MDR1 and BCRP Transporter-Mediated Drug-Drug Interaction between Rilpivirine and Abacavir and Effect on Intestinal Absorption
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články
PubMed
28696229
PubMed Central
PMC5571350
DOI
10.1128/aac.00837-17
PII: AAC.00837-17
Knihovny.cz E-zdroje
- Klíčová slova
- ABC transporters, abacavir, drug transporter, drug-drug interactions, oral bioavailability, pharmacokinetics, rilpivirine,
- MeSH
- ABC transportér z rodiny G, člen 2 metabolismus MeSH
- biologický transport fyziologie MeSH
- buněčné linie MeSH
- buňky MDCK MeSH
- Caco-2 buňky MeSH
- dideoxynukleosidy metabolismus farmakologie MeSH
- inhibitory reverzní transkriptasy metabolismus farmakologie MeSH
- intestinální absorpce fyziologie MeSH
- krysa rodu Rattus MeSH
- lamivudin metabolismus farmakologie MeSH
- lékové interakce fyziologie MeSH
- lidé MeSH
- membránové transportní proteiny metabolismus MeSH
- nádorové buněčné linie MeSH
- P-glykoprotein metabolismus MeSH
- potkani Wistar MeSH
- psi MeSH
- rilpivirin metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- abacavir MeSH Prohlížeč
- ABC transportér z rodiny G, člen 2 MeSH
- dideoxynukleosidy MeSH
- inhibitory reverzní transkriptasy MeSH
- lamivudin MeSH
- membránové transportní proteiny MeSH
- P-glykoprotein MeSH
- rilpivirin MeSH
Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir.
Zobrazit více v PubMed
European Medicines Agency. Edurant 25 mg film-coated tablets: summary of product characteristics. European Medicines Agency, London, United Kingdom: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002264/WC500118874.pdf Accessed 21 April 2016.
Center for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s), application number 202022Orig1s000. U.S. Food and Drug Administration, Washington, DC: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202022Orig1s000ClinPharmR.pdf Accessed 21 April 2016.
Azijn H, Tirry I, Vingerhoets J, de Bethune MP, Kraus G, Boven K, Jochmans D, Van Craenenbroeck E, Picchio G, Rimsky LT. 2010. TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-resistant HIV-1. Antimicrob Agents Chemother 54:718–727. doi:10.1128/AAC.00986-09. PubMed DOI PMC
Goebel F, Yakovlev A, Pozniak AL, Vinogradova E, Boogaerts G, Hoetelmans R, de Bethune MPP, Peeters M, Woodfall B. 2006. Short-term antiviral activity of TMC278–a novel NNRTI–in treatment-naive HIV-1-infected subjects. AIDS 20:1721–1726. doi:10.1097/01.aids.0000242818.65215.bd. PubMed DOI
Panel on Antiretroviral Guidelines for Adults and Adolescents. 2016. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services, Washington, DC. http://aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf Accessed 20 November 2016.
Kis O, Robillard K, Chan GN, Bendayan R. 2010. The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci 31:22–35. doi:10.1016/j.tips.2009.10.001. PubMed DOI
Neumanova Z, Cerveny L, Greenwood SL, Ceckova M, Staud F. 2015. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir. Reprod Toxicol 57:176–182. doi:10.1016/j.reprotox.2015.07.070. PubMed DOI
Neumanova Z, Cerveny L, Ceckova M, Staud F. 2015. Role of ABCB1, ABCG2, ABCC2 and ABCC5 transporters in placental passage of zidovudine. Biopharm Drug Dispos 37:28–38. doi:10.1002/bdd.1993. PubMed DOI
Reznicek J, Ceckova M, Cerveny L, Muller F, Staud F. 2016. Emtricitabine is a substrate of MATE1 but not of OCT1, OCT2, P-gp, BCRP or MRP2 transporters. Xenobiotica 47:77–85. doi:10.3109/00498254.2016.1158886. PubMed DOI
Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. 1987. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 84:7735–7738. doi:10.1073/pnas.84.21.7735. PubMed DOI PMC
Roninson IB, Chin JE, Choi K, Gros P, Housman DE, Fojo A, Shen D, Gottesman MM, Pastan I. 1986. Isolation of human Mdr-DNA sequences amplified in multidrug-resistant Kb carcinoma cells. Proc Natl Acad Sci U S A 83:4538–4542. doi:10.1073/pnas.83.12.4538. PubMed DOI PMC
