The Inclusion of Hermetia Illucens Larvae Meal in the Diet of Laying Hens (Hy-Line Brown) Affects the Caecal Bacterial Composition and Diversity

. 2025 Nov ; 11 (6) : e70650.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41117401

Grantová podpora
Fondazione di Sardegna
Italy - Italy
FDS2223MONIELLO
CUP J83C22000160007
University of Sassari
Fondo di Ateneo per la Ricerca

BACKGROUND: The poultry industry is increasingly looking for sustainable feed ingredients which support animal productivity. Insects, such as the larvae of Hermetia illucens, represent a promising alternative protein source that has a positive effect on gut health. AIM: The aim of this study is to evaluate the effects of a partial replacement of soybean meal with H. illucens larvae meal on the caecal microbiota of laying hens. METHODOLOGY: A total of 162 hens were divided equally into three treatment groups: a control group (C) with a diet containing corn-soybean meal and two treatment groups (HI25, HI50) in which 25% and 50% of the soybean meal protein was replaced by H. illucens larvae meal protein. At 40 weeks of age, 30 animals (10 per group) were slaughtered and the bacterial community of the caecal content was analysed by high-throughput sequencing using the V4-V5 region of the 16S rRNA gene. The DNA was extracted using the PowerSoil DNA Kit, the library preparation was performed using the NEBNext Fast DNA Library Prep Set kit and sequencing was performed using the Ion Torrent PGM. The bacterial diversity was assessed by alpha and beta diversity indices, and the differential abundance of taxa was determined using LEfSe analysis. RESULTS: Firmicutes and Bacteroidetes were the dominant phylum in all groups. Alpha diversity indices showed no significant differences between diets, however, beta diversity measures showed statistical dissimilarities between the three studied groups. Several beneficial genera, including Alistipes, Christensenellaceae R-7 group, Parabacteroides, Butyricimonas and Parasutterella, were enriched in the HI50 group, while Lactobacillus, Bifidobacterium, Blautia and the opportunistic pathogen Enterococcus were reduced. CONCLUSION: The consumption of H. illucens larvae meal showed beneficial effect on the microbiota of the caecum of laying hens, with 50% replacement showing the strongest positive effects, suggesting that this is the most effective amount under the given conditions. Further research should explore microbial functions and long-term impacts, and validate the optimal levels of insect meal inclusion.

Zobrazit více v PubMed

Adhikari, B. , Jun S. R., Kwon Y. M., Kiess A. S., and Adhikari P.. 2020. “Effects of Housing Types on Cecal Microbiota of Two Different Strains of Laying Hens During the Late Production Phase.” Frontiers in Veterinary Science 7: 331. 10.3389/FVETS.2020.00331/BIBTEX. PubMed DOI PMC

Alagawany, M. , Elnesr S. S., Farag M. R., et al. 2021. “Potential Role of Important Nutraceuticals in Poultry Performance and Health—A Comprehensive Review.” Research in Veterinary Science 137: 9–29. 10.1016/j.rvsc.2021.04.009. PubMed DOI

Alzahrani, O. M. , Fayez M., Alswat A. S., et al. 2022. “Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species From Small Backyard Chicken Flocks.” Antibiotics 11, no. 3: 380. 10.3390/ANTIBIOTICS11030380. PubMed DOI PMC

Aruwa, C. E. , and Sabiu S.. 2024. “Interplay of Poultry‐Microbiome Interactions‐Influencing Factors and Microbes in Poultry Infections and Metabolic Disorders.” British Poultry Science 65, no. 5: 523–537. 10.1080/00071668.2024.2356666. PubMed DOI

Atallah, E. , Mahayri T. M., Fliegerová K. O., et al. 2023. “The Effect of Different Levels of DOI

Atallah, E. , Mahayri T. M., Mrázek J., et al. 2025. “Dietary Inclusion of PubMed PMC

