Impact of Z chromosome inversions on gene expression in testis and liver tissues in the zebra finch
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-22538S
Czech Science Foundation
301592
Norges Forskningsråd
PubMed
38126688
PubMed Central
PMC11628666
DOI
10.1111/mec.17236
Knihovny.cz E-zdroje
- Klíčová slova
- Taeniopygia guttata, chromosome inversion, liver, testis, transcriptomics,
- MeSH
- chromozomální inverze * genetika MeSH
- exprese genu genetika MeSH
- fenotyp MeSH
- játra * metabolismus MeSH
- karyotyp MeSH
- pěnkavovití * genetika MeSH
- pohlavní chromozomy genetika MeSH
- spermie metabolismus MeSH
- testis * metabolismus MeSH
- transkriptom genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Chromosomal inversions have been identified in many natural populations and can be responsible for novel traits and rapid adaptation. In zebra finch, a large region on the Z chromosome has been subject to multiple inversions, which have pleiotropic effects on multiple traits but especially on sperm phenotypes, such as midpiece and flagellum length. To understand the effect, the Z inversion has on these traits, we examined testis and liver transcriptomes of young males at different maturation times. We compared gene expression differences among three inversion karyotypes: AA, B*B* and AB*, where B* denotes the inverted regions on Z with respect to A. In testis, 794 differentially expressed genes were found and most of them were located on chromosome Z. They were functionally enriched for sperm-related traits. We also identified clusters of co-expressed genes that matched with the inversion-related sperm phenotypes. In liver, there were some enriched functions and some overrepresentation on chromosome Z with similar location as in testis. In both tissues, the overrepresented genes were located near the distal end of Z but also in the middle of the chromosome. For the heterokaryotype, we observed several genes with one allele being dominantly expressed, similar to expression patterns in one or the other homokaryotype. This was confirmed with SNPs for three genes, and interestingly one gene, DMGDH, had allele-specific expression originating mainly from one inversion haplotype in the testis, yet both inversion haplotypes were expressed equally in the liver. This karyotype-specific difference in tissue-specific expression suggests a pleiotropic effect of the inversion and thus suggests a mechanism for divergent phenotypic effects resulting from an inversion.
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Natural History Museum University of Oslo Oslo Norway
Section of Ecology and Evolution Department of Biology University of Turku Turku Finland
Tjärnö Marine Laboratory Department of Marine Sciences University of Gothenburg Strömstad Sweden
Zobrazit více v PubMed
Aire, T. A. (2014). Spermiogenesis in birds. Spermatogenesis, 4(1), e34346. 10.4161/spmg.34346 PubMed DOI PMC
Bailey, T. L. , & Grant, C. E. (2021). SEA: Simple enrichment analysis of motifs. BioRxiv, 2021.08.23.457422 10.1101/2021.08.23.457422v1.abstract DOI
Berdan, E. L. , Mérot, C. , Pavia, H. , Johannesson, K. , Wellenreuther, M. , & Butlin, R. K. (2021). A large chromosomal inversion shapes gene expression in seaweed flies (Coelopa frigida). Evolution Letters, 5(6), 607–624. 10.1002/evl3.260 PubMed DOI PMC
Brionne, A. , Juanchich, A. , & Hennequet‐Antier, C. (2019). ViSEAGO: A Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity. Biodata Mining, 12(1), 1–13. 10.1186/s13040-019-0204-1 PubMed DOI PMC
Buchberger, E. , Reis, M. , Lu, T. H. , & Posnien, N. (2019). Cloudy with a chance of insights: Context dependent gene regulation and implications for evolutionary studies. Genes, 10(7), 492. 10.3390/genes10070492 PubMed DOI PMC
Carreras‐Gallo, N. , Cáceres, A. , Balagué‐Dobón, L. , Ruiz‐Arenas, C. , Andrusaityte, S. , Carracedo, Á. , Casas, M. , Chatzi, L. , Grazuleviciene, R. , Gutzkow, K. B. , Lepeule, J. , Maitre, L. , Nieuwenhuijsen, M. , Slama, R. , Stratakis, N. , Thomsen, C. , Urquiza, J. , Wright, J. , Yang, T. , … González, J. R. (2022). The early‐life exposome modulates the effect of polymorphic inversions on DNA methylation. Communications Biology, 5(1), 455. 10.1038/s42003-022-03380-2 PubMed DOI PMC
