Does selection for growth rate in broilers affect their resistance and tolerance to Eimeria maxima?
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
30105985
PubMed Central
PMC6052249
DOI
10.1016/j.vetpar.2018.06.014
PII: S0304-4017(18)30234-6
Knihovny.cz E-resources
- Keywords
- Bone mineralisation, Broiler, Coccidiosis, Eimeria maxima, Genetic selection, Growth rate, Resistance, Tolerance,
- MeSH
- Eimeria genetics isolation & purification physiology MeSH
- Calcification, Physiologic MeSH
- Animal Nutritional Physiological Phenomena MeSH
- Jejunum parasitology MeSH
- Carotenoids blood MeSH
- Coccidiosis parasitology veterinary MeSH
- Animal Feed analysis MeSH
- Chickens growth & development parasitology physiology MeSH
- Poultry Diseases parasitology physiopathology MeSH
- Nitric Oxide blood MeSH
- Dietary Supplements MeSH
- Vitamin A blood MeSH
- Vitamin E blood MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carotenoids MeSH
- Nitric Oxide MeSH
- Vitamin A MeSH
- Vitamin E MeSH
Chickens exhibit varied responses to infection with Eimeria parasites. We hypothesise that broilers selected for increased growth rate will show lower resistance and tolerance to a coccidian challenge. 288 chickens of fast (F) or slow (S) growing lines were inoculated with 0 (control), 2500 (low-dose), or 7000 (high-dose) sporulated E. maxima oocysts at 13 days of age in two consecutive rounds. Gain and Intake were measured daily and their values relative to BW at the point of infection were calculated over the pre-patent (days 1-4 post-infection), acute (d5-8 pi), and recovery (d9-12 pi) phases of infection to assess the impact of infection. Levels of plasma carotenoids, vitamins E and A, long bone mineralisation, caecal microbiota diversity indices, and histological measurements were assessed at the acute (d6 pi) and recovery stage (d13 pi). In addition, we measured the levels of nitric oxide metabolites and the number of parasite genome copies in the jejunumat d6pi. In absolute terms F birds grew 1.42 times faster than S birds when not infected. Infection significantly reduced relative daily gain and intake (P < 0.001), with the effects being most pronounced during the acute phase (P < 0.001). Levels of all metabolites were significantly decreased, apart from NO which increased (P < 0.001) in response to infection on d6pi, and were accompanied by changes in histomorphometric features and the presence of E. maxima genome copies in infected birds, which persisted to d13pi. Furthermore, infection reduced tibia and femur mineralisation, which also persisted to d13pi. Reductions in measured variables were mostly independent of dose size, as was the level of parasite replication. The impact of infection was similar for S and F-line birds for all measured parameters, and there were no significant interactions between line x dose size on any of these parameters. In conclusion, our results suggest that line differences in productive performance do not influence host responses to coccidiosis when offered nutrient adequate diets.
Aviagen Ltd Newbridge Edinburgh EH28 8SZ UK
School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic
See more in PubMed
Adams C., Vahl H.A., Veldman A. Interaction between nutrition and Eimeria acervulina infection in broiler chickens: development of an experimental infection model. Br. J. Nutr. 1996;75:867–873. PubMed
Allen P.C. Effect of coccidiosis on the distribution of dietary lutein in the chick. Poult. Sci. 1992;71:1457–1463. PubMed
Allen P.C. Nitric oxide production during Eimeria tenella infections in chickens. Poult. Sci. 1997;76:810–813. PubMed
Allen P.C. Production of free radical species during Eimeria maxima infections in chickens. Poult. Sci. 1997;76:814–821. PubMed
Allen P.C., Fetterer R.H. Effects of dietary vitamin E on chickens infected with Eimeria maxima: observations over time of primary infection. Avian Dis. 2002;46:839–846. PubMed
Allen P.C., Fetterer R.H. Interaction of dietary vitamin E with Eimeria maxima infections in chickens. Poult. Sci. 2002;81:41–48. PubMed
Allen P.C., Lillehoj H.S. Genetic influence on nitric oxide production during Eimeria tenella infections in chickens. Avian Dis. 1998;42:397–403. PubMed
Allen P.C., Danforth H.D., Vinyard B.L. Development of a protective index to rank effectiveness of multiple treatments within an experiment: application to a cross-protection study of several strains of Eimeria maxima and a live vaccine. Avian Dis. 2004;48:370–375. PubMed
Allen P.C., Jenkins M.C., Miska K.B. Cross protection studies with Eimeria maxima strains. Parasitol. Res. 2005;97:179–185. PubMed
Applegate T.J., Lilburn M.S. Growth of the femur and tibia of a commercial broiler line. Poult. Sci. 2002;81:1289–1294. PubMed
Aviagen . Aviagen Ltd.; Scotland, UK: 2014. Ross 308: Nutrition Specifications.