Attia, Y. A. , Bovera F., Asiry K. A., Alqurashi S., and Alrefaei M. S.. 2023. “Fish and Black Soldier Fly Meals as Partial Replacements for Soybean Meal Can Affect Sustainability of Productive Performance, Blood Constituents, Gut Microbiota, and Nutrient Excretion of Broiler Chickens.” Animals 13, no. 17: 2759. 10.3390/ANI13172759. PubMed DOI PMC

Barragan‐Fonseca, K. B. , Dicke M., and van Loon J. J. A.. 2017. “Nutritional Value of the Black Soldier Fly ( DOI

Biasato, I. , Ferrocino I., Dabbou S., et al. 2020. “Black Soldier Fly and Gut Health in Broiler Chickens: Insights Into the Relationship Between Cecal Microbiota and Intestinal Mucin Composition.” Journal of Animal Science and Biotechnology 11, no. 1: 11. 10.1186/s40104-019-0413-y. PubMed DOI PMC

Birkl, P. , Bharwani A., Kjaer J. B., et al. 2018. “Differences in Cecal Microbiome of Selected High and Low Feather‐Pecking Laying Hens.” Poultry Science 97, no. 9: 3009. 10.3382/PS/PEY167. PubMed DOI PMC

Bjerrum, L. , Engberg R. M., Leser T. D., Jensen B. B., Finster K., and Pedersen K.. 2006. “Microbial Community Composition of the Ileum and Cecum of Broiler Chickens as Revealed by Molecular and Culture‐Based Techniques.” Poultry Science 85, no. 7: 1151–1164. 10.1093/PS/85.7.1151. PubMed DOI

Bolyen, E. , Rideout J. R., Dillon M. R., et al. 2019. “Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2, 37.” Nature Biotechnology 37, no. 8: 852857. 10.1038/s41587-019-0209-9. PubMed DOI PMC

Borrelli, L. , Coretti L., Dipineto L., et al. 2017. “Insect‐Based Diet, a Promising Nutritional Source, Modulates Gut Microbiota Composition and SCFAs Production in Laying Hens.” Scientific Reports 7, no. 1: 16269. 10.1038/s41598-017-16560-6. PubMed DOI PMC

Bovera, F. , Loponte R., Pero M. E., et al. 2018. “Laying Performance, Blood Profiles, Nutrient Digestibility and Inner Organs Traits of Hens Fed an Insect Meal From PubMed DOI

Callahan, B. J. , McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., and Holmes S. P.. 2016. “DADA2: High‐Resolution Sample Inference From Illumina Amplicon Data.” Nature Methods 13, no. 7: 581–583. 10.1038/nmeth.3869. PubMed DOI PMC

Cardenas, L. A. C. , Clavijo V., Vives M., and Reyes A.. 2021. “Bacterial Meta‐Analysis of Chicken Cecal Microbiota.” PeerJ 9: e10571. 10.7717/PEERJ.10571/SUPP-10. PubMed DOI PMC

Chang, T. , Ngo J., Vargas J. I., et al. 2022. “Research Note: Orange Corn Altered the Cecal Microbiome in Laying Hens.” Poultry Science 101, no. 3: 101685. 10.1016/J.PSJ.2021.101685. PubMed DOI PMC

Chen, F. , Wang Y., Wang K., et al. 2023. “Effects of PubMed DOI PMC

Clavel, T. , Lepage P., and Charrier C.. 2014. “The Family Coriobacteriaceae.” In The Prokaryotes: Actinobacteria, edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., and Thompson F., 201–238. Springer. 10.1007/978-3-642-30138-4_343. DOI

Colombino, E. , Biasato I., Ferrocino I., et al. 2021. “Effect of Insect Live Larvae as Environmental Enrichment on Poultry Gut Health: Gut Mucin Composition, Microbiota and Local Immune Response Evaluation.” Animals 11, no. 10: 2819. PubMed PMC

Cullere, M. , Tasoniero G., Giaccone V., et al. 2016. “Black Soldier Fly as Dietary Protein Source for Broiler Quails: Apparent Digestibility, Excreta Microbial Load, Feed Choice, Performance, Carcass and Meat Traits.” Animal 10, no. 12: 1923–1930. 10.1017/S1751731116001270. PubMed DOI