Castro‐Mondragon, J. A. , Riudavets‐Puig, R. , Rauluseviciute, I. , Berhanu Lemma, R. , Turchi, L. , Blanc‐Mathieu, R. , Lucas, J. , Boddie, P. , Khan, A. , Perez, N. M. , Fornes, O. , Leung, T. Y. , Aguirre, A. , Hammal, F. , Schmelter, D. , Baranasic, D. , Ballester, B. , Sandelin, A. , Lenhard, B. , … Mathelier, A. (2022). JASPAR 2022: The 9th release of the open‐access database of transcription factor binding profiles. Nucleic Acids Research, 50(D1), D165–D173. 10.1093/nar/gkab1113 PubMed DOI PMC
Chan, Y. F. , Marks, M. E. , Jones, F. C. , Villarreal, G. , Shapiro, M. D. , Brady, S. D. , Southwick, A. M. , Absher, D. M. , Grimwood, J. , Schmutz, J. , Myers, R. M. , Petrov, D. , Jonsson, B. , Schluter, D. , Bell, M. A. , & Kingsley, D. M. (2010). Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science, 327(5963), 302–305. 10.1126/science.1182213 PubMed DOI PMC
Crow, T. , Ta, J. , Nojoomi, S. , Aguilar‐Rangel, M. R. , Rodríguez, J. V. T. , Gates, D. , Rellán‐Álvarez, R. , Sawers, R. , & Runcie, D. (2020). Gene regulatory effects of a large chromosomal inversion in highland maize. PLoS Genetics, 16, 1–28. 10.1371/journal.pgen.1009213 PubMed DOI PMC
Danecek, P. , Bonfield, J. K. , Liddle, J. , Marshall, J. , Ohan, V. , Pollard, M. O. , Whitwham, A. , Keane, T. , McCarthy, S. A. , Davies, R. M. , & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), 1–4. 10.1093/gigascience/giab008 PubMed DOI PMC
Dobin, A. , Davis, C. A. , Schlesinger, F. , Drenkow, J. , Zaleski, C. , Jha, S. , Batut, P. , Chaisson, M. , & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA‐seq aligner. Bioinformatics, 29(1), 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Fatica, A. , & Bozzoni, I. (2014). Long non‐coding RNAs: New players in cell differentiation and development. Nature Reviews Genetics, 15(1), 7–21. 10.1038/nrg3606 PubMed DOI
Fisher, H. S. (2017). Supergene yields super sperm. Nature Ecology & Evolution, 1(8), 1064–1065. 10.1038/s41559-017-0261-0 PubMed DOI
Forstmeier, W. , Segelbacher, G. , Mueller, J. C. , & Kempenaers, B. (2007). Genetic variation and differentiation in captive and wild zebra finches (Taeniopygia guttata). Molecular Ecology, 16(19), 4039–4050. 10.1111/j.1365-294X.2007.03444.x PubMed DOI
Fuller, Z. L. , Haynes, G. D. , Richards, S. , & Schaeffer, S. W. (2016). Genomics of natural populations: How differentially expressed genes shape the evolution of chromosomal inversions in Drosophila pseudoobscura . Genetics, 204(1), 287–301. 10.1534/genetics.116.191429 PubMed DOI PMC
Ge, S. X. , Jung, D. , Jung, D. , & Yao, R. (2018). ShinyGO: A graphical enrichment tool for ani‐mals and plants. BioRxiv, 36(December 2019), 315150. 10.1101/082511.Lai DOI
Guioli, S. , Lovell‐Badge, R. , & Turner, J. M. A. (2012). Error‐prone ZW pairing and no evidence for meiotic sex chromosome inactivation in the chicken germ line. PLoS Genetics, 8(3), e1002560. 10.1371/journal.pgen.1002560 PubMed DOI PMC
Itoh, Y. , Kampf, K. , Balakrishnan, C. N. , & Arnold, A. P. (2011). Karyotypic polymorphism of the zebra finch Z chromosome. Chromosoma, 120(3), 255–264. 10.1007/s00412-010-0308-3 PubMed DOI PMC
Johnson, A. R. , Lao, S. , Wang, T. , Galanko, J. A. , & Zeisel, S. H. (2012). Choline dehydrogenase polymorphism rs12676 is a functional variation and is associated with changes in human sperm cell function. PLoS One, 7(4), 1–12. 10.1371/journal.pone.0036047 PubMed DOI PMC
Jumeau, F. , Chalmel, F. , Fernandez‐Gomez, F. J. , Carpentier, C. , Obriot, H. , Tardivel, M. , Caillet‐Boudin, M. L. , Rigot, J. M. , Rives, N. , Buée, L. , Sergeant, N. , & Mitchell, V. (2017). Defining the human sperm microtubulome: An integrated genomics approach. Biology of Reproduction, 96(1), 93–106. 10.1095/biolreprod.116.143479 PubMed DOI
