Evaluation of the Potency of Anti-HIV and Anti-HCV Drugs to Inhibit P-Glycoprotein Mediated Efflux of Digoxin in Caco-2 Cell Line and Human Precision-Cut Intestinal Slices
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-443 07281Y
Czech Science Foundation
GAUK 364521
Charles University
SVV 260 549
Charles University
CZ.02.1.01/0.0/0.0/16_019/0000841
EFSA - CDN
PubMed
35215354
PubMed Central
PMC8875242
DOI
10.3390/ph15020242
PII: ph15020242
Knihovny.cz E-zdroje
- Klíčová slova
- ABCB1, antiretrovirals, direct-acting antivirals, drug–drug interactions, human precision-cut intestinal slices,
- Publikační typ
- časopisecké články MeSH
The inhibition of P-glycoprotein (ABCB1) could lead to increased drug plasma concentrations and hence increase drug toxicity. The evaluation of a drug's ability to inhibit ABCB1 is complicated by the presence of several transport-competent sites within the ABCB1 binding pocket, making it difficult to select appropriate substrates. Here, we investigate the capacity of antiretrovirals and direct-acting antivirals to inhibit the ABCB1-mediated intestinal efflux of [3H]-digoxin and compare it with our previous rhodamine123 study. At concentrations of up to 100 µM, asunaprevir, atazanavir, daclatasvir, darunavir, elbasvir, etravirine, grazoprevir, ledipasvir, lopinavir, rilpivirine, ritonavir, saquinavir, and velpatasvir inhibited [3H]-digoxin transport in Caco-2 cells and/or in precision-cut intestinal slices prepared from the human jejunum (hPCIS). However, abacavir, dolutegravir, maraviroc, sofosbuvir, tenofovir disoproxil fumarate, and zidovudine had no inhibitory effect. We thus found that most of the tested antivirals have a high potential to cause drug-drug interactions on intestinal ABCB1. Comparing the Caco-2 and hPCIS experimental models, we conclude that the Caco-2 transport assay is more sensitive, but the results obtained using hPCIS agree better with reported in vivo observations. More inhibitors were identified when using digoxin as the ABCB1 probe substrate than when using rhodamine123. However, both approaches had limitations, indicating that inhibitory potency should be tested with at least these two ABCB1 probes.
Zobrazit více v PubMed
WHO HIV/AIDS. [(accessed on 17 July 2021)]. Available online: www.who.int/news-room/fact-sheets/detail/hiv-aids.
WHO Hepatitis C. [(accessed on 17 July 2021)]. Available online: http://www.who.int/news-room/fact-sheets/detail/hepatitis-c.
WHO Global Hepatitis Report. [(accessed on 17 July 2021)]. Available online: https://apps.who.int/iris/bitstream/handle/10665/255016/9789?sequence=1.
Brown T.T., Qaqish R.B. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: A meta-analytic review. AIDS. 2006;20:2165–2174. doi: 10.1097/QAD.0b013e32801022eb. PubMed DOI
Brown T.T., Tassiopoulos K., Bosch R.J., Shikuma C., McComsey G.A. Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care. 2010;33:2244–2249. doi: 10.2337/dc10-0633. PubMed DOI PMC
Burdo T.H., Weiffenbach A., Woods S.P., Letendre S., Ellis R.J., Williams K.C. Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS. 2013;27:1387–1395. doi: 10.1097/QAD.0b013e32836010bd. PubMed DOI PMC
Duprez D.A., Kuller L.H., Tracy R., Otvos J., Cooper D.A., Hoy J., Neuhaus J., Paton N.I., Friis-Moller N., Lampe F., et al. Lipoprotein particle subclasses, cardiovascular disease and HIV infection. Atherosclerosis. 2009;207:524–529. doi: 10.1016/j.atherosclerosis.2009.05.001. PubMed DOI PMC
Hudson B., Walker A.J., Irving W.L. Comorbidities and medications of patients with chronic hepatitis C under specialist care in the UK. J. Med. Virol. 2017;89:2158–2164. doi: 10.1002/jmv.24848. PubMed DOI PMC
Louie K.S., St Laurent S., Forssen U.M., Mundy L.M., Pimenta J.M. The high comorbidity burden of the hepatitis C virus infected population in the United States. BMC Infect. Dis. 2012;12:86. doi: 10.1186/1471-2334-12-86. PubMed DOI PMC
Shiels M.S., Cole S.R., Kirk G.D., Poole C. A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J. Acquir. Immune Defic. Syndr. 2009;52:611–622. doi: 10.1097/QAI.0b013e3181b327ca. PubMed DOI PMC
Department of Health and Human Services Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. [(accessed on 26 August 2020)]; Available online: https://clinicalinfo.hiv.gov/sites/default/files/guidelines/documents/AdultandAdolescentGL.pdf.