Dahiru, S. J. , Azhar B. K., and Asmara B. S.. 2016. “Performance of Spring Chicken Fed Different Inclusion Levels of Black Soldier Fly Larvae Meal.” Entomology, Ornithology & Herpetology: Current Research 05, no. 04: 185–189. 10.4172/2161-0983.1000185. DOI

Dai, D. , Qi G.‐H., Wang J., Zhang H.‐J., Qiu K., and Wu S.‐G.. 2022. “Intestinal Microbiota of Layer Hens and Its Association With Egg Quality and Safety.” Poultry Science 101, no. 9: 102008. 10.1016/j.psj.2022.102008. PubMed DOI PMC

Dai, D. , Wu S.‐G., Zhang H.‐J., Qi G.‐H., and Wang J.. 2020. “Dynamic Alterations in Early Intestinal Development, Microbiota and Metabolome Induced by In Ovo Feeding of PubMed DOI PMC

Daniel, H. 2022. “Diet and Gut Microbiome and the “Chicken or Egg” Problem.” Frontiers in Nutrition 8: 1335. 10.3389/FNUT.2021.828630/BIBTEX. PubMed DOI PMC

de Souza Vilela, J. , Andronicos N. M., Kolakshyapati M., et al. 2021. “Black Soldier Fly Larvae in Broiler Diets Improve Broiler Performance and Modulate the Immune System.” Animal Nutrition 7, no. 3: 695–706. 10.1016/j.aninu.2020.08.014. PubMed DOI PMC

du Sert, N. P. , Hurst V., Ahluwalia A., et al. 2020. “The Arrive Guidelines 2.0: Updated Guidelines for Reporting Animal Research.” PLoS Biology 18, no. 7: e3000410. 10.1371/journal.pbio.3000410. PubMed DOI PMC

Elahi, U. , Xu C. C., Wang J., et al. 2022. “Insect Meal as a Feed Ingredient for Poultry.” Animal Bioscience 35, no. 2: 332–346. 10.5713/ab.21.0435. PubMed DOI PMC

El‐Hack, A. , Shafi M. E., Alghamdi W. Y., et al. 2020. “Black Soldier Fly ( DOI

Elling‐Staats, M. L. , Gilbert M. S., Smidt H., and Kwakkel R. P.. 2022. “Caecal Protein Fermentation in Broilers: A Review.” World's Poultry Science Journal 78, no. 1: 103–123. 10.1080/00439339.2022.2003170. DOI

El‐Sabrout, K. , Aggag S., and Mishra B.. 2022. “Advanced Practical Strategies to Enhance Table Egg Production.” Scientifica 2022: 1393392. 10.1155/2022/1393392. PubMed DOI PMC

FAO . 2022. “Gateway to Poultry Production and Products.” https://www.fao.org/poultry‐production‐products/products‐processing/poultry‐in‐human‐nutrition.

Ferronato, N. , Paoli R., Romagnoli F., Tettamanti G., Bruno D., and Torretta V.. 2024. “Environmental Impact Scenarios of Organic Fraction Municipal Solid Waste Treatment With Black Soldier Fly Larvae Based on a Life Cycle Assessment.” Environmental Science and Pollution Research 31, no. 12: 17651–17669. 10.1007/s11356-023-27140-9. PubMed DOI PMC

Fliegerova, K. , Tapio I., Bonin A., et al. 2014. “Effect of DNA Extraction and Sample Preservation Method on Rumen Bacterial Population.” Anaerobe 29: 80–84. 10.1016/j.anaerobe.2013.09.015. PubMed DOI

Gong, J. , Forster R. J., Yu H., et al. 2002. “Molecular Analysis of Bacterial Populations in the Ileum of Broiler Chickens and Comparison With Bacteria in the Cecum.” FEMS Microbiology Ecology 41, no. 3: 171–179. 10.1016/S0168-6496(02)00291-X. PubMed DOI

Guide . 2016. Hy‐line Brown Commercial Line Management Guide BRN.COM.ENG.01‐16 Rev. 4–5. https://www.scopus.com/inward/record.uri?eid=2‐s2.0‐85054889602&partnerID=40&md5=4ba712dd39e59dbc2d1c5edaeb40f140.

