Rifampicin Induces Gene, Protein, and Activity of P-Glycoprotein (ABCB1) in Human Precision-Cut Intestinal Slices
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34177592
PubMed Central
PMC8220149
DOI
10.3389/fphar.2021.684156
PII: 684156
Knihovny.cz E-zdroje
- Klíčová slova
- P-glycoprotein (ABCB1 protein), absorption, human precision-cut intestinal slices, induction, pregnane X receptor, rifampicin,
- Publikační typ
- časopisecké články MeSH
P-glycoprotein (ABCB1), an ATP-binding cassette efflux transporter, limits intestinal absorption of its substrates and is a common site of drug-drug interactions. Drug-mediated induction of intestinal ABCB1 is a clinically relevant phenomenon associated with significantly decreased drug bioavailability. Currently, there are no well-established human models for evaluating its induction, so drug regulatory authorities provide no recommendations for in vitro/ex vivo testing drugs' ABCB1-inducing activity. Human precision-cut intestinal slices (hPCISs) contain cells in their natural environment and express physiological levels of nuclear factors required for ABCB1 induction. We found that hPCISs incubated in William's Medium E for 48 h maintained intact morphology, ATP content, and ABCB1 efflux activity. Here, we asked whether rifampicin (a model ligand of pregnane X receptor, PXR), at 30 μM, induces functional expression of ABCB1 in hPCISs over 24- and 48-h incubation (the time to allow complete induction to occur). Rifampicin significantly increased gene expression, protein levels, and efflux activity of ABCB1. Moreover, we described dynamic changes in ABCB1 transcript levels in hPCISs over 48 h incubation. We also observed that peaks of induction are achieved among donors at different times, and the extent of ABCB1 gene induction is proportional to PXR mRNA levels in the intestine. In conclusion, we showed that hPCISs incubated in conditions comparable to those used for inhibition studies can be used to evaluate drugs' ABCB1-inducing potency in the human intestine. Thus, hPCISs may be valuable experimental tools that can be prospectively used in complex experimental evaluation of drug-drug interactions.
Zobrazit více v PubMed
Albermann N., Schmitz-Winnenthal F. H., Z’graggen K., Volk C., Hoffmann M. M., Haefeli W. E., et al. (2005). Expression of the Drug Transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in Peripheral Blood Mononuclear Cells and Their Relationship with the Expression in Intestine and Liver. Biochem. Pharmacol. 70, 949–958. 10.1016/j.bcp.2005.06.018 PubMed DOI
Begley R., Das M., Zhong L., Ling J., Kearney B. P., Custodio J. M. (2018). Pharmacokinetics of Tenofovir Alafenamide when Coadministered with Other HIV Antiretrovirals. J. Acquir Immune Defic Syndr. 78, 465–472. 10.1097/qai.0000000000001699 PubMed DOI
Burger H., Van Tol H., Brok M., Wiemer E. A. C., De Bruijn E. A., Guetens G., et al. (2005). Chronic Imatinib Mesylate Exposure Leads to Reduced Intracellular Drug Accumulation by Induction of the ABCG2 (BCRP) and ABCB1 (MDR1) Drug Transport Pumps. Cancer Biol. Ther. 4, 747–752. 10.4161/cbt.4.7.1826 PubMed DOI
Cerveny L., Svecova L., Anzenbacherova E., Vrzal R., Staud F., Dvorak Z., et al. (2007). Valproic Acid Induces CYP3A4 and MDR1 Gene Expression by Activation of Constitutive Androstane Receptor and Pregnane X Receptor Pathways. Drug Metab. Dispos 35, 1032–1041. 10.1124/dmd.106.014456 PubMed DOI
Cole S., Kerwash E., Andersson A. (2020). A Summary of the Current Drug Interaction Guidance from the European Medicines Agency and Considerations of Future Updates. Drug Metab. Pharmacokinet. 35, 2–11. 10.1016/j.dmpk.2019.11.005 PubMed DOI
De Graaf I. A. M., Olinga P., De Jager M. H., Merema M. T., De Kanter R., Van De Kerkhof E. G., et al. (2010). Preparation and Incubation of Precision-Cut Liver and Intestinal Slices for Application in Drug Metabolism and Toxicity Studies. Nat. Protoc. 5, 1540–1551. 10.1038/nprot.2010.111 PubMed DOI
Dhhs (2019). Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. Department of Health and Human Services. Available at: https://clinicalinfo.hiv.gov/sites/default/files/guidelines/documents/AdultandAdolescentGL.pdf (Accessed September24, 2020).