Aviagen . Aviagen Ltd.; Scotland, UK: 2014. Ross Broiler Management Handbook.
Blake D.P., Hesketh P., Archer A., Shirley M.W., Smith A.L. Eimeria maxima: the influence of host genotype on parasite reproduction as revealed by quantitative real-time PCR. Int. J. Parasitol. 2006;36:97–105. PubMed
Blake D.P., Qin Z., Cai J., Smith A.L. Development and validation of real-time polymerase chain reaction assays specific to four species of Eimeria. Avian Pathol. 2008;37:89–94. PubMed
Brickett K.E., Dahiya J.P., Classen H.L., Annett C.B., Gomis S. The impact of nutrient density, feed form, and photoperiod on the walking ability and skeletal quality of broiler chickens. Poult. Sci. 2007;86:2117–2125. PubMed
Bumstead J.M., Bumstead N., Rothwell L., Tomley F.M. Comparison of immune responses in inbred lines of chickens to Eimeria maxima and Eimeria tenella. Parasitology. 1995;111:143–151. PubMed
Cheema M.A., Qureshi M.A., Havenstein G.B. A comparison of the immune response of a 2001 commercial broiler with a 1957 randombred broiler strain when fed representative 1957 and 2001 broiler diets. Poult. Sci. 2003;82:1519–1529. PubMed
Coltherd J.C., Bunger L., Kyriazakis I., Houdijk J.G. Genetic growth potential interacts with nutrition on the ability of mice to cope with Heligmosomoides bakeri infection. Parasitology. 2009;136:1043–1055. PubMed
Coltherd J.C., Babayan S.A., Bünger L., Kyriazakis I., Allen J.E., Houdijk J.G.M. Interactive effects of protein nutrition, genetic growth potential and Heligmosomoides bakeri infection pressure on resilience and resistance in mice. Parasitology. 2011;138:1305–1315. PubMed
Conway D.P., Sasai K., Gaafar S.M., Smothers C.D. Effects of different levels of oocyst inocula of Eimeria acervulina, E. tenella, and E. maxima on plasma constituents, packed cell volume, lesion scores, and performance in chickens. Avian Dis. 1993;37:118–123. PubMed
Coop R.L., Kyriazakis I. Nutrition-parasite interaction. Vet. Parasitol. 1999;84:187–204. PubMed
Cornelissen J.B.W.J., Swinkels W.J.C., Boersma W.A., Rebel J.M.J. Host response to simultaneous infections with Eimeria acervulina, maxima and tenella: a cumulation of single responses. Vet. Parasitol. 2009;162:58–66. PubMed
Dawkins M.S., Layton R. Breeding for better welfare: genetic goals for broiler chickens and their parents. Anim. Welf. 2012;21:147–155.