Goodlet K.J., Zmarlicka M.T., Peckham A.M. Drug-drug interactions and clinical considerations with co-administration of antiretrovirals and psychotropic drugs. CNS Spectr. 2019;24:287–312. doi: 10.1017/S109285291800113X. PubMed DOI
Marzolini C., Elzi L., Gibbons S., Weber R., Fux C., Furrer H., Chave J.P., Cavassini M., Bernasconi E., Calmy A., et al. Prevalence of comedications and effect of potential drug-drug interactions in the Swiss HIV Cohort Study. Antivir. Ther. 2010;15:413–423. doi: 10.3851/IMP1540. PubMed DOI
Nachega J.B., Hsu A.J., Uthman O.A., Spinewine A., Pham P.A. Antiretroviral therapy adherence and drug-drug interactions in the aging HIV population. AIDS. 2012;26((Suppl. 1)):S39–S53. doi: 10.1097/QAD.0b013e32835584ea. PubMed DOI
Talavera Pons S., Boyer A., Lamblin G., Chennell P., Chatenet F.T., Nicolas C., Sautou V., Abergel A. Managing drug-drug interactions with new direct-acting antiviral agents in chronic hepatitis C. Br. J. Clin. Pharmacol. 2017;83:269–293. doi: 10.1111/bcp.13095. PubMed DOI PMC
Cerveny L., Murthi P., Staud F. HIV in pregnancy: Mother-to-child transmission, pharmacotherapy, and toxicity. Biochim Biophys. Acta Mol. Basis Dis. 2021;1867:166206. doi: 10.1016/j.bbadis.2021.166206. PubMed DOI
Kaur K., Gandhi M.A., Slish J. Drug-Drug Interactions Among Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV) Medications. Infect. Dis. Ther. 2015;4:159–172. doi: 10.1007/s40121-015-0061-2. PubMed DOI PMC
Kis O., Robillard K., Chan G.N., Bendayan R. The complexities of antiretroviral drug-drug interactions: Role of ABC and SLC transporters. Trends Pharmacol. Sci. 2010;31:22–35. doi: 10.1016/j.tips.2009.10.001. PubMed DOI
Chu X., Liao M., Shen H., Yoshida K., Zur A.A., Arya V., Galetin A., Giacomini K.M., Hanna I., Kusuhara H., et al. Clinical Probes and Endogenous Biomarkers as Substrates for Transporter Drug-Drug Interaction Evaluation: Perspectives From the International Transporter Consortium. Clin. Pharmacol. Ther. 2018;104:836–864. doi: 10.1002/cpt.1216. PubMed DOI
Bocci G., Moreau A., Vayer P., Denizot C., Fardel O., Parmentier Y. New insights in the in vitro characterisation and molecular modelling of the P-glycoprotein inhibitory promiscuity. Eur. J. Pharm. Sci. 2018;121:85–94. doi: 10.1016/j.ejps.2018.04.039. PubMed DOI
Jouan E., Le Vee M., Mayati A., Denizot C., Parmentier Y., Fardel O. Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay. Pharmaceutics. 2016;8:12. doi: 10.3390/pharmaceutics8020012. PubMed DOI PMC
Mittra R., Pavy M., Subramanian N., George A.M., O’Mara M.L., Kerr I.D., Callaghan R. Location of contact residues in pharmacologically distinct drug binding sites on P-glycoprotein. Biochem. Pharmacol. 2017;123:19–28. doi: 10.1016/j.bcp.2016.10.002. PubMed DOI
Hartter S., Sennewald R., Nehmiz G., Reilly P. Oral bioavailability of dabigatran etexilate (Pradaxa((R)) ) after co-medication with verapamil in healthy subjects. Br. J. Clin. Pharmacol. 2013;75:1053–1062. doi: 10.1111/j.1365-2125.2012.04453.x. PubMed DOI PMC
