Anti-HIV and Anti-Hepatitis C Virus Drugs Inhibit P-Glycoprotein Efflux Activity in Caco-2 Cells and Precision-Cut Rat and Human Intestinal Slices
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31481446
PubMed Central
PMC6811448
DOI
10.1128/aac.00910-19
PII: AAC.00910-19
Knihovny.cz E-zdroje
- Klíčová slova
- Caco-2 cells, P-glycoprotein, antiviral drugs, drug-drug interactions, intestinal absorption, precision-cut intestinal slices, rhodamine 123,
- MeSH
- antivirové látky farmakologie MeSH
- atazanavir sulfát farmakologie MeSH
- benzimidazoly farmakologie MeSH
- Caco-2 buňky účinky léků metabolismus MeSH
- fluoreny farmakologie MeSH
- hepatitida C komplikace farmakoterapie virologie MeSH
- HIV infekce komplikace farmakoterapie virologie MeSH
- imidazoly farmakologie MeSH
- karbamáty MeSH
- krysa rodu Rattus MeSH
- látky proti HIV farmakologie MeSH
- lékové interakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- Lopinavir farmakologie MeSH
- maravirok farmakologie MeSH
- P-glykoprotein antagonisté a inhibitory metabolismus MeSH
- potkani Wistar MeSH
- pyrrolidiny MeSH
- ritonavir farmakologie MeSH
- saquinavir farmakologie MeSH
- senioři MeSH
- střeva účinky léků MeSH
- valin analogy a deriváty MeSH
- zidovudin farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- atazanavir sulfát MeSH
- benzimidazoly MeSH
- daclatasvir MeSH Prohlížeč
- fluoreny MeSH
- imidazoly MeSH
- karbamáty MeSH
- látky proti HIV MeSH
- ledipasvir MeSH Prohlížeč
- Lopinavir MeSH
- maravirok MeSH
- P-glykoprotein MeSH
- pyrrolidiny MeSH
- ritonavir MeSH
- saquinavir MeSH
- valin MeSH
- zidovudin MeSH
P-glycoprotein (ABCB1), an ATP-binding-cassette efflux transporter, limits intestinal absorption of its substrates and is a common site of drug-drug interactions (DDIs). ABCB1 has been suggested to interact with many antivirals used to treat HIV and/or chronic hepatitis C virus (HCV) infections. Using bidirectional transport experiments in Caco-2 cells and a recently established ex vivo model of accumulation in precision-cut intestinal slices (PCIS) prepared from rat ileum or human jejunum, we evaluated the potential of anti-HIV and anti-HCV antivirals to inhibit intestinal ABCB1. Lopinavir, ritonavir, saquinavir, atazanavir, maraviroc, ledipasvir, and daclatasvir inhibited the efflux of a model ABCB1 substrate, rhodamine 123 (RHD123), in Caco-2 cells and rat-derived PCIS. Lopinavir, ritonavir, saquinavir, and atazanavir also significantly inhibited RHD123 efflux in human-derived PCIS, while possible interindividual variability was observed in the inhibition of intestinal ABCB1 by maraviroc, ledipasvir, and daclatasvir. Abacavir, zidovudine, tenofovir disoproxil fumarate, etravirine, and rilpivirine did not inhibit intestinal ABCB1. In conclusion, using recently established ex vivo methods for measuring drug accumulation in rat- and human-derived PCIS, we have demonstrated that some antivirals have a high potential for DDIs on intestinal ABCB1. Our data help clarify the molecular mechanisms responsible for reported increases in the bioavailability of ABCB1 substrates, including antivirals and drugs prescribed to treat comorbidity. These results could help guide the selection of combination pharmacotherapies and/or suitable dosing schemes for patients infected with HIV and/or HCV.
Zobrazit více v PubMed
World Health Organization. 2019. HIV/AIDS. http://www.who.int/hiv/data/en/. Accessed 7 February 2019.