Elmeliegy M., Vourvahis M., Guo C., Wang D. D. (2020). Effect of P-Glycoprotein (P-Gp) Inducers on Exposure of P-Gp Substrates: Review of Clinical Drug-Drug Interaction Studies. Clin. Pharmacokinet. 59, 699–714. 10.1007/s40262-020-00867-1 PubMed DOI PMC
Evans-Jones J. G., Cottle L. E., Back D. J., Gibbons S., Beeching N. J., Carey P. B., et al. (2010). Recognition of Risk for Clinically Significant Drug Interactions Among HIV-Infected Patients Receiving Antiretroviral Therapy. Clin. Infect. Dis. 50, 1419–1421. 10.1086/652149 PubMed DOI
FDA (2020). U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research. Vitro Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. Avabilable at: https://www.fda.gov/media/134582/download.(accessed September23rd, 2020).
Fenner K., Troutman M., Kempshall S., Cook J., Ware J., Smith D., et al. (2009). Drug-drug Interactions Mediated through P-Glycoprotein: Clinical Relevance and In Vitro-In Vivo Correlation Using Digoxin as a Probe Drug. Clin. Pharmacol. Ther. 85, 173–181. 10.1038/clpt.2008.195 PubMed DOI
Forster S., Thumser A. E., Hood S. R., Plant N. (2012). Characterization of Rhodamine-123 as a Tracer Dye for Use in In Vitro Drug Transport Assays. PLoS One 7, e33253. 10.1371/journal.pone.0033253 PubMed DOI PMC
Fritz A., Busch D., Lapczuk J., Ostrowski M., Drozdzik M., Oswald S. (2019). Expression of Clinically Relevant Drug‐metabolizing Enzymes along the Human Intestine and Their Correlation to Drug Transporters and Nuclear Receptors: An Intra‐subject Analysis. Basic Clin. Pharmacol. Toxicol. 124, 245–255. 10.1111/bcpt.13137 PubMed DOI
Giacomini K. M., Galetin A., Huang S. M. (2018). The International Transporter Consortium: Summarizing Advances in the Role of Transporters in Drug Development. Clin. Pharmacol. Ther. 104, 766–771. 10.1002/cpt.1224 PubMed DOI
International Transporter Consortium Giacomini K. M., Giacomini K. M., Huang S. M., Tweedie D. J., Benet L. Z., Brouwer K. L., et al. (2010). Membrane Transporters in Drug Development. Nat. Rev. Drug Discov. 9, 215–236. 10.1038/nrd3028 PubMed DOI PMC
Giacomini K. M., Huang S.-M. (2013). Transporters in Drug Development and Clinical Pharmacology. Clin. Pharmacol. Ther. 94, 3–9. 10.1038/clpt.2013.86 PubMed DOI
Goto M., Masuda S., Saito H., Inui K.-i. (2003). Decreased Expression of P-Glycoprotein during Differentiation in the Human Intestinal Cell Line Caco-2. Biochem. Pharmacol. 66, 163–170. 10.1016/s0006-2952(03)00242-9 PubMed DOI
Greiner B., Eichelbaum M., Fritz P., Kreichgauer H.-P., Von Richter O., Zundler J., et al. (1999). The Role of Intestinal P-Glycoprotein in the Interaction of Digoxin and Rifampin. J. Clin. Invest. 104, 147–153. 10.1172/jci6663 PubMed DOI PMC
Groothuis G. M., De Graaf I. A. (2013). Precision-cut Intestinal Slices as In Vitro Tool for Studies on Drug Metabolism. Curr. Drug Metab. 14, 112–119. PubMed
Guo Y., Chu X., Parrott N. J., Brouwer K. L. R., Hsu V., Nagar S., et al. International Transporter Consortium. (2018). Advancing Predictions of Tissue and Intracellular Drug Concentrations Using In Vitro , Imaging and Physiologically Based Pharmacokinetic Modeling Approaches. Clin. Pharmacol. Ther. 104, 865–889. 10.1002/cpt.1183 PubMed DOI PMC