Doeschl-Wilson A.B., Kyriazakis I. Should we aim for genetic improvement in host resistance or tolerance to infectious pathogens? Front. Genet. 2012;3:272. PubMed PMC
Doeschl-Wilson A.B., Brindle W., Emmans G., Kyriazakis I. Unravelling the relationship between animal growth and immune response during micro-parasitic infections. PLoS ONE. 2009;4:e7508. PubMed PMC
Fetterer R.H., Miska K.B., Mitchell A.D., Jenkins M.C. The use of dual-energy X-ray absorptiometry to assess the impact of Eimeria infections in broiler chicks. Avian Dis. 2013;57:199–204. PubMed
Furlong R.F. Insights into vertebrate evolution from the chicken genome sequence. Genome Biol. 2005;6:207. PubMed PMC
Gabriel I., Mallet S., Leconte M., Fort G., Naciri M. Effects of whole wheat feeding on the development of coccidial infection in broiler chickens until market age. Anim. Feed Sci. Technol. 2006;129:279–303. PubMed
Giraldo C.A., Brown D.R., Watkins K.L., Southern L.L. Responses to excess dietary magnesium as affected by experimental Eimeria acervulina infection or by dietary ammonium chloride ingestion in the chick. J. Nutr. 1987;117:1053–1059. PubMed
González-Cerón F., Rekaya R., Aggrey S.E. Genetic analysis of bone quality traits and growth in a random mating broiler population. Poult. Sci. 2015;94:883–889. PubMed
Harrison E.H. Mechanisms of digestion and absorption of dietary vitamin A. Annu. Rev. Nutr. 2005;25:87–103. PubMed
Havenstein G.B., Ferket P.R., Qureshi M.A. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 2003;82:1500–1508. PubMed
Hein H. The pathogenic effects of Eimeria acervulina in young chicks 1. Exp. Parasitol. 1968;22:1–11. PubMed
Hernández-Velasco X., Chapman H.D., Owens C.M., Kuttappan V.A., Fuente-Martínez B., Menconi A., Latorre J.D., Kallapura G., Bielke L.R., Rathinam T., Hargis B.M., Tellez G. Absorption and deposition of xanthophylls in broilers challenged with three dosages of Eimeria acervulina oocysts. Brit. Poult. Sci. 2014;55:167–173. PubMed
Hocking P.M. Unexpected consequences of genetic selection in broilers and turkeys: problems and solutions. Brit. Poult. Sci. 2014;55:1–12. PubMed
Hong Y.H., Lillehoj H.S., Lillehoj E.P., Lee S.H. Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chickens. Vet. Immunol. Immunopathol. 2006;114:259–272. PubMed
Humphries J.M., Khachik F. Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J. Agric. Food Chem. 2003;51:1322–1327. PubMed
Idris A.B., Bounous D.I., Goodwin M.A., Brown J., Krushinskie E.A. Quantitative pathology of small intestinal coccidiosis caused by Eimeria maxima in young broilers. Avian Pathol. 1997;26:731–747. PubMed
Julian R.J. Rapid growth problems: ascites and skeletal deformities in broilers. Poult. Sci. 1998;77:1773–1780. PubMed
Kapell D.N., Hill W.G., Neeteson A.M., McAdam J., Koerhuis A.N., Avendano S. Genetic parameters of foot-pad dermatitis and body weight in purebred broiler lines in 2 contrasting environments. Poult. Sci. 2012;91:565–574. PubMed
Kipper M., Andretta I., Lehnen C.R., Lovatto P.A., Monteiro S.G. Meta-analysis of the performance variation in broilers experimentally challenged by Eimeria spp. Vet. Parasitol. 2013;196:77–84. PubMed
Klasing K. The costs of immunity. Acta Zool. Sin. 2004;50:961–969.
Kyriazakis I. Is anorexia during infection in animals affected by food composition? Anim. Feed Sci. Technol. 2010;156:1–9.
Kyriazakis I. Pathogen-induced anorexia: a herbivore strategy or an unavoidable consequence of infection? Anim. Prod. Sci. 2014;54:1190–1197.
Kyriazakis I., Houdijk J.G.M. Food intake and performance of pigs during health disease and recovery. In: J Wiseman J., Varley M.A., McOrist S., Kemp B., editors. Paradigms in Pig Science. Nottingham University Press; Nottingham: 2007. pp. 493–513.
