Determination of Antiviral Drugs and Their Metabolites Using Micro-Solid Phase Extraction and UHPLC-MS/MS in Reversed-Phase and Hydrophilic Interaction Chromatography Modes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1788218
Grantová Agentura, Univerzita Karlova
EFSA-CDN (reg. no.: CZ.02.1.01/0.0/0.0/16_019/0000841)
MŠMT
18-07281Y
Grant Agency of Czech Republic
PubMed
33917128
PubMed Central
PMC8067820
DOI
10.3390/molecules26082123
PII: molecules26082123
Knihovny.cz E-zdroje
- Klíčová slova
- UHPLC-MS/MS, antiviral drug, hydrophilic interaction chromatography, microextraction, reversed phase, solid phase extraction,
- MeSH
- antivirové látky chemie farmakokinetika MeSH
- chromatografie s reverzní fází * MeSH
- lidé MeSH
- mikroextrakce na pevné fázi * MeSH
- monitorování léčiv MeSH
- reprodukovatelnost výsledků MeSH
- tandemová hmotnostní spektrometrie * MeSH
- vysokoúčinná kapalinová chromatografie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
Two new ultra-high performance liquid chromatography (UHPLC) methods for analyzing 21 selected antivirals and their metabolites were optimized, including sample preparation step, LC separation conditions, and tandem mass spectrometry detection. Micro-solid phase extraction in pipette tips was used to extract antivirals from the biological material of Hanks balanced salt medium of pH 7.4 and 6.5. These media were used in experiments to evaluate the membrane transport of antiviral drugs. Challenging diversity of physicochemical properties was overcome using combined sorbent composed of C18 and ion exchange moiety, which finally allowed to cover the whole range of tested antivirals. For separation, reversed-phase (RP) chromatography and hydrophilic interaction liquid chromatography (HILIC), were optimized using extensive screening of stationary and mobile phase combinations. Optimized RP-UHPLC separation was carried out using BEH Shield RP18 stationary phase and gradient elution with 25 mmol/L formic acid in acetonitrile and in water. HILIC separation was accomplished with a Cortecs HILIC column and gradient elution with 25 mmol/L ammonium formate pH 3 and acetonitrile. Tandem mass spectrometry (MS/MS) conditions were optimized in both chromatographic modes, but obtained results revealed only a little difference in parameters of capillary voltage and cone voltage. While RP-UHPLC-MS/MS exhibited superior separation selectivity, HILIC-UHPLC-MS/MS has shown substantially higher sensitivity of two orders of magnitude for many compounds. Method validation results indicated that HILIC mode was more suitable for multianalyte methods. Despite better separation selectivity achieved in RP-UHPLC-MS/MS, the matrix effects were noticed while using both chromatographic modes leading to signal enhancement in RP and signal suppression in HILIC.
Zobrazit více v PubMed
Nováková L., Pavlík J., Chrenková L., Martinec O., Červený L. Current antiviral drugs and their analysis in biological materials—Part I: Antivirals against respiratory and herpes viruses. J. Pharm. Biomed. Anal. 2018;147:400–416. doi: 10.1016/j.jpba.2017.06.071. PubMed DOI
De Clercq E., Li G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016;29:695–747. doi: 10.1128/CMR.00102-15. PubMed DOI PMC
Li G., Xu M., Yue T., Gu W., Tan L. Life-long passion for antiviral research and drug development: 80th birthday of Prof. Dr. Erik De Clercq. Biochem. Pharmacol. 2021;185:114485. doi: 10.1016/j.bcp.2021.114485. PubMed DOI PMC
FDA New Drugs at FDA: CDER’s New Molecular Entities and New Therapeutic Biological Products. [(accessed on 1 March 2021)]; Available online: https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products.
Tomić D., Davidović D., Szasz A.M., Rezeli M., Pirkić B., Petrik J., Vrca V.B., Janđel V., Lipić T., Skala K., et al. The screening and evaluation of potential clinically significant HIV drug combinations against the SARS-CoV-2 virus. Inform. Med. Unlocked. 2021:100529. doi: 10.1016/j.imu.2021.100529. PubMed DOI PMC
Baby K., Maity S., Mehta C.H., Suresh A., Nayak U.Y., Nayak Y. SARS-CoV-2 entry inhibitors by dual targeting TRPRSS2 and ACE2: An in silico drug repurposing study. Eur. J. Pharmacol. 2021;896:173922–173933. doi: 10.1016/j.ejphar.2021.173922. PubMed DOI PMC
Fritz A., Busch D., Lapczuk J., Ostrowski M., Drozdzik M., Oswald S. Expression of clinically relevant drug-metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: An intra-subject analysis. Basic Clin. Pharmacol. Toxicol. 2019;124:245–255. doi: 10.1111/bcpt.13137. PubMed DOI
Rodrigues M.C.S., de Oliveira C. Drug-drug interactions and adverse drug reactions in polypharmacy among older adults: An integrative review. Rev. Latino-Am. Enfermagem. 2016;24:17. doi: 10.1590/1518-8345.1316.2800. PubMed DOI PMC
Nováková L., Pavlík J., Chrenková L., Martinec O., Červený L. Current antiviral drugs and their analysis in biological materials – Part II: Antivirals against hepatitis and HIV viruses. J. Pharm. Biomed. Anal. 2018;147:378–399. doi: 10.1016/j.jpba.2017.07.003. PubMed DOI
Martinec O., Huliciak M., Staud F., Cecka F., Vokral I., Cerveny L. Anti-HIV and Anti-Hepatitis C Virus Drugs Inhibit P-Glycoprotein Efflux Activity in Caco-2 Cells and Precision-Cut Rat and Human Intestinal Slices. Antimicrob. Agents Chemother. 2019;63:00910-19. doi: 10.1128/AAC.00910-19. PubMed DOI PMC
FDA In Vitro Drug Interaction Studies-Cytochrome P450 Enzyme-and Transporter-Mediated Drug Interactions Guidance for Industry. [(accessed on 6 April 2021)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions.