Mols R., Brouwers J., Schinkel A.H., Annaert P., Augustijns P. Intestinal perfusion with mesenteric blood sampling in wild-type and knockout mice: Evaluation of a novel tool in biopharmaceutical drug profiling. Drug Metab. Dispos. 2009;37:1334–1337. doi: 10.1124/dmd.109.026591. PubMed DOI
Westphal K., Weinbrenner A., Giessmann T., Stuhr M., Franke G., Zschiesche M., Oertel R., Terhaag B., Kroemer H.K., Siegmund W. Oral bioavailability of digoxin is enhanced by talinolol: Evidence for involvement of intestinal P-glycoprotein. Clin. Pharmacol. Ther. 2000;68:6–12. doi: 10.1067/mcp.2000.107579. PubMed DOI
Schwarz U.I., Gramatte T., Krappweis J., Oertel R., Kirch W. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. Int. J. Clin. Pharmacol. Ther. 2000;38:161–167. doi: 10.5414/CPP38161. PubMed DOI
Sakugawa T., Miura M., Hokama N., Suzuki T., Tateishi T., Uno T. Enantioselective disposition of fexofenadine with the P-glycoprotein inhibitor verapamil. Br. J. Clin. Pharmacol. 2009;67:535–540. doi: 10.1111/j.1365-2125.2009.03396.x. PubMed DOI PMC
Kumar P., Gordon L.A., Brooks K.M., George J.M., Kellogg A., McManus M., Alfaro R.M., Nghiem K., Lozier J., Hadigan C., et al. Differential Influence of the Antiretroviral Pharmacokinetic Enhancers Ritonavir and Cobicistat on Intestinal P-Glycoprotein Transport and the Pharmacokinetic/Pharmacodynamic Disposition of Dabigatran. Antimicrob. Agents Chemother. 2017;61:e01201-17. doi: 10.1128/AAC.01201-17. PubMed DOI PMC
Lutz J.D., Kirby B.J., Wang L., Song Q., Ling J., Massetto B., Worth A., Kearney B.P., Mathias A. Cytochrome P450 3A Induction Predicts P-glycoprotein Induction; Part 1: Establishing Induction Relationships Using Ascending Dose Rifampin. Clin. Pharmacol. Ther. 2018;104:1182–1190. doi: 10.1002/cpt.1073. PubMed DOI PMC
Lutz J.D., Kirby B.J., Wang L., Song Q., Ling J., Massetto B., Worth A., Kearney B.P., Mathias A. Cytochrome P450 3A Induction Predicts P-glycoprotein Induction; Part 2: Prediction of Decreased Substrate Exposure After Rifabutin or Carbamazepine. Clin. Pharmacol. Ther. 2018;104:1191–1198. doi: 10.1002/cpt.1072. PubMed DOI PMC
Hartter S., Koenen-Bergmann M., Sharma A., Nehmiz G., Lemke U., Timmer W., Reilly P.A. Decrease in the oral bioavailability of dabigatran etexilate after co-medication with rifampicin. Br. J. Clin. Pharmacol. 2012;74:490–500. doi: 10.1111/j.1365-2125.2012.04218.x. PubMed DOI PMC
de Graaf I.A., Olinga P., de Jager M.H., Merema M.T., de Kanter R., van de Kerkhof E.G., Groothuis G.M. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat. Protoc. 2010;5:1540–1551. doi: 10.1038/nprot.2010.111. PubMed DOI
Li M., de Graaf I.A., Groothuis G.M. Precision-cut intestinal slices: Alternative model for drug transport, metabolism, and toxicology research. Expert Opin. Drug Metab. Protoc. 2016;12:175–190. doi: 10.1517/17425255.2016.1125882. PubMed DOI
Martinec O., Huliciak M., Staud F., Cecka F., Vokral I., Cerveny L. Anti-HIV and Anti-Hepatitis C Virus Drugs Inhibit P-Glycoprotein Efflux Activity in Caco-2 Cells and Precision-Cut Rat and Human Intestinal Slices. Antimicrob. Agents Chemother. 2019;63:63. doi: 10.1128/AAC.00910-19. PubMed DOI PMC
Li M., de Graaf I.A., de Jager M.H., Groothuis G.M. P-gp activity and inhibition in the different regions of human intestine ex vivo. Biopharm. Drug Dispos. 2017;38:127–138. doi: 10.1002/bdd.2047. PubMed DOI