Lillehoj H.S., Li G.X. Nitric oxide production by macrophages stimulated with coccidia sporozoites, lipopolysaccharide, or interferon-gamma, and its dynamic changes in SC and TK strains of chickens infected with Eimeria tenella. Avian Dis. 2004;48:244–253. PubMed
Lillehoj H.S., Ruff M.D. Comparison of disease susceptibility and subclass-specific antibody response in Sc and Fp chickens experimentally inoculated with Eimeria Tenella, Eimeria Acervulina, or Eimeria Maxima. Avian Dis. 1987;31:112–119. PubMed
Lillehoj H.S., Trout J.M. Avian gut associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin. Microbiol. Rev. 1996;9:349–360. PubMed PMC
Liu Z., Lee H.-J., Garofalo F., Jenkins D.J.A., El-Sohemy A. Simultaneous measurement of three tocopherols, all-trans-retinol, and eight carotenoids in human plasma by isocratic liquid chromatography. J. Chromatogr. Sci. 2011;49:221–227.
Long P.L., Millard B.J., Joyner L.P., Norton C.C. A guide to laboratory techniques used in the study and diagnosis of avian coccidiosis. Folia Vet. Lat. 1976;6:201–217. PubMed
Lough G., Kyriazakis I., Bergmann S., Lengeling A., Doeschl-Wilson A.B. Health trajectories reveal the dynamic contributions of host genetic resistance and tolerance to infection outcome. Proc. R. Soc. Lond. B. Biol. Sci. 2015:282. PubMed PMC
Macdonald S.E., Nolan M.J., Harman K., Boulton K., Hume D.A., Tomley F.M., Stabler R.A., Blake D.P. Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS One. 2017;12 PubMed PMC
Martynova-Van Kley M.A., Oviedo-Rondon E.O., Dowd S.E., Hume M., Nalian A. Effect of Eimeria infection on cecal microbiome of broilers fed essential oils. Int. J. Poult. Sci. 2012;11:747–755.
McDevitt R.M., McEntee† G.M., Rance† K.A. Bone breaking strength and apparent metabolisability of calcium and phosphorus in selected and unselected broiler chicken genotypes. Br. Poult. Sci. 2006;47:613–621. PubMed
Nolan M.J., Tomley F.M., Kaiser P., Blake D.P. Quantitative real-time PCR (qPCR) for eimeria tenella replication—implications for experimental refinement and animal welfare. Parasitol. Int. 2015;64:464–470. PubMed PMC
Persia M.E., Young E.L., Utterback P.L., Parsons C.M. Effects of dietary ingredients and eimeria acervulina infection on chick performance, apparent metabolizable energy, and amino acid digestibility. Poult. Sci. 2006;85:48–55. PubMed
Pinard-Van Der Laan M.H., Monvoisin J.L., Pery P., Hamet N., Thomas M. Comparison of outbred lines of chickens for resistance to experimental infection with coccidiosis (Eimeria tenella) Poult. Sci. 1998;77:185–191. PubMed
Polansky O., Sekelova Z., Faldynova M., Sebkova A., Sisak F., Rychlik I. Characterisation of the most important metabolic pathways and biological processes expressed in chicken caecal microbiota. Appl. Environ. Microbiol. 2016;82:1569–1576. PubMed PMC
Preston-Mafham R.A., Sykes A.H. Changes in body weight and intestinal absorption during infections with Eimeria acervulina in the chicken. Parasitology. 1970;61:417–424. PubMed
Qadir O.K., Teh J., Siervo M., Seal C.J., Brandt K. Method using gas chromatography mass spectrometry (GC-MS) for analysis of nitrate and nitrite in vegetables. In: D’Haene K., Vandecasteele B., De Vis R., Crappé S., Callens D., Mechant E., editors. NUTRIHORT: Nutrient Management, Innovative Techniques and Nutrient Legislation in Intensive Horticulture for an Improved Water Quality. Institute for Agricultural and Fisheries Research; Ghent, Belgium: 2013.
Rauw W.M. Immune response from a resource allocation perspective. Front. Genet. 2012;3:267. PubMed PMC
Rauw W.M., Kanis E., Noordhuizen-Stassen E.N., Grommers F.J. Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest. Prod. Sci. 1998;56:15–33.