World Health Organization. 2019. Hepatitis C. http://www.who.int/mediacentre/factsheets/fs164/en/. Accessed 7 February 2019.
Klevens RM, Hu DJ, Jiles R, Holmberg SD. 2012. Evolving epidemiology of hepatitis C virus in the United States. Clin Infect Dis 55:S3–S9. doi:10.1093/cid/cis393. PubMed DOI PMC
Centers for Disease Control and Prevention. 2019. Hepatitis C kills more Americans than any other infectious disease. https://www.cdc.gov/media/releases/2016/p0504-hepc-mortality.html. Accessed 7 February 2019.
Nováková L, Pavlík J, Chrenková L, Martinec O, Červený L. 2018. Current antiviral drugs and their analysis in biological materials-part II: antivirals against hepatitis and HIV viruses. J Pharm Biomed Anal 147:378–399. doi:10.1016/j.jpba.2017.07.003. PubMed DOI
Nováková L, Pavlík J, Chrenková L, Martinec O, Červený L. 2018. Current antiviral drugs and their analysis in biological materials-part I: antivirals against respiratory and herpes viruses. J Pharm Biomed Anal 147:400–416. doi:10.1016/j.jpba.2017.06.071. PubMed DOI
AASLD/IDSA HCV Guidance Panel. 2015. Hepatitis C guidance: AASLD-IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus. Hepatology 62:932–954. doi:10.1002/hep.27950. PubMed DOI
Panel on Antiretroviral Guidelines for Adults and Adolescents. 2019. Guidelines for the use of antiretroviral agents in adults and adolescents with HIV. Department of Health and Human Services, Washington, DC: http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 24 April 2019.
Garrison KL, German P, Mogalian E, Mathias A. 2018. The drug-drug interaction potential of antiviral agents for the treatment of chronic hepatitis C infection. Drug Metab Dispos 46:1212–1225. doi:10.1124/dmd.117.079038. PubMed DOI
Muller F, Fromm MF. 2011. Transporter-mediated drug-drug interactions. Pharmacogenomics 12:1017–1037. doi:10.2217/pgs.11.44. PubMed DOI
Marzolini C, Elzi L, Gibbons S, Weber R, Fux C, Furrer H, Chave JP, Cavassini M, Bernasconi E, Calmy A, Vernazza P, Khoo S, Ledergerber B, Back D, Battegay M, Swiss HIV Cohort Study. 2010. Prevalence of comedications and effect of potential drug-drug interactions in the Swiss HIV Cohort Study. Antivir Ther 15:413–423. doi:10.3851/IMP1540. PubMed DOI
Nachega JB, Hsu AJ, Uthman OA, Spinewine A, Pham PA. 2012. Antiretroviral therapy adherence and drug-drug interactions in the aging HIV population. AIDS 26(Suppl 1):S39–S53. doi:10.1097/QAD.0b013e32835584ea. PubMed DOI
Goodlet KJ, Zmarlicka MT, Peckham AM. 2019. Drug-drug interactions and clinical considerations with co-administration of antiretrovirals and psychotropic drugs. CNS Spectr 24:287–312. doi:10.1017/S109285291800113X. PubMed DOI
Poizot-Martin I, Naqvi A, Obry-Roguet V, Valantin MA, Cuzin L, Billaud E, Cheret A, Rey D, Jacomet C, Duvivier C, Pugliese P, Pradat P, Cotte L, Hepadat A. 2015. Potential for drug-drug interactions between antiretrovirals and HCV direct acting antivirals in a large cohort of HIV/HCV coinfected patients. PLoS One 10:e0141164. doi:10.1371/journal.pone.0141164. PubMed DOI PMC
Kaur K, Gandhi MA, Slish J. 2015. Drug-drug interactions among hepatitis C virus (HCV) and human immunodeficiency virus (HIV) medications. Infect Dis Ther 4:159–172. doi:10.1007/s40121-015-0061-2. PubMed DOI PMC