Doyle LA, Ross DD. 2003. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22:7340–7358. doi:10.1038/sj.onc.1206938. PubMed DOI
Konig J, Nies AT, Cui YH, Leier I, Keppler D. 1999. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta Biomembr 1461:377–394. doi:10.1016/S0005-2736(99)00169-8. PubMed DOI
Chan LM, Lowes S, Hirst BH. 2004. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21:25–51. doi:10.1016/j.ejps.2003.07.003. PubMed DOI
Lee G, Dallas S, Hong M, Bendayan R. 2001. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 53:569–596. doi:10.1146/annurev.pharmtox.41.1.569. PubMed DOI
Lee W, Kim RB. 2004. Transporters and renal drug elimination. Annu Rev Pharmacol Toxicol 44:137–166. doi:10.1146/annurev.pharmtox.44.101802.121856. PubMed DOI
Bart J, Hollema H, Groen HJ, de Vries EG, Hendrikse NH, Sleijfer DT, Wegman TD, Vaalburg W, van der Graaf WT. 2004. The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. Eur J Cancer 40:2064–2070. doi:10.1016/j.ejca.2004.05.010. PubMed DOI
Koepsell H, Lips K, Volk C. 2007. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251. doi:10.1007/s11095-007-9254-z. PubMed DOI
Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H. 1997. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881. doi:10.1089/dna.1997.16.871. PubMed DOI
Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K. 2002. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874. PubMed
Motohashi H, Inui K. 2013. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J 15:581–588. doi:10.1208/s12248-013-9465-7. PubMed DOI PMC
FDA. 2012. Guidance for industry, drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. Clinical Pharmacology. FDA, Silver Spring, MD. PubMed
Zamek-Gliszczynski MJ, Hoffmaster KA, Tweedie DJ, Giacomini KM, Hillgren KM. 2012. Highlights from the International Transporter Consortium Second Workshop. Clin Pharmacol Ther 92:553–556. doi:10.1038/clpt.2012.126. PubMed DOI
Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. 2010. Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236. doi:10.1038/nrd3028. PubMed DOI PMC
Zhang L, Zhang YD, Zhao P, Huang SM. 2009. Predicting drug-drug interactions: an FDA perspective. AAPS J 11:300–306. doi:10.1208/s12248-009-9106-3. PubMed DOI PMC
EMA. 2012. Guideline on the investigation of drug interactions. European Medicines Agency, London, United Kingdom.
Weiss J, Haefeli WE. 2013. Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrobial Agents 41:484–487. doi:10.1016/j.ijantimicag.2013.01.004. PubMed DOI
Moss DM, Liptrott NJ, Curley P, Siccardi M, Back DJ, Owen A. 2013. Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 in vitro. Antimicrob Agents Chemother 57:5612–5618. doi:10.1128/AAC.01421-13. PubMed DOI PMC
Cohen CJ, Molina JM, Cassetti I, Chetchotisakd P, Lazzarin A, Orkin C, Rhame F, Stellbrink HJ, Li T, Crauwels H, Rimsky L, Vanveggel S, Williams P, Boven K, ECHO, THRIVE Study Groups. 2013. Week 96 efficacy and safety of rilpivirine in treatment-naive, HIV-1 patients in two phase III randomized trials. AIDS 27:939–950. doi:10.1097/QAD.0b013e32835cee6e. PubMed DOI
Curran A, Rojas J, Cabello A, Troya J, Imaz A, Domingo P, Martinez E, Ryan P, Gorgolas M, Podzamczer D, Knobel H, Gutierrez F, Ribera E. 2016. Effectiveness and safety of an abacavir/lamivudine + rilpivirine regimen for the treatment of HIV-1 infection in naive patients. J Antimicrob Chemother 71:3510–3514. doi:10.1093/jac/dkw347. PubMed DOI
Palacios R, Perez-Hernandez IA, Martinez MA, Mayorga ML, Gonzalez-Domenech CM, Omar M, Olalla J, Romero A, Romero JM, Perez-Camacho I, Hernandez-Quero J, Santos J. 2016. Efficacy and safety of switching to abacavir/lamivudine (ABC/3TC) plus rilpivirine (RPV) in virologically suppressed HIV-infected patients on HAART. Eur J Clin Microbiol Infect Dis 35:815–819. doi:10.1007/s10096-016-2602-3. PubMed DOI
