Extending the viability of human precision-cut intestinal slice model for drug metabolism studies

. 2022 Jun ; 96 (6) : 1815-1827. [epub] 20220415

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35428896
Odkazy

PubMed 35428896
PubMed Central PMC9095520
DOI 10.1007/s00204-022-03295-1
PII: 10.1007/s00204-022-03295-1
Knihovny.cz E-zdroje

Human Precision-cut intestinal slices (hPCIS) are used to study intestinal physiology, pathophysiology, drug efficacy, toxicology, kinetics, and metabolism. However, the use of this ex vivo model is restricted to approximately a 24 h timeframe because of declining viability of the hPCIS during traditional culture. We hypothesized that we could extend the hPCIS viability by using organoid medium. Therefore, we cultured hPCIS for up to 72 h in organoid media [expansion medium (Emed) and differentiation medium (Dmed)]. After incubation, we assessed culture-induced changes on viability markers, specific cell type markers and we assessed the metabolic activity of enterocytes by measuring midazolam metabolite formation. We show that the adenosine triphosphate (ATP)/protein ratio of Emed-cultured hPCIS and morphology of both Emed- and Dmed-cultured hPCIS was improved compared to WME-cultured hPCIS. Emed-cultured hPCIS showed an increased expression of proliferation and stem cell markers, whereas Dmed-cultured hPCIS showed an increased expression of proliferation and enterocyte markers, along with increased midazolam metabolism. Using the Emed, the viability of hPCIS could be extended for up to 72 h, and proliferating stem cells remained preserved. Using Dmed, hPCS also remained viable for up to 72 h, and specifically rescued the metabolizing enterocytes during culture. In conclusion, by using two different organoid culture media, we could extend the hPCIS viability for up to 72 h of incubation and specifically steer stem cells or enterocytes towards their original function, metabolism, and proliferation, potentially allowing pharmacokinetic and toxicology studies beyond the 24 h timeframe.

Zobrazit více v PubMed

Biel C, Bigaeva E, Hesse M, et al. Survival and cellular heterogeneity of epithelium in cultured mouse and rat precision-cut intestinal slices. Toxicol Vitr. 2020;69:104974. doi: 10.1016/j.tiv.2020.104974. PubMed DOI

Bigaeva E, Bomers JJM, Biel C, et al. Growth factors of stem cell niche extend the life-span of precision-cut intestinal slices in culture: a proof-of-concept study. Toxicol Vitr. 2019;59:312–321. doi: 10.1016/j.tiv.2019.05.024. PubMed DOI

Bigaeva E, Gore E, Simon E, et al. Transcriptomic characterization of culture-associated changes in murine and human precision-cut tissue slices. Arch Toxicol. 2019;93:3549–3583. doi: 10.1007/s00204-019-02611-6. PubMed DOI

Brunck MEG, Nielsen LK. Concise review: next-generation cell therapies to prevent infections in neutropenic patients. Stem Cells Transl Med. 2014;3:541–548. doi: 10.5966/sctm.2013-0145. PubMed DOI PMC

de Graaf IAM, Olinga P, de Jager MH, et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc. 2010;5:1540–1551. doi: 10.1038/nprot.2010.111. PubMed DOI

Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid models of human gastrointestinal development and disease. Gastroenterology. 2016;150:1098–1112. doi: 10.1053/j.gastro.2015.12.042. PubMed DOI PMC

Gonzalez LM, Stewart AS, Freund J, et al. Preservation of reserve intestinal epithelial stem cells following severe ischemic injury. Am J Physiol Liver Physiol. 2019;316:G482–G494. doi: 10.1152/ajpgi.00262.2018. PubMed DOI PMC

Hohmann N, Haefeli WE, Mikus G. CYP3A activity: towards dose adaptation to the individual. Expert Opin Drug Metab Toxicol. 2016;12:479–497. doi: 10.1517/17425255.2016.1163337. PubMed DOI

Holmberg FE, Seidelin JB, Yin X, et al. Culturing human intestinal stem cells for regenerative applications in the treatment of inflammatory bowel disease. EMBO Mol Med. 2017;9:558–570. doi: 10.15252/emmm.201607260. PubMed DOI PMC

Iswandana R, Irianti MI, Oosterhuis D, et al. Regional differences in human intestinal drug metabolism. Drug Metab Dispos. 2018;46:1879–1885. doi: 10.1124/dmd.118.083428. PubMed DOI

Khan AA, Chow ECY, van Loenen-Weemaes AMA, et al. Comparison of effects of VDR versus PXR, FXR and GR ligands on the regulation of CYP3A isozymes in rat and human intestine and liver. Eur J Pharm Sci. 2009;37:115–125. doi: 10.1016/j.ejps.2009.01.006. PubMed DOI

Khan AA, Chow ECY, Porte RJ, et al. Expression and regulation of the bile acid transporter, OST α -OST β in rat and human intestine and liver. Biopharm Drug Dispos. 2009;30:241–258. doi: 10.1002/bdd.663. PubMed DOI

Kozuka K, He Y, Koo-McCoy S, et al. Development and characterization of a human and mouse intestinal epithelial cell monolayer platform. Stem Cell Reports. 2017;9:1976–1990. doi: 10.1016/j.stemcr.2017.10.013. PubMed DOI PMC

Kriz V, Korinek V. Wnt, RSPO and hippo signalling in the intestine and intestinal stem cells. Genes. 2018;9:20. doi: 10.3390/genes9010020. PubMed DOI PMC