EMA Guideline on the Investigation of Drug Interactions—Revision 1, CPMP/EWP/560/95/Rev.1 Corr.2. [(accessed on 6 April 2021)]; Available online: www.ema.europa.eu/contact.2012.
Acquavia M.A., Foti L., Pascale R., Nicolò A., Brancaleone V., Cataldi T.R., Martelli G., Scrano L., Bianco G. Detection and quantification of Covid-19 antiviral drugs in biological fluids and tissues. Talanta. 2021;224:121862. doi: 10.1016/j.talanta.2020.121862. PubMed DOI PMC
Else L., Watson V., Tjia J., Hughes A., Siccardi M., Khoo S., Back D. Validation of a rapid and sensitive high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) assay for the simultaneous determination of existing and new antiretroviral compounds. J. Chromatogr. B. 2010;878:1455–1465. doi: 10.1016/j.jchromb.2010.03.036. PubMed DOI
D’Avolio A., Simiele M., Siccardi M., Baietto L., Sciandra M., Oddone V., Stefani F.R., Agati S., Cusato J., Bonora S., et al. A HPLC-MS method for the simultaneous quantification of fourteen antiretroviral agents in peripheral blood mon-onuclear cell of HIV infected patients optimized using medium corpuscular volume evaluation. J. Pharm. Biomed. Anal. 2011;54:779–788. doi: 10.1016/j.jpba.2010.10.011. PubMed DOI
Djerada Z., Feliu C., Tournois C., Vautier D., Binet L., Robinet A., Marty H., Gozalo C., Lamiable D., Millart H. Validation of a fast method for quantitative analysis of elvitegravir, raltegravir, maraviroc, etravirine, tenofovir, boceprevir and 10 other antiretroviral agents in human plasma samples with a new UPLC-MS/MS technology. J. Pharm. Biomed. Anal. 2013;86:100–111. doi: 10.1016/j.jpba.2013.08.002. PubMed DOI
Watanabe K., Varesio E., Hopfgartner G. Parallel ultra high-pressure liquid chromatography–mass spectrometry for the quantification of HIV protease inhibitors using dried spot sample collection format. J. Chromatogr. B. 2014;965:244–253. doi: 10.1016/j.jchromb.2014.05.008. PubMed DOI
Marzinke M.A., Breaud A., Parsons T.L., Cohen M.S., Piwowar-Manning E., Eshleman S.H., Clarke W. The development and validation of a method using high-resolution mass spectrometry (HRMS) for the qualitative detection of antiretroviral agents in human blood. Clin. Chim. Acta. 2014;433:157–168. doi: 10.1016/j.cca.2014.03.016. PubMed DOI PMC
Ariaudo A., Favata F., De Nicolò A., Simiele M., Paglietti L., Boglione L., Cardellino C.S., Carcieri C., Di Perri G., D’Avolio A. A UHPLC-MS/MS method for the quantification of direct antiviral agents simeprevir, daclatasvir, ledipasvir, sofos-buvir/GS-331007, dasabuvir, ombitasvir and paritaprevir, together with ritonavir, in human plasma. J. Pharm. Biomed. Anal. 2016;125:369–375. doi: 10.1016/j.jpba.2016.04.031. PubMed DOI
Simiele M., Ariaudo A., De Nicolò A., Favata F., Ferrante M., Carcieri C., Bonora S., Di Perri G., D’Avolio A. UPLC–MS/MS method for the simultaneous quantification of three new antiretroviral drugs, dolutegravir, elvitegravir and rilpivirine, and other thirteen antiretroviral agents plus cobicistat and ritonavir boosters in human plasma. J. Pharm. Biomed. Anal. 2017;138:223–230. doi: 10.1016/j.jpba.2017.02.002. PubMed DOI
Conti M., Cavedagna T.M., Ramazzotti E., Mancini R., Calza L., Rinaldi M., Badia L., Guardigni V., Viale P., Verucchi G. Multiplexed therapeutic drug monitoring (TDM) of antiviral drugs by LC–MS/MS. Clin. Mass Spectrom. 2018;7:6–17. doi: 10.1016/j.clinms.2017.12.002. DOI
Daskapan A., van Hateren K., Stienstra Y., Kosterink J., van der Werf T., Touw D., Alffenaar J.-W. Development and validation of a bioanalytical method for the simultaneous determination of 14 antiretroviral drugs using liquid chroma-tography-tandem mass spectrometry. J. Appl. Bioanal. 2018;4:37–50. doi: 10.17145/jab.18.007. DOI