Troya J, Ryan P, Ribera E, Podzamczer D, Hontanon V, Terron JA, Boix V, Moreno S, Barrufet P, Castano M, Carrero A, Galindo MJ, Suarez-Lozano I, Knobel H, Raffo M, Solis J, Yllescas M, Esteban H, Gonzalez-Garcia J, Berenguer J, Imaz A, GESIDA-8314 Study Group. 2016. Abacavir/lamivudine plus rilpivirine is an effective and safe strategy for HIV-1 suppressed patients: 48 week results of the SIMRIKI retrospective study. PLoS One 11:e0164455. doi:10.1371/journal.pone.0164455. PubMed DOI PMC
Ceckova M, Reznicek J, Ptackova Z, Cerveny L, Muller F, Kacerovsky M, Fromm MF, Glazier JD, Staud F. 2016. Role of ABC and solute carrier transporters in the placental transport of lamivudine. Antimicrob Agents Chemother 60:5563–5572. doi:10.1128/AAC.00648-16. PubMed DOI PMC
Müller F, König J, Hoier E, Mandery K, Fromm MF. 2013. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem Pharmacol 86:808–815. doi:10.1016/j.bcp.2013.07.008. PubMed DOI
Cihalova D, Hofman J, Ceckova M, Staud F. 2013. Purvalanol A, olomoucine II and roscovitine inhibit ABCB1 transporter and synergistically potentiate cytotoxic effects of daunorubicin in vitro. PLoS One 8:e83467. doi:10.1371/journal.pone.0083467. PubMed DOI PMC
Ceckova M, Libra A, Pavek P, Nachtigal P, Brabec M, Fuchs R, Staud F. 2006. Expression and functional activity of breast cancer resistance protein (BCRP, ABCG2) transporter in the human choriocarcinoma cell line bewo. Clin Exp Pharmacol Physiol 33:58–65. doi:10.1111/j.1440-1681.2006.04324.x. PubMed DOI
Zhang L, Zhang YD, Strong JM, Reynolds KS, Huang SM. 2008. A regulatory viewpoint on transporter-based drug interactions. Xenobiotica 38:709–724. doi:10.1080/00498250802017715. PubMed DOI
Taipalensuu J, Tornblom H, Lindberg G, Einarsson C, Sjoqvist F, Melhus H, Garberg P, Sjostrom B, Lundgren B, Artursson P. 2001. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther 299:164–170. PubMed
Brown KC, Paul S, Kashuba AD. 2009. Drug interactions with new and investigational antiretrovirals. Clin Pharmacokinet 48:211–241. doi:10.2165/00003088-200948040-00001. PubMed DOI PMC
Han HK. 2011. Role of transporters in drug interactions. Arch Pharm Res 34:1865–1877. doi:10.1007/s12272-011-1107-y. PubMed DOI
König J, Müller F, Fromm MF. 2013. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev 65:944–966. doi:10.1124/pr.113.007518. PubMed DOI
Müller F, Fromm MF. 2011. Transporter-mediated drug-drug interactions. Pharmacogenomics 12:1017–1037. PubMed
Langmann T, Mauerer R, Zahn A, Moehle C, Probst M, Stremmel W, Schmitz G. 2003. Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues. Clin Chem 49:230–238. PubMed
Shapiro AB, Ling V. 1998. The mechanism of ATP-dependent multidrug transport by P-glycoprotein. Acta Physiol Scand 163:227–234. PubMed
Mittra R, Pavy M, Subramanian N, George AM, O'Mara ML, Kerr ID, Callaghan R. 2016. Location of contact residues in pharmacologically distinct drug binding sites on P-glycoprotein. Biochem Pharmacol doi:10.1016/j.bcp.2016.10.002. PubMed DOI
Garvey L, Winston A. 2009. Rilpivirine: a novel non-nucleoside reverse transcriptase inhibitor. Expert Opin Investig Drugs 18:1035–1041. doi:10.1517/13543780903055056. PubMed DOI
Sharma M, Saravolatz LD. 2013. Rilpivirine: a new non-nucleoside reverse transcriptase inhibitor. J Antimicrob Chemother 68:250–256. doi:10.1093/jac/dks404. PubMed DOI
Crauwels H, van Heeswijk RPG, Stevens M, Buelens A, Vanveggel S, Boven K, Hoetelmans R. 2013. Clinical perspective on drug-drug interactions with the non-nucleoside reverse transcriptase inhibitor rilpivirine. AIDS Rev 15:87–101. PubMed
National Research Council. 1996. Guide for the care and use of laboratory animals. National Academies Press, Washington, DC: http://www.ncbi.nlm.nih.gov/books/NBK54050.
Council of Europe. 1986. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. European treaty series no. 123. Council of Europe, Strasbourg, France.
Tong L, Phan TK, Robinson KL, Babusis D, Strab R, Bhoopathy S, Hidalgo IJ, Rhodes GR, Ray AS. 2007. Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob Agents Chemother 51:3498–3504. doi:10.1128/AAC.00671-07. PubMed DOI PMC