Hayat, Z. , Riaz T., Attia Y. A., Hameed F., and Siddiqui F. J.. 2024. “Analysing the Effects of Feeding Black Soldier Fly on Broiler Growth Performance: A Meta‐Analysis.” Animal Production Science 64, no. 15: 1028–1045. 10.1071/AN24106. DOI

He, C. , Lei J., Yao Y., et al. 2021. “Black Soldier Fly ( PubMed DOI PMC

Huang, C. B. , Xiao L., Xing S. C., et al. 2019. “The Microbiota Structure in the Cecum of Laying Hens Contributes to Dissimilar H2S Production.” BMC Genomics [Electronic Resource] 20, no. 1: 770. 10.1186/s12864-019-6115-1. PubMed DOI PMC

Joat, N. , Van T. T. H., Stanley D., Moore R. J., and Chousalkar K.. 2021. “Temporal Dynamics of Gut Microbiota in Caged Laying Hens: a Field Observation From Hatching to End of Lay.” Applied Microbiology and Biotechnology 105, no. 11: 4719–4730. 10.1007/S00253-021-11333-8. PubMed DOI

Józefiak, A. , Benzertiha A., Kierończyk B., Łukomska A., Wesołowska I., and Rawski M.. 2020. “Improvement of Cecal Commensal Microbiome Following the Insect Additive Into Chicken Diet.” Animals 10, no. 4: 577. 10.3390/ani10040577. PubMed DOI PMC

Józefiak, A. , Kierończyk B., Rawski M., et al. 2018. “Full‐Fat Insect Meals as Feed Additive—The Effect on Broiler Chicken Growth Performance and Gastrointestinal Tract Microbiota.” Journal of Animal and Feed Sciences 27, no. 2: 131–139. 10.22358/jafs/91967/2018. DOI

Ju, T. , Kong J. Y., Stothard P., and Willing B. P.. 2019. “Defining the Role of Parasutterella, a Previously Uncharacterized Member of the Core Gut Microbiota.” ISME Journal 13, no. 6: 1520–1534. 10.1038/S41396-019-0364-5. PubMed DOI PMC

Kawasaki, K. , Hashimoto Y., Hori A., et al. 2019. “Evaluation of Black Soldier Fly ( PubMed DOI PMC

Kogut, M. H. 2022. “Role of Diet‐Microbiota Interactions in Precision Nutrition of the Chicken: Facts, Gaps, and New Concepts.” Poultry Science 101, no. 3: 101673. 10.1016/j.psj.2021.101673. PubMed DOI PMC

Lee, J. , Kim Y. M., Park Y. K., Yang Y. C., Jung B. G., and Lee B. J.. 2018. “Black Soldier Fly ( PubMed DOI PMC

Liceaga, A. M. , Aguilar‐Toalá J. E., Vallejo‐Cordoba B., González‐Córdova A. F., and Hernández‐Mendoza A.. 2022. “Insects as an Alternative Protein Source.” Annual Review of Food Science and Technology 13: 19–34. 10.1146/ANNUREV-FOOD-052720-112443. PubMed DOI

Liu, J. , Stewart S. N., Robinson K., et al. 2021. “Linkage Between the Intestinal Microbiota and Residual Feed Intake in Broiler Chickens.” Journal of Animal Science and Biotechnology 12, no. 1: 22. 10.1186/s40104-020-00542-2. PubMed DOI PMC

Loponte, R. , Nizza S., Bovera F., et al. 2017. “Growth Performance, Blood Profiles and Carcass Traits of Barbary Partridge ( PubMed DOI