Dooley KE, Flexner C, Andrade AS. 2008. Drug interactions involving combination antiretroviral therapy and other anti-infective agents: repercussions for resource-limited countries. J Infect Dis 198:948–961. doi:10.1086/591459. PubMed DOI
McIlleron H, Meintjes G, Burman WJ, Maartens G. 2007. Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J Infect Dis 196(Suppl 1):S63–S75. doi:10.1086/518655. PubMed DOI
Cihlar T, Ray AS, Laflamme G, Vela JE, Tong L, Fuller MD, Roy A, Rhodes GR. 2007. Molecular assessment of the potential for renal drug interactions between tenofovir and HIV protease inhibitors. Antivir Ther 12:267–272. PubMed
Ouwerkerk-Mahadevan S, Snoeys J, Peeters M, Beumont-Mauviel M, Simion A. 2016. Drug-drug interactions with the NS3/4A protease inhibitor simeprevir. Clin Pharmacokinet 55:197–208. doi:10.1007/s40262-015-0314-y. PubMed DOI PMC
Rathbun RC, Liedtke MD. 2011. Antiretroviral drug interactions: overview of interactions involving new and investigational agents and the role of therapeutic drug monitoring for management. Pharmaceutics 3:745–781. doi:10.3390/pharmaceutics3040745. PubMed DOI PMC
Giacomini KM, Huang SM. 2013. Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther 94:3–9. doi:10.1038/clpt.2013.86. PubMed DOI
Oostendorp RL, Beijnen JH, Schellens J. 2009. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treatment Rev 35:137–147. doi:10.1016/j.ctrv.2008.09.004. PubMed DOI
Varma MV, Sateesh K, Panchagnula R. 2005. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol Pharm 2:12–21. doi:10.1021/mp0499196. PubMed DOI
International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. 2010. Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236. doi:10.1038/nrd3028. PubMed DOI PMC
Zamek-Gliszczynski MJ, Taub ME, Chothe PP, Chu X, Giacomini KM, Kim RB, Ray AS, Stocker SL, Unadkat JD, Wittwer MB, Xia C, Yee SW, Zhang L, Zhang Y, International Transporter Consortium. 2018. Transporters in drug development: 2018 ITC recommendations for transporters of emerging clinical importance. Clin Pharmacol Ther 104:890–899. doi:10.1002/cpt.1112. PubMed DOI PMC
Kis O, Robillard K, Chan GN, Bendayan R. 2010. The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci 31:22–35. doi:10.1016/j.tips.2009.10.001. PubMed DOI
Neumanova Z, Cerveny L, Ceckova M, Staud F. 2014. Interactions of tenofovir and tenofovir disoproxil fumarate with drug efflux transporters ABCB1, ABCG2, and ABCC2; role in transport across the placenta. AIDS 28:9–17. doi:10.1097/QAD.0000000000000112. PubMed DOI
Neumanova Z, Cerveny L, Ceckova M, Staud F. 2016. Role of ABCB1, ABCG2, ABCC2 and ABCC5 transporters in placental passage of zidovudine. Biopharm Drug Dispos 37:28–38. doi:10.1002/bdd.1993. PubMed DOI
Neumanova Z, Cerveny L, Greenwood SL, Ceckova M, Staud F. 2015. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir. Reprod Toxicol 57:176–182. doi:10.1016/j.reprotox.2015.07.070. PubMed DOI
Agarwal S, Pal D, Mitra AK. 2007. Both P-gp and MRP2 mediate transport of lopinavir, a protease inhibitor. Int J Pharm 339:139–147. doi:10.1016/j.ijpharm.2007.02.036. PubMed DOI PMC