Forster S., Thumser A.E., Hood S.R., Plant N. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS ONE. 2012;7:e33253. doi: 10.1371/journal.pone.0033253. PubMed DOI PMC
Storch C.H., Theile D., Lindenmaier H., Haefeli W.E., Weiss J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem. Pharmacol. 2007;73:1573–1581. doi: 10.1016/j.bcp.2007.01.027. PubMed DOI
Rautio J., Humphreys J.E., Webster L.O., Balakrishnan A., Keogh J.P., Kunta J.R., Serabjit-Singh C.J., Polli J.W. In vitro p-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: A recommendation for probe substrates. Drug Metab. Dispos. 2006;34:786–792. doi: 10.1124/dmd.105.008615. PubMed DOI
FDA Drug Development and Drug Interactions|Table of Substrates, Inhibitors and Inducers. [(accessed on 10 September 2021)]; Available online: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers#table1.
EMA Guideline on the Investigation of Drug Interactions. [(accessed on 10 September 2021)]. Available online: https://www.ema.europa.eu/documents/scientific-guideline/guideline-investigation-drug-interactions_en.pdf.
Oga E.F., Sekine S., Shitara Y., Horie T. P-glycoprotein mediated efflux in Caco-2 cell monolayers: The influence of herbals on digoxin transport. J. EthnoPharmacol. 2012;144:612–617. doi: 10.1016/j.jep.2012.10.001. PubMed DOI
Garrison K.L., German P., Mogalian E., Mathias A. The Drug-Drug Interaction Potential of Antiviral Agents for the Treatment of Chronic Hepatitis C Infection. Drug Metab. Dispos. 2018;46:1212–1225. doi: 10.1124/dmd.117.079038. PubMed DOI
Poizot-Martin I., Naqvi A., Obry-Roguet V., Valantin M.A., Cuzin L., Billaud E., Cheret A., Rey D., Jacomet C., Duvivier C., et al. Potential for Drug-Drug Interactions between Antiretrovirals and HCV Direct Acting Antivirals in a Large Cohort of HIV/HCV Coinfected Patients. PLoS ONE. 2015;10:e0141164. doi: 10.1371/journal.pone.0141164. PubMed DOI PMC
Bellesini M., Bianchin M., Corradi C., Donadini M.P., Raschi E., Squizzato A. Drug-Drug Interactions between Direct Oral Anticoagulants and Hepatitis C Direct-Acting Antiviral Agents: Looking for Evidence Through a Systematic Review. Clin. Drug Investig. 2020;40:1001–1008. doi: 10.1007/s40261-020-00962-y. PubMed DOI PMC
Vivithanaporn P., Kongratanapasert T., Suriyapakorn B., Songkunlertchai P., Mongkonariyawong P., Limpikirati P.K., Khemawoot P. Potential drug-drug interactions of antiretrovirals and antimicrobials detected by three databases. Sci. Rep. 2021;11:6089. doi: 10.1038/s41598-021-85586-8. PubMed DOI PMC
Hong J., Wright R.C., Partovi N., Yoshida E.M., Hussaini T. Review of Clinically Relevant Drug Interactions with Next Generation Hepatitis C Direct-acting Antiviral Agents. J. Clin. Transl. Hepatol. 2020;8:322–335. doi: 10.14218/JCTH.2020.00034. PubMed DOI PMC
International Transporter C., Giacomini K.M., Huang S.M., Tweedie D.J., Benet L.Z., Brouwer K.L., Chu X., Dahlin A., Evers R., Fischer V., et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010;9:215–236. doi: 10.1038/nrd3028. PubMed DOI PMC