Lundberg, R. , Scharch C., and Sandvang D.. 2021. “The Link Between Broiler Flock Heterogeneity and Cecal Microbiome Composition.” Animal Microbiome 3, no. 1: 54. 10.1186/S42523-021-00110-7. PubMed DOI PMC

Mahayri, T. M. , Atallah E., Fliegerovás K. O., et al. 2024. “Inclusion of PubMed DOI PMC

Mahayri, T. M. , Mrázek J., Bovera F., et al. 2025. “The Inclusion of Insect Meal From PubMed DOI PMC

Marcolla, C. S. , Ju T., Lantz H. L., and Willing B. P.. 2023. “Investigating the Cecal Microbiota of Broilers Raised in Extensive and Intensive Production Systems.” Microbiology Spectrum 11, no. 5: e02352–23. 10.1128/spectrum.02352-23. PubMed DOI PMC

Medvecky, M. , Cejkova D., Polansky O., et al. 2018. “Whole Genome Sequencing and Function Prediction of 133 Gut Anaerobes Isolated From Chicken Caecum in Pure Cultures.” BMC Genomics [Electronic Resource] 19, no. 1: 561. 10.1186/s12864-018-4959-4. PubMed DOI PMC

Meslier, V. , Plaza Oñate F., Ania M., et al. 2022. “Draft Genome Sequence of Isolate POC01, a Novel Anaerobic Member of the Oscillospiraceae Family, Isolated From Human Feces.” Microbiology Resource Announcements 11, no. 1: e01134–21. 10.1128/mra.01134-21.</. PubMed DOI PMC

Morotomi, M. , Nagai F., and Watanabe Y.. 2011. “Description of PubMed DOI

Moula, N. , Scippo M. L., Douny C., et al. 2018. “Performances of Local Poultry Breed Fed Black Soldier Fly Larvae Reared on Horse Manure.” Animal Nutrition 4, no. 1: 73–78. 10.1016/J.ANINU.2017.10.002. PubMed DOI PMC

Mwaniki, Z. , Neijat M., and Kiarie E.. 2018. “Egg Production and Quality Responses of Adding up to 7.5% Defatted Black Soldier Fly Larvae Meal in a Corn–Soybean Meal Diet Fed to Shaver White Leghorns From Wk 19 to 27 of Age.” Poultry Science 97, no. 8: 2829–2835. 10.3382/PS/PEY118. PubMed DOI PMC

Ndotono, E. W. , Khamis F. M., Bargul J. L., and Tanga C. M.. 2022. “Gut Microbiota Shift in Layer Pullets Fed on Black Soldier Fly Larvae‐based Feeds towards Enhancing Healthy Gut Microbial Community.” Scientific Reports 12, no. 1: 16714. 10.1038/s41598-022-20736-0. PubMed DOI PMC

Pan, D. , and Yu Z.. 2014. “Intestinal Microbiome of Poultry and Its Interaction With Host and Diet.” Gut Microbes 5, no. 1: 108. 10.4161/GMIC.26945. PubMed DOI PMC

Papouskova, A. , Rychlik I., Harustiakova D., and Cizek A.. 2023. “Research Note: A Mixture of Bacteroides spp. And Other Probiotic Intestinal Anaerobes Reduces Colonization by Pathogenic PubMed DOI PMC

Poeker, S. A. , Geirnaert A., Berchtold L., et al. 2018. “Understanding the Prebiotic Potential of Different Dietary Fibers Using an In Vitro Continuous Adult Fermentation Model (PolyFermS).” Scientific Reports 8, no. 1: 4318. 10.1038/S41598-018-22438-Y. PubMed DOI PMC

Polansky, O. , Sekelova Z., Faldynova M., Sebkova A., Sisak F., and Rychlik I.. 2016. “Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota.” Applied and Environmental Microbiology 82, no. 5: 1569–1576. 10.1128/AEM.03473-15. PubMed DOI PMC

Raksasat, R. , Lim J. W., Kiatkittipong W., et al. 2020. “A Review of Organic Waste Enrichment for Inducing Palatability of Black Soldier Fly Larvae: Wastes to Valuable Resources.” Environmental Pollution 267: 115488. 10.1016/j.envpol.2020.115488. PubMed DOI