Kahrl, A. F. , Snook, R. R. , & Fitzpatrick, J. L. (2022). Fertilization mode differentially impacts the evolution of vertebrate sperm components. Nature Communications, 13(1), 6809. 10.1038/s41467-022-34609-7 PubMed DOI PMC
Kim, K.‐W. , Bennison, C. , Hemmings, N. , Brookes, L. , Hurley, L. L. , Griffith, S. C. , Burke, T. , Birkhead, T. R. , & Slate, J. (2017). A sex‐linked supergene controls sperm morphology and swimming speed in a songbird. Nature Ecology and Evolution, 1(8), 1168–1176. 10.1038/s41559-017-0235-2 PubMed DOI
Kim, K.‐W. , Bennison, C. , Hemmings, N. , Brookes, L. , Hurley, L. L. , Griffith, S. C. , Burke, T. , Birkhead, T. R. , & Slate, J. (2018). Data from: A sex‐linked supergene controls sperm morphology and swimming speed in a songbird . Dryad. 10.5061/dryad.p4238 PubMed DOI
Kleinjan, D. A. , & van Heyningen, V. (2005). Long‐range control of gene expression: Emerging mechanisms and disruption in disease. The American Journal of Human Genetics, 76(1), 8–32. 10.1086/426833 PubMed DOI PMC
Knief, U. , Forstmeier, W. , Kempenaers, B. , & Wolf, J. B. W. (2021). A sex chromosome inversion is associated with copy number variation of mitochondrial DNA in zebra finch sperm. Royal Society Open Science, 8(9), 211025. 10.1098/rsos.211025 PubMed DOI PMC
Knief, U. , Forstmeier, W. , Pei, Y. , Ihle, M. , Wang, D. , Martin, K. , Opatová, P. , Albrechtová, J. , Wittig, M. , Franke, A. , Albrecht, T. , & Kempenaers, B. (2017). A sex‐chromosome inversion causes strong overdominance for sperm traits that affect siring success. Nature Ecology & Evolution, 1(8), 1177–1184. 10.1038/s41559-017-0236-1 PubMed DOI
Knief, U. , Hemmrich‐Stanisak, G. , Wittig, M. , Franke, A. , Griffith, S. C. , Kempenaers, B. , & Forstmeier, W. (2016). Fitness consequences of polymorphic inversions in the zebra finch genome. Genome Biology, 17(1), 199. 10.1186/s13059-016-1056-3 PubMed DOI PMC
Koch, E. L. , Morales, H. E. , Larsson, J. , Westram, A. M. , Faria, R. , Lemmon, A. R. , Lemmon, E. M. , Johannesson, K. , & Butlin, R. K. (2021). Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis . Evolution Letters, 5(3), 196–213. 10.1002/evl3.227 PubMed DOI PMC
Kosuthova, K. , & Solc, R. (2022). Inversions on human chromosomes. American Journal of Medical Genetics, Part A, 191, 672–683. 10.1002/ajmg.a.63063 PubMed DOI
Laiho, A. , Kotaja, N. , Gyenesei, A. , & Sironen, A. (2013). Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS One, 8(4), e61558. 10.1371/journal.pone.0061558 PubMed DOI PMC
Laskemoen, T. , Albrecht, T. , Bonisoli‐Alquati, A. , Cepak, J. , de Lope, F. , Hermosell, I. G. , Johannessen, L. E. , Kleven, O. , Marzal, A. , Mousseau, T. A. , Møller, A. P. , Robertson, R. J. , Rudolfsen, G. , Saino, N. , Vortman, Y. , & Lifjeld, J. T. (2013). Variation in sperm morphometry and sperm competition among barn swallow (Hirundo rustica) populations. Behavioral Ecology and Sociobiology, 67(2), 301–309. 10.1007/s00265-012-1450-0 DOI
Lavington, E. , & Kern, A. D. (2017). The effect of common inversion polymorphisms in(2L)t and in(3R)Mo on patterns of transcriptional variation in Drosophila melanogaster. G3: Genes, Genomes, Genetics, 7(11), 3659–3668. 10.1534/g3.117.1133 PubMed DOI PMC
Law, C. W. , Chen, Y. , Shi, W. , & Smyth, G. K. (2014). Voom: Precision weights unlock linear model analysis tools for RNA‐seq read counts. Genome Biology, 15(2), R29. 10.1186/gb-2014-15-2-r29 PubMed DOI PMC
Lifjeld, J. T. , Laskemoen, T. , Kleven, O. , Albrecht, T. , & Robertson, R. J. (2010). Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS One, 5(10), e13456. 10.1371/journal.pone.0013456 PubMed DOI PMC
Martin, M. (2011). Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnet Journal, 17(1), 10. 10.14806/ej.17.1.200 DOI
Míčková, K. , Tomášek, O. , Jelínek, V. , Šulc, M. , Pazdera, L. , Albrechtová, J. , & Albrecht, T. (2023). Age‐related changes in sperm traits and evidence for aging costs of sperm production in a sexually promiscuous passerine. Frontiers in Ecology and Evolution, 11, 1–9. 10.3389/fevo.2023.1105596 PubMed DOI
Pei, Y. (2021). Evolutionary genetics of reproductive performance in the zebra finch (Issue August) .