Taub M.E., Mease K., Sane R.S., Watson C.A., Chen L., Ellens H., Hirakawa B., Reyner E.L., Jani M., Lee C.A. Digoxin is not a substrate for organic anion-transporting polypeptide transporters OATP1A2, OATP1B1, OATP1B3, and OATP2B1 but is a substrate for a sodium-dependent transporter expressed in HEK293 cells. Drug Metab. Dispos. 2011;39:2093–2102. doi: 10.1124/dmd.111.040816. PubMed DOI
Safa A.R. Identification and characterization of the binding sites of P-glycoprotein for multidrug resistance-related drugs and modulators. Curr. Med. Chem.-Anti-Cancer Agents. 2004;4:1–17. doi: 10.2174/1568011043482142. PubMed DOI PMC
Vaessen S.F., van Lipzig M.M., Pieters R.H., Krul C.A., Wortelboer H.M., van de Steeg E. Regional Expression Levels of Drug Transporters and Metabolizing Enzymes along the Pig and Human Intestinal Tract and Comparison with Caco-2 Cells. Drug Metab. Dispos. 2017;45:353–360. doi: 10.1124/dmd.116.072231. PubMed DOI
Englund G., Rorsman F., Ronnblom A., Karlbom U., Lazorova L., Grasjo J., Kindmark A., Artursson P. Regional levels of drug transporters along the human intestinal tract: Co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur. J. Pharm. Sci. 2006;29:269–277. doi: 10.1016/j.ejps.2006.04.010. PubMed DOI
Canaparo R., Finnstrom N., Serpe L., Nordmark A., Muntoni E., Eandi M., Rane A., Zara G.P. Expression of CYP3A isoforms and P-glycoprotein in human stomach, jejunum and ileum. Clin. Exp. Pharmacol. Physiol. 2007;34:1138–1144. doi: 10.1111/j.1440-1681.2007.04691.x. PubMed DOI
Fujimoto H., Higuchi M., Watanabe H., Koh Y., Ghosh A.K., Mitsuya H., Tanoue N., Hamada A., Saito H. P-glycoprotein mediates efflux transport of darunavir in human intestinal Caco-2 and ABCB1 gene-transfected renal LLC-PK1 cell lines. Biol. Pharm. Bull. 2009;32:1588–1593. doi: 10.1248/bpb.32.1588. PubMed DOI PMC
Bierman W.F., Scheffer G.L., Schoonderwoerd A., Jansen G., van Agtmael M.A., Danner S.A., Scheper R.J. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J. Antimicrob. Chemother. 2010;65:1672–1680. doi: 10.1093/jac/dkq209. PubMed DOI
Kim J.Y., Park Y.J., Lee B.M., Yoon S. Co-treatment With HIV Protease Inhibitor Nelfinavir Greatly Increases Late-phase Apoptosis of Drug-resistant KBV20C Cancer Cells Independently of P-Glycoprotein Inhibition. Anticancer Res. 2019;39:3757–3765. doi: 10.21873/anticanres.13524. PubMed DOI
Vishnuvardhan D., Moltke L.L., Richert C., Greenblatt D.J. Lopinavir: Acute exposure inhibits P-glycoprotein; extended exposure induces P-glycoprotein. AIDS. 2003;17:1092–1094. doi: 10.1097/00002030-200305020-00023. PubMed DOI
Crauwels H., van Heeswijk R.P., Stevens M., Buelens A., Vanveggel S., Boven K., Hoetelmans R. Clinical perspective on drug-drug interactions with the non-nucleoside reverse transcriptase inhibitor rilpivirine. AIDS Rev. 2013;15:87–101. PubMed
Zembruski N.C., Haefeli W.E., Weiss J. Interaction potential of etravirine with drug transporters assessed in vitro. Antimicrob. Agents Chemother. 2011;55:1282–1284. doi: 10.1128/AAC.01527-10. PubMed DOI PMC
Janssen Therapeutics Intelence. [(accessed on 2 November 2021)]. Available online: https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/INTELENCE-pi.pdf.