Ramasamy, D. , Dubourg G., Robert C., et al. 2014. “Non Contiguous‐Finished Genome Sequence and Description of PubMed DOI PMC

Rinttilä, T. , and Apajalahti J.. 2013. “Intestinal Microbiota and Metabolites—Implications for Broiler Chicken Health and Performance.” Journal of Applied Poultry Research 22, no. 3: 647–658. 10.3382/JAPR.2013-00742. DOI

Rognes, T. , Flouri T., Nichols B., Quince C., and Mahé F.. 2016. “VSEARCH: A Versatile Open Source Tool for Metagenomics.” PeerJ 4, no. 10: e2584. 10.7717/peerj.2584. PubMed DOI PMC

Ruhnke, I. , Normant C., Campbell D. L. M., et al. 2018. “Impact of On‐Range Choice Feeding With Black Soldier Fly Larvae ( PubMed DOI PMC

Rychlik, I. 2020. “Composition and Function of Chicken Gut Microbiota.” Animals 10, no. 1: 103. 10.3390/ani10010103. PubMed DOI PMC

Rychlik, I. , Karasova D., and Crhanova M.. 2023. “Microbiota of Chickens and Their Environment in Commercial Production.” Avian Diseases 67, no. 1: 1–9. 10.1637/AVIANDISEASES-D-22-00048. PubMed DOI

Secci, G. , Moniello G., Gasco L., Bovera F., and Parisi G.. 2018. “Barbary Partridge Meat Quality as Affected by PubMed DOI

Segata, N. , Izard J., Waldrons L., et al. 2011. “Metagenomic Biomarker Discovery and Explanation.” Genome Biology 12, no. 6: R60. 10.1186/gb-2011-12-6-r60. PubMed DOI PMC

Segura‐Wang, M. , Grabner N., Koestelbauer A., Klose V., and Ghanbari M.. 2021. “Genome‐Resolved Metagenomics of the Chicken Gut Microbiome.” Frontiers in Microbiology 12: 726923. 10.3389/FMICB.2021.726923/BIBTEX. PubMed DOI PMC

Sergeant, M. J. , Constantinidou C., Cogan T. A., Bedford M. R., Penn C. W., and Pallen M. J.. 2014. “Extensive Microbial and Functional Diversity Within the Chicken Cecal Microbiome.” PLoS ONE 9, no. 3: e91941. 10.1371/JOURNAL.PONE.0091941. PubMed DOI PMC

Shang, Y. , Kumar S., Oakley B., and Kim W. K.. 2018. “Chicken Gut Microbiota: Importance and Detection Technology.” Frontiers in Veterinary Science 5: 254. 10.3389/FVETS.2018.00254. PubMed DOI PMC

Siddiqui, S. A. , Ristow B., Rahayu T., et al. 2022. “Black Soldier Fly Larvae (BSFL) and Their Affinity for Organic Waste Processing.” Waste Management 140: 1–13. 10.1016/j.wasman.2021.12.044. PubMed DOI

Slimen, B. , Yerou H., Larbi B., M'Hamdi N., and Najar T.. 2023. “Insects as an Alternative Protein Source for Poultry Nutrition: A Review.” Frontiers in Veterinary Science 10: 1200031. 10.3389/fvets.2023.1200031. PubMed DOI PMC

Souillard, R. , Laurentie J., Kempf I., et al. 2022. “Increasing Incidence of Enterococcus‐Associated Diseases in Poultry in France Over the Past 15 Years.” Veterinary Microbiology 269: 109426. 10.1016/J.VETMIC.2022.109426. PubMed DOI

Stamilla, A. , Ruiz‐Ruiz S., Artacho A., et al. 2021. “Analysis of the Microbial Intestinal Tract in Broiler Chickens During the Rearing Period.” Biology 10, no. 9: 942. 10.3390/BIOLOGY10090942/S1. PubMed DOI PMC