Han T., Everett R. S., Proctor W. R., Ng C. M., Costales C. L., Brouwer K. L. R., et al. (2013). Organic Cation Transporter 1 (OCT1/mOct1) Is Localized in the Apical Membrane of Caco-2 Cell Monolayers and Enterocytes. Mol. Pharmacol. 84, 182–189. 10.1124/mol.112.084517 PubMed DOI PMC
Harwood M. D., Achour B., Neuhoff S., Russell M. R., Carlson G., Warhurst G., et al. (2016). In Vitro-In Vivo Extrapolation Scaling Factors for Intestinal P-Glycoprotein and Breast Cancer Resistance Protein: Part I: A Cross-Laboratory Comparison of Transporter-Protein Abundances and Relative Expression Factors in Human Intestine and Caco-2 Cells. Drug Metab. Disposition 44, 297–307. 10.1124/dmd.115.067371 PubMed DOI
Honjo Y., Hrycyna C. A., Yan Q. W., Medina-Pérez W. Y., Robey R. W., Van De Laar A., et al. (2001). Acquired Mutations in the MXR/BCRP/ABCP Gene Alter Substrate Specificity in MXR/BCRP/ABCP-overexpressing Cells. Cancer Res. 61, 6635–6639. PubMed
Hyrsova L., Smutny T., Carazo A., Moravcik S., Mandikova J., Trejtnar F., et al. (2016). The Pregnane X Receptor Down-Regulates Organic Cation Transporter 1 (SLC22A1) in Human Hepatocytes by Competing for ("squelching") SRC-1 Coactivator. Br. J. Pharmacol. 173, 1703–1715. 10.1111/bph.13472 PubMed DOI PMC
Jouan E., Le Vee M., Denizot C., Da Violante G., Fardel O. (2014). The Mitochondrial Fluorescent Dye Rhodamine 123 Is a High-Affinity Substrate for Organic Cation Transporters (OCTs) 1 and 2. Fundam. Clin. Pharmacol. 28, 65–77. 10.1111/j.1472-8206.2012.01071.x PubMed DOI
Kalgutkar A. S., Frederick K. S., Chupka J., Feng B., Kempshall S., Mireles R. J., et al. (2009). N-(3,4-dimethoxyphenethyl)-4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2[1H]-yl)-6,7-dimethoxyquinazolin-2-amine (CP-100,356) as a "chemical Knock-Out Equivalent" to Assess the Impact of Efflux Transporters on Oral Drug Absorption in the Rat. J. Pharm. Sci. 98, 4914–4927. 10.1002/jps.21756 PubMed DOI
Kalliokoski A., Niemi M. (2009). Impact of OATP Transporters on Pharmacokinetics. Br. J. Pharmacol. 158, 693–705. 10.1111/j.1476-5381.2009.00430.x PubMed DOI PMC
Katayama K., Fujiwara C., Noguchi K., Sugimoto Y. (2016). RSK1 Protects P-glycoprotein/ABCB1 against Ubiquitin-Proteasomal Degradation by Downregulating the Ubiquitin-Conjugating Enzyme E2 R1. Sci. Rep. 6, 36134. 10.1038/srep36134 PubMed DOI PMC
Kong Q., Han Z., Zuo X., Wei H., Huang W. (2016). Co-expression of Pregnane X Receptor and ATP-Binding Cassette Sub-family B Member 1 in Peripheral Blood: A Prospective Indicator for Drug Resistance Prediction in Non-small Cell Lung Cancer. Oncol. Lett. 11, 3033–3039. 10.3892/ol.2016.4369 PubMed DOI PMC
Kumar P., Gordon L. A., Brooks K. M., George J. M., Kellogg A., Mcmanus M., et al. (2017). Differential Influence of the Antiretroviral Pharmacokinetic Enhancers Ritonavir and Cobicistat on Intestinal P-Glycoprotein Transport and the Pharmacokinetic/Pharmacodynamic Disposition of Dabigatran. Antimicrob. Agents Chemother. 61. 10.1128/aac.01201-17 PubMed DOI PMC
Lamba J. K., Lin Y. S., Schuetz E. G., Thummel K. E. (2002). Genetic Contribution to Variable Human CYP3A-Mediated Metabolism. Adv. Drug Deliv. Rev. 54, 1271–1294. 10.1016/s0169-409x(02)00066-2 PubMed DOI