Pigozzi, M. I. (2022). A bird's‐eye view of chromosomes during meiotic prophase I. Journal of Basic and Applied Genetics, 33(1), 27–41. 10.35407/bag.2022.33.01.02 DOI
Pitnick, S. , Hosken, D. J. , & Birkhead, T. R. (2009). Sperm morphological diversity. In Birkhead T. R., Hosken D. J., & Pitnick S. (Eds.), Sperm biology: An evolutionary perspective (1st ed., pp. 69–149). Elsevier.
Prichard, M. R. , Grogan, K. E. , Merritt, J. R. , Root, J. , & Maney, D. L. (2022). Allele‐specific cis‐regulatory methylation of the gene for vasoactive intestinal peptide in white‐throated sparrows. Genes, Brain and Behavior, 21(8), 1–12. 10.1111/gbb.12831 PubMed DOI PMC
Puig, M. , Casillas, S. , Villatoro, S. , & Cáceres, M. (2015). Human inversions and their functional consequences. Briefings in Functional Genomics, 14(5), 369–379. 10.1093/bfgp/elv020 PubMed DOI PMC
R Core Team . (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r‐project.org/
Robinson, M. D. , McCarthy, D. J. , & Smyth, G. K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC
Sabarís, G. , Laiker, I. , Preger‐Ben Noon, E. , & Frankel, N. (2019). Actors with multiple roles: Pleiotropic enhancers and the paradigm of enhancer modularity. Trends in Genetics, 35(6), 423–433. 10.1016/j.tig.2019.03.006 PubMed DOI
Segami, J. C. , Semon, M. , Cunha, C. , Bergin, C. , Mugal, C. F. , & Qvarnström, A. (2022). Single‐Cell Transcriptomics reveals relaxed evolutionary constraint of spermatogenesis in two passerine birds as compared to mammals. BioRxiv Pre‐Print, 1–40. 10.14341/Conf7-8.09.22-98-99 DOI
Smyth, G. K. (2005). Limma: Linear models for microarray data. In Gentleman R., Carey V. J., Huber W., Irizarry R. A., & Dudoit S. (Eds.), Bioinformatics and computational biology solutions using R and Bioconductor (pp. 397–420). Springer‐Verlag. 10.1007/0-387-29362-0_23 DOI
van der Heijden, G. W. , Eijpe, M. , & Baarends, W. M. (2011). The X and y chromosome in meiosis: How and why they keep silent. Asian Journal of Andrology, 13(6), 779–780. 10.1038/aja.2011.93 PubMed DOI PMC
Wei, J. W. , Huang, K. , Yang, C. , & Kang, C. S. (2017). Non‐coding RNAs as regulators in epigenetics (Review). Oncology Reports, 37(1), 3–9. 10.3892/or.2016.5236 PubMed DOI
Wellenreuther, M. , Mérot, C. , Berdan, E. , & Bernatchez, L. (2019). Going beyond SNPs: The role of structural genomic variants in adaptive evolution and species diversification. Molecular Ecology, 28(6), 1203–1209. 10.1111/mec.15066 PubMed DOI
Whiting, J. R. (2022). JimWhiting91/genotype_plot: Genotype Plot . 10.5281/zenodo.5913504 DOI
Zhang, X. , Zhang, P. , Song, D. , Xiong, S. , Zhang, H. , Fu, J. , Gao, F. , Chen, H. , & Zeng, X. (2019). Expression profiles and characteristics of human lncRNA in normal and asthenozoospermia sperm. Biology of Reproduction, 100(4), 982–993. 10.1093/biolre/ioy253 PubMed DOI