated With Reduced Feed Intake.” Poultry Science 98, no. 11: 5257–5264. 10.3382/PS/PEZ440. PubMed DOI
Yan, Y. , Zhang J., Chen X., and Wang Z.. 2023. “Effects of Black Soldier Fly Larvae ( PubMed DOI PMC
Yang, J. , Li Y., Wen Z., Liu W., Meng L., and Huang H.. 2021. “Oscillospira—A Candidate for the Next‐Generation Probiotics.” Gut Microbes 13, no. 1: 1987783. 10.1080/19490976.2021.1987783. PubMed DOI PMC
Yap, G. C. , Hong P. Y., and Lee B. W.. 2014. “Microflora of the Intestine | The Natural Microflora of Humans.” In Encyclopedia of Food Microbiology. 2nd ed., 634–638. Academic Press. 10.1016/B978-0-12-384730-0.00207-X. DOI
Zampiga, M. , Calini F., and Sirri F.. 2021. “Importance of Feed Efficiency for Sustainable Intensification of Chicken Meat Production: Implications and Role for Amino Acids, Feed Enzymes and Organic Trace Minerals.” World's Poultry Science Journal 77, no. 3: 639–659. 10.1080/00439339.2021.1959277. DOI
Zhan, H. Q. , Dong X. Y., Li L. L., Zheng Y. X., Gong Y. J., and Zou X. T.. 2019. “Effects of Dietary Supplementation With Clostridium Butyricum on Laying Performance, Egg Quality, Serum Parameters, and Cecal Microflora of Laying Hens in the Late Phase of Production.” Poultry Science 98, no. 2: 896–903. 10.3382/PS/PEY436. PubMed DOI
Zulkifli, N. F. N. M. , Seok‐Kian A. Y., Seng L. L., Mustafa S., Kim Y. S., and Shapawi R.. 2022. “Nutritional Value of Black Soldier Fly ( PubMed DOI PMC