van Seyen M., de Graaff Teulen M.J.A., van Erp N.P., Burger D.M. Quantification of second generation direct-acting antivirals daclatasvir, elbasvir, grazoprevir, ledipasvir, simeprevir, sofosbuvir and velpatasvir in human plasma by UPLC-MS/MS. J. Chromatogr. B. 2019;1110:15–24. doi: 10.1016/j.jchromb.2019.01.024. PubMed DOI
Gouget H., Noé G., Barrail-Tran A., Furlan V. UPLC–MS/MS method for the simultaneous quantification of bictegravir and 13 others antiretroviral drugs plus cobicistat and ritonavir boosters in human plasma. J. Pharm. Biomed. Anal. 2020;181:113057. doi: 10.1016/j.jpba.2019.113057. PubMed DOI
Zheng Y., Aboura R., Boujaafar S., Lui G., Hirt D., Bouazza N., Foissac F., Treluyer J.-M., Benaboud S., Gana I. HPLC-MS/MS method for the simultaneous quantification of dolutegravir, elvitegravir, rilpivirine, darunavir, ritonavir, raltegravir and raltegravir-β-d-glucuronide in human plasma. J. Pharm. Biomed. Anal. 2020;182:113119. doi: 10.1016/j.jpba.2020.113119. PubMed DOI
Habler K., Brügel M., Teupser D., Liebchen U., Scharf C., Schönermarck U., Vogeser M., Paal M. Simultaneous quantification of seven repurposed COVID-19 drugs remdesivir (plus metabolite GS-441524), chloroquine, hydroxychloroquine, lopinavir, ri-tonavir, favipiravir and azithromycin by a two-dimensional isotope dilution LC-MS/MS in human serum. J. Pharm. Biomed. Anal. 2021;196:113935–113943. doi: 10.1016/j.jpba.2021.113935. PubMed DOI PMC
Niessen W. Tandem mass spectrometry of small-molecule antiviral drugs: 1. HIV-related antivirals. Int. J. Mass Spectrom. 2020;455:116370. doi: 10.1016/j.ijms.2020.116370. PubMed DOI PMC
Niessen W. Tandem mass spectrometry of small-molecule antiviral drugs: 2. hepatitis-related antivirals. Int. J. Mass Spectrom. 2020;455:116371. doi: 10.1016/j.ijms.2020.116371. PubMed DOI PMC
Niessen W. Tandem mass spectrometry of small-molecule antiviral drugs: 3. antiviral agents against herpes, influenza and other viral infections. Int. J. Mass Spectrom. 2020;455:116377. doi: 10.1016/j.ijms.2020.116377. PubMed DOI PMC
Nováková L., Havlíková L., Vlčková H. Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. TrAC Trends Anal. Chem. 2014;63:55–64. doi: 10.1016/j.trac.2014.08.004. DOI
Hsiao J.J., Potter O.G., Chu T.-W., Yin H. Improved LC/MS Methods for the Analysis of Metal-Sensitive Analytes Using Medronic Acid as a Mobile Phase Additive. Anal. Chem. 2018;90:9457–9464. doi: 10.1021/acs.analchem.8b02100. PubMed DOI
Vlčková H., Pilařová V., Novák O., Solich P., Nováková L. Micro-SPE in pipette tips as a tool for analysis of small-molecule drugs in serum. Bioanal. 2017;9:887–901. doi: 10.4155/bio-2017-0033. PubMed DOI
Ocque A.J., Hagler C.E., Morse G.D., Letendre S.L., Ma Q. Development and validation of an LC–MS/MS assay for tenofovir and tenofovir alafenamide in human plasma and cerebrospinal fluid. J. Pharm. Biomed. Anal. 2018;156:163–169. doi: 10.1016/j.jpba.2018.04.035. PubMed DOI PMC
Yadav M., Mishra T., Singhal P., Goswami S., Shrivastav P.S. Rapid and specific liquid chromatographic tandem mass spectrometric determination of tenofovir in human plasma and its fragmentation study. J. Chromatogr. Sci. 2009;47:140–148. doi: 10.1093/chromsci/47.2.140. PubMed DOI
International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). M10: Bioanalytical Method Validation. [(accessed on 6 April 2021)]; Available online: https://www.ema.europa.eu/en/ich-m10-bioanalytical-method-validation.
European Medicines Agency Committee for Medicinal Products for Human Use, Guidelines on Validation of Bioanalytical Methods (draft), EMA/CMP/EWP/192217/200, London, UK, 2011. [(accessed on 6 April 2021)]; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf.
Hubatsch I., E Ragnarsson E.G., Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007;2:2111–2119. doi: 10.1038/nprot.2007.303. PubMed DOI