Reese M.J., Savina P.M., Generaux G.T., Tracey H., Humphreys J.E., Kanaoka E., Webster L.O., Harmon K.A., Clarke J.D., Polli J.W. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab. Dispos. 2013;41:353–361. doi: 10.1124/dmd.112.048918. PubMed DOI
Neumanova Z., Cerveny L., Ceckova M., Staud F. Interactions of tenofovir and tenofovir disoproxil fumarate with drug efflux transporters ABCB1, ABCG2, and ABCC2; role in transport across the placenta. AIDS. 2014;28:9–17. doi: 10.1097/QAD.0000000000000112. PubMed DOI
Neumanova Z., Cerveny L., Ceckova M., Staud F. Role of ABCB1, ABCG2, ABCC2 and ABCC5 transporters in placental passage of zidovudine. Biopharm. Drug Dispos. 2016;37:28–38. doi: 10.1002/bdd.1993. PubMed DOI
Neumanova Z., Cerveny L., Greenwood S.L., Ceckova M., Staud F. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir. Reprod. Protoc. 2015;57:176–182. doi: 10.1016/j.reprotox.2015.07.070. PubMed DOI
Nosol K., Romane K., Irobalieva R.N., Alam A., Kowal J., Fujita N., Locher K.P. Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. Proc. Natl. Acad. Sci. USA. 2020;117:26245–26253. doi: 10.1073/pnas.2010264117. PubMed DOI PMC
Mosure K.W., Knipe J.O., Browning M., Arora V., Shu Y.Z., Phillip T., McPhee F., Scola P., Balakrishnan A., Soars M.G., et al. Preclinical Pharmacokinetics and In Vitro Metabolism of Asunaprevir (BMS-650032), a Potent Hepatitis C Virus NS3 Protease Inhibitor. J. Pharm. Sci. 2015;104:2813–2823. doi: 10.1002/jps.24356. PubMed DOI
Garimella T., Tao X., Sims K., Chang Y.T., Rana J., Myers E., Wind-Rotolo M., Bhatnagar R., Eley T., LaCreta F., et al. Effects of a Fixed-Dose Co-Formulation of Daclatasvir, Asunaprevir, and Beclabuvir on the Pharmacokinetics of a Cocktail of Cytochrome P450 and Drug Transporter Substrates in Healthy Subjects. Drugs R&D. 2018;18:55–65. doi: 10.1007/s40268-017-0222-8. PubMed DOI PMC
Mogalian E., German P., Kearney B.P., Yang C.Y., Brainard D., McNally J., Moorehead L., Mathias A. Use of Multiple Probes to Assess Transporter- and Cytochrome P450-Mediated Drug-Drug Interaction Potential of the Pangenotypic HCV NS5A Inhibitor Velpatasvir. Clin. Pharm. 2016;55:605–613. doi: 10.1007/s40262-015-0334-7. PubMed DOI
Merck Sharp & Dohme Corp Zepatier. [(accessed on 9 November 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208261s002lbl.pdf.