Bierman WF, Scheffer GL, Schoonderwoerd A, Jansen G, van Agtmael MA, Danner SA, Scheper RJ. 2010. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J Antimicrob Chemother 65:1672–1680. doi:10.1093/jac/dkq209. PubMed DOI
Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR. 1998. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101:289–294. doi:10.1172/JCI1269. PubMed DOI PMC
Konig SK, Herzog M, Theile D, Zembruski N, Haefeli WE, Weiss J. 2010. Impact of drug transporters on cellular resistance towards saquinavir and darunavir. J Antimicrob Chemother 65:2319–2328. doi:10.1093/jac/dkq324. PubMed DOI
van der Sandt IC, Vos CM, Nabulsi L, Blom-Roosemalen MC, Voorwinden HH, de Boer AG, Breimer DD. 2001. Assessment of active transport of HIV protease inhibitors in various cell lines and the in vitro blood–brain barrier. AIDS 15:483–491. doi:10.1097/00002030-200103090-00007. PubMed DOI
Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, Haefeli WE, Efferth T. 2007. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother 59:238–245. doi:10.1093/jac/dkl474. PubMed DOI
Weiss J, Weis N, Ketabi-Kiyanvash N, Storch CH, Haefeli WE. 2008. Comparison of the induction of P-glycoprotein activity by nucleotide, nucleoside, and non-nucleoside reverse transcriptase inhibitors. Eur J Pharmacol 579:104–109. doi:10.1016/j.ejphar.2007.11.007. PubMed DOI
Zembruski NC, Buchel G, Jodicke L, Herzog M, Haefeli WE, Weiss J. 2011. Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J Antimicrob Chemother 66:802–812. doi:10.1093/jac/dkq501. PubMed DOI
Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J. 2007. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem Pharmacol 73:1573–1581. doi:10.1016/j.bcp.2007.01.027. PubMed DOI
Holmstock N, Mols R, Annaert P, Augustijns P. 2010. In situ intestinal perfusion in knockout mice demonstrates inhibition of intestinal p-glycoprotein by ritonavir causing increased darunavir absorption. Drug Metab Dispos 38:1407–1410. doi:10.1124/dmd.110.032771. PubMed DOI
Reznicek J, Ceckova M, Ptackova Z, Martinec O, Tupova L, Cerveny L, Staud F. 2017. MDR1 and BCRP transporter-mediated drug-drug interaction between rilpivirine and abacavir and effect on intestinal absorption. Antimicrob Agents Chemother 61:e00837-17. doi:10.1128/AAC.00837-17. PubMed DOI PMC
Prueksaritanont T, Chu X, Gibson C, Cui D, Yee KL, Ballard J, Cabalu T, Hochman J. 2013. Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS J 15:629–645. doi:10.1208/s12248-013-9470-x. PubMed DOI PMC
Li M, de Graaf IA, de Jager MH, Groothuis GM. 2015. Rat precision-cut intestinal slices to study P-gp activity and the potency of its inhibitors ex vivo. Toxicol In Vitro 29:1070–1078. doi:10.1016/j.tiv.2015.04.011. PubMed DOI
Li M, de Graaf IA, de Jager MH, Groothuis GM. 2017. P-gp activity and inhibition in the different regions of human intestine ex vivo. Biopharm Drug Dispos 38:127–138. doi:10.1002/bdd.2047. PubMed DOI
de Graaf IA, Olinga P, de Jager MH, Merema MT, de Kanter R, van de Kerkhof EG, Groothuis GM. 2010. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc 5:1540–1551. doi:10.1038/nprot.2010.111. PubMed DOI