Li M., De Graaf I. A. M., De Jager M. H., Groothuis G. M. M. (2017a). P-gp Activity and Inhibition in the Different Regions of Human Intestineex Vivo. Biopharm. Drug Dispos. 38, 127–138. 10.1002/bdd.2047 PubMed DOI
Li M., De Graaf I. A. M., De Jager M. H., Groothuis G. M. M. (2015). Rat Precision-Cut Intestinal Slices to Study P-Gp Activity and the Potency of its Inhibitors Ex Vivo . Toxicol. Vitro 29, 1070–1078. 10.1016/j.tiv.2015.04.011 PubMed DOI
Li M., De Graaf I. A. M., Van De Steeg E., De Jager M. H., Groothuis G. M. M. (2017b). The Consequence of Regional Gradients of P-Gp and CYP3A4 for Drug-Drug Interactions by P-Gp Inhibitors and the P-gp/CYP3A4 Interplay in the Human Intestine Ex Vivo . Toxicol. Vitro 40, 26–33. 10.1016/j.tiv.2016.12.002 PubMed DOI
Lindell M., Karlsson M. O., Lennernäs H., Påhlman L., Lang M. A. (2003). Variable Expression of CYP and Pgp Genes in the Human Small Intestine. Eur. J. Clin. Invest. 33, 493–499. 10.1046/j.1365-2362.2003.01154.x PubMed DOI
Luedtke D., Marzin K., Jungnik A., Von Wangenheim U., Dallinger C. (2018). Effects of Ketoconazole and Rifampicin on the Pharmacokinetics of Nintedanib in Healthy Subjects. Eur. J. Drug Metab. Pharmacokinet. 43, 533–541. 10.1007/s13318-018-0467-9 PubMed DOI PMC
Lutz J. D., Kirby B. J., Wang L., Song Q., Ling J., Massetto B., et al. (2018). Cytochrome P450 3A Induction Predicts P-Glycoprotein Induction; Part 1: Establishing Induction Relationships Using Ascending Dose Rifampin. Clin. Pharmacol. Ther. 104, 1182–1190. 10.1002/cpt.1073 PubMed DOI PMC
Marchetti S., Mazzanti R., Beijnen J. H., Schellens J. H. M. (2007). Concise Review: Clinical Relevance of Drug-Drug and Herb-Drug Interactions Mediated by the ABC Transporter ABCB1 (MDR1, P‐glycoprotein). Oncol. 12, 927–941. 10.1634/theoncologist.12-8-927 PubMed DOI
Martin P., Gillen M., Millson D., Oliver S., Brealey C., Elsby R., et al. (2015). Effects of Fostamatinib on the Pharmacokinetics of Digoxin (A P-Glycoprotein Substrate): Results from In Vitro and Phase I Clinical Studies. Clin. Ther. 37, 2811–2822. 10.1016/j.clinthera.2015.09.018 PubMed DOI
Martinec O., Huliciak M., Staud F., Cecka F., Vokral I., Cerveny L. (2019). Anti-HIV and Anti-hepatitis C Virus Drugs Inhibit P-Glycoprotein Efflux Activity in Caco-2 Cells and Precision-Cut Rat and Human Intestinal Slices. Antimicrob. Agents Chemother. 63. 10.1128/aac.00910-19 PubMed DOI PMC
Murakami T. (2017). Absorption Sites of Orally Administered Drugs in the Small Intestine. Expert Opin. Drug Discov. 12, 1219–1232. 10.1080/17460441.2017.1378176 PubMed DOI
Negoro R., Takayama K., Nagamoto Y., Sakurai F., Tachibana M., Mizuguchi H. (2016). Modeling of Drug-Mediated CYP3A4 Induction by Using Human iPS Cell-Derived Enterocyte-like Cells. Biochem. Biophysical Res. Commun. 472, 631–636. 10.1016/j.bbrc.2016.03.012 PubMed DOI
Oostendorp R. L., Beijnen J. H., Schellens J. H. M. (2009). The Biological and Clinical Role of Drug Transporters at the Intestinal Barrier. Cancer Treat. Rev. 35, 137–147. 10.1016/j.ctrv.2008.09.004 PubMed DOI