Reid A.J., Blake D.P., Ansari H.R., Billington K., Browne H.P., Bryant J., Dunn M., Hung S.S., Kawahara F., Miranda-Saavedra D., Malas T.B., Mourier T., Naghra H., Nair M., Otto T.D., Rawlings N.D., Rivailler P., Sanchez-Flores A., Sanders M., Subramaniam C., Tay Y.L., Woo Y., Wu X., Barrell B., Dear P.H., Doerig C., Gruber A., Ivens A.C., Parkinson J., Rajandream M.A., Shirley M.W., Wan K.L., Berriman M., Tomley F.M., Pain A. Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Res. 2014;24:1676–1685. PubMed PMC
Sandberg F.B., Emmans G.C., Kyriazakis I. The effects of pathogen challenges on the performance of naive and immune animals: the problem of prediction. Animal. 2007;1:67–86. PubMed
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH image to imageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Schokker D., Veninga G., Vastenhouw S.A., Bossers A., de Bree F.M., Kaal-Lansbergen L.M.T.E., Rebel J.M.J., Smits M.A. Early life microbial colonization of the gut and intestinal development differ between genetically divergent broiler lines. BMC Genom. 2015;16:418. PubMed PMC
Sharma V.D., Fernando M.A. Effect of Eimeria acervulina infection on nutrient retention with special reference to fat malabsorption in chickens. Can. J. Comp. Med. 1975;39:146–154. PubMed PMC
Shaw A.L., van Ginkel F.W., Macklin K.S., Blake J.P. Effects of phytase supplementation in broiler diets on a natural Eimeria challenge in naive and vaccinated birds. Poult. Sci. 2011;90:781–790. PubMed
Shim M.Y., Karnuah A.B., Anthony N.B., Pesti G.M., Aggrey S.E. The effects of broiler chicken growth rate on valgus, varus, and tibial dyschondroplasia. Poult. Sci. 2012;91:62–65. PubMed
Siegel P.B. Evolution of the modern broiler and feed efficiency. Annu. Rev. Anim. Biosci. 2014;2:375–385. PubMed
Singh S.P., Donovan G.A. A relationship between coccidiosis and dietary vitamin a levels in chickens. Poult. Sci. 1973;52:1295–1301. PubMed
Su S., Miska K.B., Fetterer R.H., Jenkins M.C., Wong E.A. Expression of digestive enzymes and nutrient transporters in Eimeria acervulina challenged layers and broilers. Poult. Sci. 2014;93:1217–1226. PubMed
Swaggerty C.L., Pevzner I.Y., He H., Genovese K.J., Nisbet D.J., Kaiser P., Kogut M.H. Selection of broilers with improved innate immune responsiveness to reduce on-farm infection by foodborne pathogens. Foodborne Pathog. Dis. 2009;6:777–783. PubMed
Swaggerty C.L., Pevzner I.Y., Kogut M.H. Selection for pro-inflammatory mediators produces chickens more resistant to Eimeria tenella. Poult. Sci. 2015;94:37–42. PubMed
Swinkels W.J.C., Post J., Cornelissen J.B., Engel B., Boersma W.J.A., Rebel J.M.J. Immune responses to an Eimeria acervulina infection in different broilers lines. Vet. Immunol. Immunopathol. 2007;117:26–34. PubMed
Takhar B.S., Farrell D.J. Energy and nitrogen metabolism of chickens subjected to infection and reinfection with Eimeria acervulina. Brit. Poult. Sci. 1979;20:213–224. PubMed
Tallentire C.W., Leinonen I., Kyriazakis I. Breeding for efficiency in the broiler chicken: a review. Agron. Sustain. Dev. 2016;36:66.
Tixier-Boichard M., Leenstra F., Flock D.K., Hocking P.M., Weigend S. A century of poultry genetics. World’s Poult. Sci. J. 2012;68:307–321.