Molas E, Luque S, Retamero A, Echeverria-Esnal D, Guelar A, Montero M, Guerri R, Sorli L, Lerma E, Villar J, Knobel H. 2018. Frequency and severity of potential drug interactions in a cohort of HIV-infected patients identified through a multidisciplinary team. HIV Clin Trials 19:1–7. doi:10.1080/15284336.2017.1404690. PubMed DOI
Marzolini C, Back D, Weber R, Furrer H, Cavassini M, Calmy A, Vernazza P, Bernasconi E, Khoo S, Battegay M, Elzi L, Swiss HIV Cohort Study Members. 2011. Ageing with HIV: medication use and risk for potential drug-drug interactions. J Antimicrob Chemother 66:2107–2111. doi:10.1093/jac/dkr248. PubMed DOI
Kigen G, Kimaiyo S, Nyandiko W, Faragher B, Sang E, Jakait B, Owen A, Back D, Gibbons S, Seden K, Khoo SH, USAID-Academic Model for Prevention Treatment of HIV/AIDS. 2011. Prevalence of potential drug-drug interactions involving antiretroviral drugs in a large Kenyan cohort. PLoS One 6:e16800. doi:10.1371/journal.pone.0016800. PubMed DOI PMC
Kamiyama E, Sugiyama D, Nakai D, Miura S, Okazaki O. 2009. Culture period-dependent change of function and expression of ATP-binding cassette transporters in Caco-2 cells. Drug Metab Dispos 37:1956–1962. doi:10.1124/dmd.109.027490. PubMed DOI
Sun D, Lennernas H, Welage LS, Barnett JL, Landowski CP, Foster D, Fleisher D, Lee KD, Amidon GL. 2002. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res 19:1400–1416. doi:10.1023/a:1020483911355. PubMed DOI
Vaessen SF, van Lipzig MM, Pieters RH, Krul CA, Wortelboer HM, van de Steeg E. 2017. Regional expression levels of drug transporters and metabolizing enzymes along the pig and human intestinal tract and comparison with Caco-2 cells. Drug Metab Dispos 45:353–360. doi:10.1124/dmd.116.072231. PubMed DOI
Tong L, Phan TK, Robinson KL, Babusis D, Strab R, Bhoopathy S, Hidalgo IJ, Rhodes GR, Ray AS. 2007. Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob Agents Chemother 51:3498–3504. doi:10.1128/AAC.00671-07. PubMed DOI PMC
Bode H, Lenzner L, Kraemer OH, Kroesen AJ, Bendfeldt K, Schulzke JD, Fromm M, Stoltenburg-Didinger G, Zeitz M, Ullrich R. 2005. The HIV protease inhibitors saquinavir, ritonavir, and nelfinavir induce apoptosis and decrease barrier function in human intestinal epithelial cells. Antivir Ther 10:645–655. PubMed
Perloff ES, Duan SX, Skolnik PR, Greenblatt DJ, von Moltke LL. 2005. Atazanavir: effects on P-glycoprotein transport and CYP3A metabolism in vitro. Drug Metab Dispos 33:764–770. doi:10.1124/dmd.104.002931. PubMed DOI
Forster S, Thumser AE, Hood SR, Plant N. 2012. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One 7:e33253. doi:10.1371/journal.pone.0033253. PubMed DOI PMC
Jouan E, Le Vee M, Denizot C, Da Violante G, Fardel O. 2014. The mitochondrial fluorescent dye rhodamine 123 is a high-affinity substrate for organic cation transporters (OCTs) 1 and 2. Fundam Clin Pharmacol 28:65–77. doi:10.1111/j.1472-8206.2012.01071.x. PubMed DOI
Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. 2017. Intestinal drug interactions mediated by OATPs: a systematic review of preclinical and clinical findings. J Pharm Sci 106:2312–2325. doi:10.1016/j.xphs.2017.04.004. PubMed DOI
Honjo Y, Hrycyna CA, Yan QW, Medina-Perez WY, Robey RW, van de Laar A, Litman T, Dean M, Bates SE. 2001. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 61:6635–6639. PubMed