Oswald S. (2019). Organic Anion Transporting Polypeptide (OATP) Transporter Expression, Localization and Function in the Human Intestine. Pharmacol. Ther. 195, 39–53. 10.1016/j.pharmthera.2018.10.007 PubMed DOI
Owen A., Chandler B., Back D. J., Khoo S. H. (2004). Expression of Pregnane-X-Receptor Transcript in Peripheral Blood Mononuclear Cells and Correlation with MDR1 mRNA. Antivir. Ther. 9, 819–821. PubMed
Pokharel D., Roseblade A., Oenarto V., Lu J. F., Bebawy M. (2017). Proteins Regulating the Intercellular Transfer and Function of P-Glycoprotein in Multidrug-Resistant Cancer. Ecancermedicalscience 11, 768. 10.3332/ecancer.2017.768 PubMed DOI PMC
Rodrigues A. C., Curi R., Genvigir F. D. V., Hirata M. H., Hirata R. D. C. (2009). The Expression of Efflux and Uptake Transporters Are Regulated by Statins in Caco-2 and HepG2 Cells. Acta Pharmacol. Sin 30, 956–964. 10.1038/aps.2009.85 PubMed DOI PMC
Ruigrok M. J. R., Tomar J., Frijlink H. W., Melgert B. N., Hinrichs W. L. J., Olinga P. (2019). The Effects of Oxygen Concentration on Cell Death, Anti-oxidant Transcription, Acute Inflammation, and Cell Proliferation in Precision-Cut Lung Slices. Sci. Rep. 9, 16239. 10.1038/s41598-019-52813-2 PubMed DOI PMC
Sandson N. (2005). Economic Grand Rounds: Drug-Drug Interactions: The Silent Epidemic. Ps 56, 22–24. 10.1176/appi.ps.56.1.22 PubMed DOI
Seden K., Back D., Khoo S. (2009). Antiretroviral Drug Interactions: Often Unrecognized, Frequently Unavoidable, Sometimes Unmanageable. J. Antimicrob. Chemother. 64, 5–8. 10.1093/jac/dkp152 PubMed DOI
Shirasaka Y., Kawasaki M., Sakane T., Omatsu H., Moriya Y., Nakamura T., et al. (2006). Induction of Human P-Glycoprotein in Caco-2 Cells: Development of a Highly Sensitive Assay System for P-Glycoprotein-Mediated Drug Transport. Drug Metab. Pharmacokinet. 21, 414–423. 10.2133/dmpk.21.414 PubMed DOI
Siegmund W., Ludwig K., Engel G., Zschiesche M., Franke G., Hoffmann A., et al. (2003). Variability of Intestinal Expression of P-Glycoprotein in Healthy Volunteers as Described by Absorption of Talinolol from Four Bioequivalent Tablets. J. Pharm. Sci. 92, 604–610. 10.1002/jps.10327 PubMed DOI
Smutny T., Mani S., Pavek P. (2013). Post-translational and post-transcriptional Modifications of Pregnane X Receptor (PXR) in Regulation of the Cytochrome P450 Superfamily. Cdm 14, 1059–1069. 10.2174/1389200214666131211153307 PubMed DOI PMC
Storch C. H., Theile D., Lindenmaier H., Haefeli W. E., Weiss J. (2007). Comparison of the Inhibitory Activity of Anti-HIV Drugs on P-Glycoprotein. Biochem. Pharmacol. 73, 1573–1581. 10.1016/j.bcp.2007.01.027 PubMed DOI
Su S. F., Huang J. D. (1996). Inhibition of the Intestinal Digoxin Absorption and Exsorption by Quinidine. Drug Metab. Dispos 24, 142–147. PubMed
Sun H., Chow E. C., Liu S., Du Y., Pang K. S. (2008). The Caco-2 Cell Monolayer: Usefulness and Limitations. Expert Opin. Drug Metab. Toxicol. 4, 395–411. 10.1517/17425255.4.4.395 PubMed DOI
Tjernberg A., Markova N., Griffiths W. J., Hallén D. (2006). DMSO-related Effects in Protein Characterization. J. Biomol. Screen. 11, 131–137. 10.1177/1087057105284218 PubMed DOI