Tsikas D. Simultaneous derivatization and quantification of the nitric oxide metabolites nitrite and nitrate in biological fluids by gas chromatography/mass spectrometry. Phy/mass spectrometry. Anal. Chem. 2000;72:4064–4072. PubMed
Turk D.E. Calcium absorption during coccidial infections in chicks. Poult. Sci. 1973;52:854–857. PubMed
van der Aar P., Doppenberg J., Kwakernaak C., Burton E., Gatcliffe J., O’Neill H., Scholey D. In: Sustainable Poultry Production in Europe. CABI, Oxon. Burton E., Gatcliffe J., O’Neill H.M., Scholey D., editors. 2016. pp. 103–111.
van der Most P.J., de Jong B., Parmentier H.K., Verhulst S. Trade-off between growth and immune function: a meta-analysis of selection experiments. Funct. Ecol. 2011;25:74–80.
Varmuzova K., Kubasova T., Davidova-Gerzova L., Sisak F., Havlickova H., Sebkova A., Faldynova M., Rychlik I. Composition of gut microbiota influences resistance of newly hatched chickens to Salmonella enteritidis infection. Front. Microbiol. 2016;7:957. PubMed PMC
Ward T.L., Watkins K.L., Southern L.L. Interactive effects of sodium zeolite a (ethacal) and monensin in uninfected and Eimeria acervulina infected chicks. Poult. Sci. 1990;69:276–280. PubMed
Watkins K.L., Vagnoni D.B., Southern L.L. Effect of dietary sodium zeolite A and excess calcium on growth and tibia calcium and phosphorus concentration in uninfected and Eimeria acervulina-infected chicks. Poult. Sci. 1989;68:1236–1240. PubMed
Watson B.C., Matthews J.O., Southern L.L., Shelton J.L. The interactive effects of Eimeria acervulina infection and phytase for broiler chicks. Poult. Sci. 2005;84:910–913. PubMed
Williams R.B. Quantification of the crowding effect during infections with the seven Eimeria species of the domesticated fowl: its importance for experimental designs and the production of oocyst stocks. Int. J. Parasitol. 2001;31:1056–1069. PubMed
Williams R.B. Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 2005;34:159–180. PubMed
Williams B., Solomon S., Waddington D., Thorp B., Farquharson C. Skeletal development in the meat-type chicken. Brit. Poult. Sci. 2000;41:141–149. PubMed
Williams B., Waddington D., Murray D.H., Farquharson C. Bone strength during growth: influence of growth rate on cortical porosity and mineralization. Calcif. Tissue Int. 2004;74:236–245. PubMed
Willis G.M., Baker D.H. Phosphorus utilization during Eimeria acervulina infection in the chick. Poult. Sci. 1981;60:1960–1962. PubMed
Yunis R., Ben-David A., Heller E.D., Cahaner A. Immunocompetence and viability under commercial conditions of broiler groups differing in growth rate and in antibody response to Escherichia coli vaccine. Poult. Sci. 2000;79:810–816. PubMed
Zaralis K., Tolkamp B.J., Houdijk J.G.M., Wylie A.R.G., Kyriazakis I. Changes in food intake and circulating leptin due to gastrointestinal parasitism in lambs of two breeds1. J. Anim. Sci. 2008;86:1891–1903. PubMed
Zekarias B., Ter Huurne A.A.H.M., Landman W.J.M., Rebel J.M.J., Pol J.M.A., Gruys E. Immunological basis of differences in disease resistance in the chicken. Vet. Res. 2002;33:109–125. PubMed
Zhou Z., Nie K., Huang Q., Li K., Sun Y., Zhou R., Wang Z., Hu S. Changes of cecal microflora in chickens following Eimeria tenella challenge and regulating effect of coated sodium butyrate. Exp. Parasitol. 2017;177:73–81. PubMed
Zhu J.J., Lillehoj H.S., Allen P.C., Yun C.H., Pollock D., Sadjadi M., Emara M.G. Analysis of disease resistance-associated parameters in broiler chickens challenged with Eimeria maxima. Poult. Sci. 2000;79:619–625. PubMed
Zuidhof M.J., Schneider B.L., Carney V.L., Korver D.R., Robinson F.E. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 20051. Poult. Sci. 2014;93:2970–2982. PubMed PMC