Cerveny L, Ptackova Z, Durisova M, Staud F. 2018. Interactions of protease inhibitors atazanavir and ritonavir with ABCB1, ABCG2, and ABCC2 transporters: effect on transplacental disposition in rats. Reprod Toxicol 79:57–65. doi:10.1016/j.reprotox.2018.05.008. PubMed DOI
Tupova L, Ceckova M, Ambrus C, Sorf A, Ptackova Z, Gaborik Z, Staud F. 2019. Interactions between maraviroc and the Abcb1, Abcg2 and Abcc2 transporters: an important role in transplacental pharmacokinetics. Drug Metab Dispos 47:954. doi:10.1124/dmd.119.087684. PubMed DOI
Shiraki N, Hamada A, Yasuda K, Fujii J, Arimori K, Nakano M. 2000. Inhibitory effect of human immunodeficiency virus protease inhibitors on multidrug resistance transporter P-glycoproteins. Biol Pharm Bull 23:1528–1531. doi:10.1248/bpb.23.1528. PubMed DOI
Yumoto R, Murakami T, Nakamoto Y, Hasegawa R, Nagai J, Takano M. 1999. Transport of rhodamine 123, a P-glycoprotein substrate, across rat intestine and Caco-2 cell monolayers in the presence of cytochrome P-450 3A-related compounds. J Pharmacol Exp Ther 289:149–155. PubMed
Abel S, Back DJ, Vourvahis M. 2009. Maraviroc: pharmacokinetics and drug interactions. Antivir Ther 14:607–618. PubMed
Gandhi Y, Eley T, Fura A, Li W, Bertz RJ, Garimella T. 2018. Daclatasvir: a review of preclinical and clinical pharmacokinetics. Clin Pharmacokinet 57:911–928. doi:10.1007/s40262-017-0624-3. PubMed DOI
Gritsenko D, Hughes G. 2015. Ledipasvir/Sofosbuvir (harvoni): improving options for hepatitis C virus infection. P T 40:256–276. PubMed PMC
Kis O, Zastre JA, Hoque MT, Walmsley SL, Bendayan R. 2013. Role of drug efflux and uptake transporters in atazanavir intestinal permeability and drug-drug interactions. Pharm Res 30:1050–1064. doi:10.1007/s11095-012-0942-y. PubMed DOI
MacLean C, Moenning U, Reichel A, Fricker G. 2008. Closing the gaps: a full scan of the intestinal expression of p-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in male and female rats. Drug Metab Dispos 36:1249–1254. doi:10.1124/dmd.108.020859. PubMed DOI
Drozdzik M, Groer C, Penski J, Lapczuk J, Ostrowski M, Lai Y, Prasad B, Unadkat JD, Siegmund W, Oswald S. 2014. Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine. Mol Pharm 11:3547–3555. doi:10.1021/mp500330y. PubMed DOI
Englund G, Rorsman F, Ronnblom A, Karlbom U, Lazorova L, Grasjo J, Kindmark A, Artursson P. 2006. Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur J Pharm Sci 29:269–277. doi:10.1016/j.ejps.2006.04.010. PubMed DOI
Huisman MT, Smit JW, Wiltshire HR, Hoetelmans RM, Beijnen JH, Schinkel AH. 2001. P-glycoprotein limits oral availability, brain, and fetal penetration of saquinavir even with high doses of ritonavir. Mol Pharmacol 59:806–813. doi:10.1124/mol.59.4.806. PubMed DOI
Tomaru A, Takeda-Morishita M, Banba H, Takayama K. 2013. Analysis of the pharmacokinetic boosting effects of ritonavir on oral bioavailability of drugs in mice. Drug Metab Pharmacokinet 28:144–152. doi:10.2133/dmpk.DMPK-12-RG-057. PubMed DOI
Schmiedlin-Ren P, Thummel KE, Fisher JM, Paine MF, Lown KS, Watkins PB. 1997. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1alpha, 25-dihydroxyvitamin D3. Mol Pharmacol 51:741–754. doi:10.1124/mol.51.5.741. PubMed DOI