Van De Kerkhof E. G., De Graaf I. A. M., Ungell A.-L. B., Groothuis G. M. M. (2008). Induction of Metabolism and Transport in Human Intestine: Validation of Precision-Cut Slices as a Tool to Study Induction of Drug Metabolism in Human Intestine In Vitro . Drug Metab. Dispos 36, 604–613. 10.1124/dmd.107.018820 PubMed DOI
Van Roon E. N., Flikweert S., Le Comte M., Langendijk P. N. J., Kwee-Zuiderwijk W. J. M., Smits P., et al. (2005). Clinical Relevance of Drug-Drug Interactions. Drug Saf. 28, 1131–1139. 10.2165/00002018-200528120-00007 PubMed DOI
Varma M. V. S., Sateesh K., Panchagnula R. (2005). Functional Role of P-Glycoprotein in Limiting Intestinal Absorption of Drugs: Contribution of Passive Permeability to P-Glycoprotein Mediated Efflux Transport. Mol. Pharmaceutics 2, 12–21. 10.1021/mp0499196 PubMed DOI
Wang H., Lecluyse E. L. (2003). Role of Orphan Nuclear Receptors in the Regulation of Drug-Metabolising Enzymes. Clin. Pharmacokinet. 42, 1331–1357. 10.2165/00003088-200342150-00003 PubMed DOI
Wang Q., Herrera-Ruiz D., Mathis A. S., Cook T. J., Bhardwaj R. K., Knipp G. T. (2005). Expression of PPAR, RXR Isoforms and Fatty Acid Transporting Proteins in the Rat and Human Gastrointestinal Tracts. J. Pharm. Sci. 94, 363–372. 10.1002/jps.20264 PubMed DOI
Wei Z., Chen M., Zhang Y., Wang X., Jiang S., Wang Y., et al. (2013). No Correlation of Hsa-miR-148a with Expression of PXR or CYP3A4 in Human Livers from Chinese Han Population. PLoS One 8, e59141. 10.1371/journal.pone.0059141 PubMed DOI PMC
Weiss J., Herzog M., König S., Storch C. H., Ketabi-Kiyanvash N., Haefeli W. E. (2009). Induction of Multiple Drug Transporters by Efavirenz. J. Pharmacol. Sci. 109, 242–250. 10.1254/jphs.08209fp PubMed DOI
Westphal K., Weinbrenner A., Zschiesche M., Franke G., Knoke M., Oertel R., et al. (2000). Induction of P-Glycoprotein by Rifampin Increases Intestinal Secretion of Talinolol in Human Beings: a New Type of Drug/drug Interaction. Clin. Pharmacol. Ther. 68, 345–355. 10.1067/mcp.2000.109797 PubMed DOI
Wu J., Lin N., Li F., Zhang G., He S., Zhu Y., et al. (2016). Induction of P-Glycoprotein Expression and Activity by Aconitum Alkaloids: Implication for Clinical Drug-Drug Interactions. Sci. Rep. 6, 25343. 10.1038/srep25343 PubMed DOI PMC
Yamazaki S., Costales C., Lazzaro S., Eatemadpour S., Kimoto E., Varma M. V. (2019). Physiologically‐Based Pharmacokinetic Modeling Approach to Predict Rifampin‐Mediated Intestinal P‐Glycoprotein Induction. CPT Pharmacometrics Syst. Pharmacol. 8, 634–642. 10.1002/psp4.12458 PubMed DOI PMC
Yamazaki S., Loi C.-M., Kimoto E., Costales C., Varma M. V. (2018). Application of Physiologically Based Pharmacokinetic Modeling in Understanding Bosutinib Drug-Drug Interactions: Importance of Intestinal P-Glycoprotein. Drug Metab. Dispos 46, 1200–1211. 10.1124/dmd.118.080424 PubMed DOI
Zamek-Gliszczynski M. J., Patel M., Yang X., Lutz J. D., Chu X., Brouwer K. L. R., et al. (2021). Intestinal P-gp and Putative Hepatic OATP1B Induction: International Transporter Consortium Perspective on Drug Development Implications. Clin. Pharmacol. Ther. 109, 55–64. 10.1002/cpt.1916 PubMed DOI PMC
Extending the viability of human precision-cut intestinal slice model for drug metabolism studies