Lee C-SS, Muthusamy A, Abdul-Rahman PS, et al. An improved lectin-based method for the detection of mucin-type O-glycans in biological samples. Analyst. 2013;138:3522–3529. doi: 10.1039/c3an36258b. PubMed DOI

Leushacke M, Barker N. Ex vivo culture of the intestinal epithelium: strategies and applications. Gut. 2014;63:1345–1354. doi: 10.1136/gutjnl-2014-307204. PubMed DOI

Li M, de Graaf IAM, de Jager MH, Groothuis GMM. P-gp activity and inhibition in the different regions of human intestine ex vivo. Biopharm Drug Dispos. 2017;38:127–138. doi: 10.1002/bdd.2047. PubMed DOI

Li M, de Graaf IAM, Groothuis GMM. Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research. Expert Opin Drug Metab Toxicol. 2016;12:175–190. doi: 10.1517/17425255.2016.1125882. PubMed DOI

M.M. Groothuis G, A.M. de Graaf I, Precision-cut intestinal slices as in vitro tool for studies on drug metabolism. Curr Drug Metab. 2012;14:112–119. doi: 10.2174/13892002130110. PubMed DOI

Martignoni M, Groothuis G, de Kanter R. Comparison of mouse and rat cytochrome P450-mediated metabolism in liver and intestine. Drug Metab Dispos. 2006;34:1047–1054. doi: 10.1124/dmd.105.009035. PubMed DOI

Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2:875–894. doi: 10.1517/17425255.2.6.875. PubMed DOI

Martinec O, Biel C, de Graaf IAM, et al. Rifampicin induces gene, protein, and activity of p-glycoprotein (ABCB1) in human precision-cut intestinal slices. Front Pharmacol. 2021 doi: 10.3389/fphar.2021.684156. PubMed DOI PMC

Niu X, de Graaf IAM, Groothuis GMM. Evaluation of the intestinal toxicity and transport of xenobiotics utilizing precision-cut slices. Xenobiotica. 2013;43:73–83. doi: 10.3109/00498254.2012.729870. PubMed DOI

Okamoto R, Tsuchiya K, Nemoto Y, et al. Requirement of notch activation during regeneration of the intestinal epithelia. Am J Physiol Gastrointest Liver Physiol. 2009;296:23–35. doi: 10.1152/AJPGI.90225.2008. PubMed DOI

Pelaseyed T, Bergström JH, Gustafsson JK, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260:8–20. doi: 10.1111/imr.12182. PubMed DOI PMC

Pham BT, van Haaften WT, Oosterhuis D, et al. Precision-cut rat, mouse, and human intestinal slices as novel models for the early-onset of intestinal fibrosis. Physiol Rep. 2015;3:e12323. doi: 10.14814/phy2.12323. PubMed DOI PMC

Roth S, Franken P, Sacchetti A, et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS ONE. 2012;7:38965. doi: 10.1371/journal.pone.0038965. PubMed DOI PMC

Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340:1190–1194. doi: 10.1126/science.1234852. PubMed DOI

Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–1772. doi: 10.1053/j.gastro.2011.07.050. PubMed DOI

Scarpignato C, Bjarnason I. Drug-induced small bowel injury: a challenging and often forgotten clinical condition. Curr Gastroenterol Rep. 2019;21:55. doi: 10.1007/s11894-019-0726-1. PubMed DOI

Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos ethics. Humanit Med. 2009;4:2. doi: 10.1186/1747-5341-4-2. PubMed DOI PMC

Shimizu H, Okamoto R, Ito G, et al. Distinct expression patterns of Notch ligands, Dll1 and Dll4, in normal and inflamed mice intestine. PeerJ. 2014 doi: 10.7717/peerj.370. PubMed DOI PMC

Takeda N, Jain R, LeBoeuf MR, et al. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334:1420–1424. doi: 10.1126/science.1213214. PubMed DOI PMC

Tong Z, Martyn K, Yang A, et al. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells. Biomaterials. 2018;154:60–73. doi: 10.1016/j.biomaterials.2017.10.038. PubMed DOI PMC

van de Kerkhof EG, de Graaf IAM, Ungell A-LB, Groothuis GMM. Induction of metabolism and transport in human intestine: validation of precision-cut slices as a tool to study induction of drug metabolism in human intestine in vitro. Drug Metab Dispos. 2008;36:604–613. doi: 10.1124/dmd.107.018820. PubMed DOI

van der Flier LG, Haegebarth A, Stange DE, et al. OLFM4 Is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology. 2009;137:15–17. doi: 10.1053/j.gastro.2009.05.035. PubMed DOI

Wessels AMA, Bolhuis MS, Bult W, et al. A fast and simple method for the simultaneous analysis of midazolam, 1-hydroxymidazolam, 4-hydroxymidazolam and 1-hydroxymidazolam glucuronide in human serum, plasma and urine. J Chromatogr B. 2021;1162:122476. doi: 10.1016/j.jchromb.2020.122476. PubMed DOI

Yin X, Farin HF, van Es JH, et al. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods. 2014;11:106–112. doi: 10.1038/nmeth.2737. PubMed DOI PMC

Zheng X, Tsuchiya K, Okamoto R, et al. Suppression of hath1 gene expression directly regulated by hes1 via notch signaling is associated with goblet cell depletion in ulcerative colitis. Inflamm Bowel Dis. 2011;17:2251–2260. doi: 10.1002/IBD.21611. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...