Taipalensuu J., Tornblom H., Lindberg G., Einarsson C., Sjoqvist F., Melhus H., Garberg P., Sjostrom B., Lundgren B., Artursson P. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 2001;299:164–170. PubMed
Brouwer K.L., Keppler D., Hoffmaster K.A., Bow D.A., Cheng Y., Lai Y., Palm J.E., Stieger B., Evers R., International Transporter C. In vitro methods to support transporter evaluation in drug discovery and development. Clin. Pharmacol. Ther. 2013;94:95–112. doi: 10.1038/clpt.2013.81. PubMed DOI
Sun H., Chow E.C., Liu S., Du Y., Pang K.S. The Caco-2 cell monolayer: Usefulness and limitations. Expert Opin. Drug Metab. Protoc. 2008;4:395–411. doi: 10.1517/17425255.4.4.395. PubMed DOI
Rathbun R.C., Liedtke M.D. Antiretroviral drug interactions: Overview of interactions involving new and investigational agents and the role of therapeutic drug monitoring for management. Pharmaceutics. 2011;3:745–781. doi: 10.3390/pharmaceutics3040745. PubMed DOI PMC
Pauli-Magnus C., von Richter O., Burk O., Ziegler A., Mettang T., Eichelbaum M., Fromm M.F. Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J. Pharmacol. Exp. Ther. 2000;293:376–382. PubMed
Bruck S., Strohmeier J., Busch D., Drozdzik M., Oswald S. Caco-2 cells—Expression, regulation and function of drug transporters compared with human jejunal tissue. Biopharm. Drug Dispos. 2017;38:115–126. doi: 10.1002/bdd.2025. PubMed DOI
Vourvahis M., Fang J., Choo H.W., Heera J. The effect of maraviroc on the pharmacokinetics of digoxin in healthy volunteers. Clin. Pharmacol. Drug Dev. 2014;3:202–206. doi: 10.1002/cpdd.91. PubMed DOI
Kalgutkar A.S., Frederick K.S., Chupka J., Feng B., Kempshall S., Mireles R.J., Fenner K.S., Troutman M.D. N-(3,4-dimethoxyphenethyl)-4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2[1H]-yl)-6,7-dimethoxyquinazolin-2-amine (CP-100,356) as a “chemical knock-out equivalent” to assess the impact of efflux transporters on oral drug absorption in the rat. J. Pharm. Sci. 2009;98:4914–4927. doi: 10.1002/jps.21756. PubMed DOI
Martinec O., Biel C., de Graaf I.A.M., Huliciak M., de Jong K.P., Staud F., Cecka F., Olinga P., Vokral I., Cerveny L. Rifampicin Induces Gene, Protein, and Activity of P-Glycoprotein (ABCB1) in Human Precision-Cut Intestinal Slices. Front. Pharmacol. 2021;12:684156. doi: 10.3389/fphar.2021.684156. PubMed DOI PMC
Hellinger E., Veszelka S., Toth A.E., Walter F., Kittel A., Bakk M.L., Tihanyi K., Hada V., Nakagawa S., Duy T.D., et al. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur. J. Pharm. Biopharm. 2012;82:340–351. doi: 10.1016/j.ejpb.2012.07.020. PubMed DOI
Perloff E.S., Duan S.X., Skolnik P.R., Greenblatt D.J., von Moltke L.L. Atazanavir: Effects on P-glycoprotein transport and CYP3A metabolism in vitro. Drug Metab. Dispos. 2005;33:764–770. doi: 10.1124/dmd.104.002931. PubMed DOI
Hubatsch I., Ragnarsson E.G., Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007;2:2111–2119. doi: 10.1038/nprot.2007.303. PubMed DOI
Cavet M.E., West M., Simmons N.L. Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial (Caco-2) cells. Br. J. Pharmacol. 1996;118:1389–1396. doi: 10.1111/j.1476-5381.1996.tb15550.x. PubMed DOI PMC
Zembruski N.C., Buchel G., Jodicke L., Herzog M., Haefeli W.E., Weiss J. Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J. Antimicrob. Chemother. 2011;66:802–812. doi: 10.1093/jac/dkq501. PubMed DOI
van de Kerkhof E.G., Ungell A.L., Sjoberg A.K., de Jager M.H., Hilgendorf C., de Graaf I.A., Groothuis G.M. Innovative methods to study human intestinal drug metabolism in vitro: Precision-cut slices compared with ussing chamber preparations. Drug Metab. Dispos. 2006;34:1893–1902. doi: 10.1124/dmd.106.011148. PubMed DOI
Li J., Jaimes K.F., Aller S.G. Refined structures of mouse P-glycoprotein. Protein Sci. 2014;23:34–46. doi: 10.1002/pro.2387. PubMed DOI PMC