Begley R, Das M, Zhong L, Ling J, Kearney BP, Custodio JM. 2018. Pharmacokinetics of tenofovir alafenamide when coadministered with other HIV antiretrovirals. J Acquir Immune Defic Syndr 78:465–472. doi:10.1097/QAI.0000000000001699. PubMed DOI
Wyen C, Fuhr U, Frank D, Aarnoutse RE, Klaassen T, Lazar A, Seeringer A, Doroshyenko O, Kirchheiner JC, Abdulrazik F, Schmeisser N, Lehmann C, Hein W, Schomig E, Burger DM, Fatkenheuer G, Jetter A. 2008. Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin Pharmacol Ther 84:75–82. doi:10.1038/sj.clpt.6100452. PubMed DOI
Jouan E, Le Vee M, Mayati A, Denizot C, Parmentier Y, Fardel O. 2016. Evaluation of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. Pharmaceutics 8:E12. doi:10.3390/pharmaceutics8020012. PubMed DOI PMC
Rautio J, Humphreys JE, Webster LO, Balakrishnan A, Keogh JP, Kunta JR, Serabjit-Singh CJ, Polli JW. 2006. In vitro p-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab Dispos 34:786–792. doi:10.1124/dmd.105.008615. PubMed DOI
Kalgutkar AS, Frederick KS, Chupka J, Feng B, Kempshall S, Mireles RJ, Fenner KS, Troutman MD. 2009. N-(3,4-dimethoxyphenethyl)-4–(6,7-dimethoxy-3,4-dihydroisoquinolin-2[1H]-yl)-6,7-dimethoxyquinazolin-2-amine (CP-100, 356) as a “chemical knock-out equivalent” to assess the impact of efflux transporters on oral drug absorption in the rat. J Pharm Sci 98:4914–4927. doi:10.1002/jps.21756. PubMed DOI
Weiss J, Theile D, Ketabi-Kiyanvash N, Lindenmaier H, Haefeli WE. 2007. Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors. Drug Metab Dispos 35:340–344. doi:10.1124/dmd.106.012765. PubMed DOI
National Research Council. 2011. Guide for the care and use of laboratory animals, 8th ed National Academies Press, Washington, DC.
Council of Europe. 1986. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. European treaty series no. 123. Council of Europe, Strasbourg, France.
Hellinger E, Veszelka S, Toth AE, Walter F, Kittel A, Bakk ML, Tihanyi K, Hada V, Nakagawa S, Duy TD, Niwa M, Deli MA, Vastag M. 2012. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur J Pharm Biopharm 82:340–351. doi:10.1016/j.ejpb.2012.07.020. PubMed DOI
Hubatsch I, Ragnarsson EG, Artursson P. 2007. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2:2111–2119. doi:10.1038/nprot.2007.303. PubMed DOI
Fredlund L, Winiwarter S, Hilgendorf C. 2017. In vitro intrinsic permeability: a transporter-independent measure of Caco-2 cell permeability in drug design and development. Mol Pharm 14:1601–1609. doi:10.1021/acs.molpharmaceut.6b01059. PubMed DOI
Li J, Volpe DA, Wang Y, Zhang W, Bode C, Owen A, Hidalgo IJ. 2011. Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab Dispos 39:1196–1202. doi:10.1124/dmd.111.038075. PubMed DOI
de Souza J, Benet LZ, Huang Y, Storpirtis S. 2009. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK-MDR1, and Caco-2 cell monolayers. J Pharm Sci 98:4413–4419. doi:10.1002/jps.21744. PubMed DOI
van de Kerkhof EG, Ungell AL, Sjoberg AK, de Jager MH, Hilgendorf C, de Graaf IA, Groothuis GM. 2006. Innovative methods to study human intestinal drug metabolism in vitro: precision-cut slices compared with Ussing chamber preparations. Drug Metab Dispos 34:1893–1902. doi:10.1124/dmd.106.011148. PubMed DOI