Vázquez‐Baeza, Y. , Pirrung M., Gonzalez A., and Knight R.. 2013. “EMPeror: A Tool for Visualizing High‐Throughput Microbial Community Data.” GigaScience 2: 2047–217X. PubMed PMC

Vilela, J. , de S., Kheravii S. K., et al. 2023. “Inclusion of up to 20% Black Soldier Fly Larvae Meal in Broiler Chicken Diet Has a Minor Effect on Caecal Microbiota.” PeerJ 11: e15857. 10.7717/PEERJ.15857/SUPP-2. PubMed DOI PMC

Volf, J. , Kaspers B., Schusser B., et al. 2024. “Immunoglobulin Secretion Influences the Composition of Chicken Caecal Microbiota.” Scientific Reports 14, no. 1: 25410. 10.1038/s41598-024-76856-2. PubMed DOI PMC

Wang, Y. , Xu L., Sun X., et al. 2020. “Characteristics of the Fecal Microbiota of High‐ and Low‐Yield Hens and Effects of Fecal Microbiota Transplantation on Egg Production Performance.” Research in Veterinary Science 129: 164–173. 10.1016/J.RVSC.2020.01.020. PubMed DOI

Wei, S. , Morrison M., and Yu Z.. 2013. “Bacterial Census of Poultry Intestinal Microbiome.” Poultry Science 92, no. 3: 671–683. 10.3382/PS.2012-02822. PubMed DOI

Wei, X. , Wu H., Wang Z., et al. 2023. “Rumen‐Protected Lysine Supplementation Improved Amino Acid Balance, Nitrogen Utilization and Altered Hindgut Microbiota of Dairy Cows.” Animal Nutrition 15: 320–331. 10.1016/J.ANINU.2023.08.001. PubMed DOI PMC

Xia, J. , Ge C., and Yao H.. 2021. “Antimicrobial Peptides From Black Soldier Fly ( PubMed DOI PMC

Xing, S. , Wang X., Diao H., Zhang M., Zhou Y., and Feng J.. 2019. “Changes in the Cecal Microbiota of Laying Hens During Heat Stress Is Mainly Associated With Reduced Feed Intake.” Poultry Science 98, no. 11: 5257–5264. 10.3382/PS/PEZ440. PubMed DOI

Yan, Y. , Zhang J., Chen X., and Wang Z.. 2023. “Effects of Black Soldier Fly Larvae ( PubMed DOI PMC

Yang, J. , Li Y., Wen Z., Liu W., Meng L., and Huang H.. 2021. “Oscillospira—A Candidate for the Next‐Generation Probiotics.” Gut Microbes 13, no. 1: 1987783. 10.1080/19490976.2021.1987783. PubMed DOI PMC

Yap, G. C. , Hong P. Y., and Lee B. W.. 2014. “Microflora of the Intestine | The Natural Microflora of Humans.” In Encyclopedia of Food Microbiology. 2nd ed., 634–638. Academic Press. 10.1016/B978-0-12-384730-0.00207-X. DOI

Zampiga, M. , Calini F., and Sirri F.. 2021. “Importance of Feed Efficiency for Sustainable Intensification of Chicken Meat Production: Implications and Role for Amino Acids, Feed Enzymes and Organic Trace Minerals.” World's Poultry Science Journal 77, no. 3: 639–659. 10.1080/00439339.2021.1959277. DOI

Zhan, H. Q. , Dong X. Y., Li L. L., Zheng Y. X., Gong Y. J., and Zou X. T.. 2019. “Effects of Dietary Supplementation With Clostridium Butyricum on Laying Performance, Egg Quality, Serum Parameters, and Cecal Microflora of Laying Hens in the Late Phase of Production.” Poultry Science 98, no. 2: 896–903. 10.3382/PS/PEY436. PubMed DOI

Zulkifli, N. F. N. M. , Seok‐Kian A. Y., Seng L. L., Mustafa S., Kim Y. S., and Shapawi R.. 2022. “Nutritional Value of Black Soldier Fly ( PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...