Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-01799S
Grantová Agentura České Republiky
PubMed
34360650
PubMed Central
PMC8346157
DOI
10.3390/ijms22157885
PII: ijms22157885
Knihovny.cz E-zdroje
- Klíčová slova
- Silybum marianum, chirality, dehydroflavonolignan, diastereomer, flavonoid, flavonolignan, isosilybin, milk thistle, silibinin, silybin, silychristin, silydianin, silymarin,
- MeSH
- antiinfekční látky chemie farmakologie MeSH
- antioxidancia chemie farmakologie MeSH
- fytogenní protinádorové látky chemie farmakologie MeSH
- lidé MeSH
- silibinin chemie farmakologie MeSH
- stereoizomerie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antiinfekční látky MeSH
- antioxidancia MeSH
- fytogenní protinádorové látky MeSH
- silibinin MeSH
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
Zobrazit více v PubMed
Warnholtz A., Munzel T. Why do antioxidants fail to provide clinical benefit? Curr. Control Trials Cardiovasc. Med. 2000;1:38–40. doi: 10.1186/CVM-1-1-038. PubMed DOI PMC
Forman H.J., Davies K.J.A., Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Rad. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. PubMed DOI PMC
Anthony K.P., Saleh M.A. Free radical scavenging and antioxidant activities of silymarin components. Antioxidants. 2013;2:398–407. doi: 10.3390/antiox2040398. PubMed DOI PMC
Egea J., Fabregat I., Frapart Y.M., Ghezzi P., Görlach A., Kietzmann T., Kubaichuk K., Knaus U.G., Lopez M.G., Olaso-Gonzalez G., et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS) Redox Biol. 2017;13:94–162. doi: 10.1016/j.redox.2017.05.007. PubMed DOI PMC
Křen V., Walterová D. Silybin and silymarin—New effects and applications. Biomed Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2005;149:29–41. doi: 10.5507/bp.2005.002. PubMed DOI
Biedermann D., Vavříková E., Cvak L., Křen V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1156. doi: 10.1039/C3NP70122K. PubMed DOI
Szilagyi I., Tetenyi P., Antus S., Seligmann O., Chari V.M., Seitz M., Wagner H. Struktur von Silandrin und Silymonin, zwei neuen Flavanolignanen aus einer weißblühenden Silybum marianum Varietät. Planta Med. 1981;43:121–127. doi: 10.1055/s-2007-971488. PubMed DOI
Martinelli T., Whittaker A., Benedettelli S., Carboni A., Andrzejewska J. The study of flavonolignan association patterns in fruits of diverging Silybum marianum (L.) Gaertn. chemotypes provides new insights into the silymarin biosynthetic pathway. Phytochemistry. 2017;144:9–18. doi: 10.1016/j.phytochem.2017.08.013. PubMed DOI
Chambers S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition and why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Petrásková L., Káňová K., Valentová K., Biedermann D., Křen V. A Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:116. doi: 10.3390/foods9020116. PubMed DOI PMC
Fenclová M., Stránská-Zachariášová M., Beneš F., Nováková A., Jonatová P., Křen V., Vítek L., Hajšlová J. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal. Bioanal. Chem. 2020;412:819–832. doi: 10.1007/s00216-019-02274-3. PubMed DOI
Kroll D.J., Shaw H.S., Oberlies N.H. Milk thistle nomenclature: Why it matters in cancer research and pharmacokinetic studies. Integr. Cancer Ther. 2007;6:110–119. doi: 10.1177/1534735407301825. PubMed DOI
Šimánek V., Křen V., Ulrichová J., Vičar J., Cvak L. Silymarin: “What is in the name...?” An appeal for a change of editorial policy. Hepatology. 2000;32:442–443. doi: 10.1053/jhep.2000.9770. PubMed DOI
Křen V. Silibinin chirality. J. Photochem. Photobiol. A. 2009;203:222–223. doi: 10.1016/j.jphotochem.2009.02.014. DOI
Křen V., Gažák R., Biedermann D., Marhol P. Silybin (silibinin) structure and chirality. Chromatographia. 2010;71:167–168. doi: 10.1365/s10337-009-1419-y. DOI
O’Neil M.J., editor. Merck Index. 14th ed. The Merck Publishing Group; Whitehouse Station, NJ, USA: 2006. pp. 8523–8524.
O’Neil M.J., editor. Merck Index. 15th ed. Royal Society of Chemistry; Cambridge, UK: 2013. entry #8532.
Malan E., Swinny E., Ferreira D. A 3-oxygenated flavonolignoid from Distemonanthus benthamianus. Phytochemistry. 1994;37:1771–1772. doi: 10.1016/S0031-9422(00)89611-9. DOI
Yang L.X., Huang K.X., Li H.B., Gong J.X., Wang F., Feng Y.B., Tao Q.F., Wu Y.H., Li X.K., Wu X.M., et al. Synthesis, and examination of neuron protective properties of alkenylated and amidated dehydro-silybin derivatives. J. Med. Chem. 2009;52:7732–7752. doi: 10.1021/jm900735p. PubMed DOI
Pelter A., Hänsel R. The structure of silybin (silybum substance E6), the first flavonolignan. Tetrahedron Lett. 1968;25:2911–2916. doi: 10.1016/S0040-4039(00)89610-0. DOI
Kim C., Graf T.N., Sparacino C.M., Wani M.C., Wall M.E. Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum) Org. Biomol. Chem. 2003;1:1684–1689. doi: 10.1039/b300099k. Erratum in 2003, 1, 3470. PubMed DOI
Graf T.N., Wani M.C., Agarwal R., Kroll D.J., Oberlies N.H. Gram-scale purification of flavonolignan diastereomes from Silybum marianum (milk thistle) extract in support of preclinical in vivo studies for prostate cancer chemoprevention. Planta Med. 2007;73:1495–1501. doi: 10.1055/s-2007-990239. PubMed DOI
Napolitano J.G., Lankin D.C., Graf T.N., Friesen J.B., Chen S.-N., McAlpine J.B., Oberlies N.H., Pauli G.F. HiFSA fingerprinting applied to isomers with near-identical NMR spectra: The silybin/isosilybin case. J. Org. Chem. 2013;78:2827–2839. doi: 10.1021/jo302720h. PubMed DOI PMC
Lee D.Y.-W., Liu Y. Molecular structure and stereochemistry of silybin A, silybin B, isosilybin A, and isosilybin B, isolated from Silybum marianum (milk thistle) J. Nat. Prod. 2003;66:1171–1174. doi: 10.1021/np030163b. Erratum in 2003, 66, 1632. PubMed DOI
Novotná M., Gažák R., Biedermann D., di Meo F., Marhol P., Kuzma M., Bednárová L., Fuksová K., Trouillas P., Křen V. Cis-trans isomerization of silybins A and B. Beilstein J. Org. Chem. 2014;10:1047–1063. doi: 10.3762/bjoc.10.105. PubMed DOI PMC
Schrall R., Becker H. Callus- und Suspensionskulturen von Silybum marianum. II. Mitteilung: Umsetzung von Flavonoiden mit Coniferylalkohol zu Flavonolignanen. Planta Med. 1977;32:27–32. doi: 10.1055/s-0028-1097554. DOI
Lv Y.K., Xu S., Lyu Y.B., Zhou S.H., Du G.C., Chen J., Zhou J.W. Engineering enzymatic cascades for the efficient biotransformation of eugenol and taxifolin to silybin and isosilybin. Green Chem. 2019;21:1660–1667. doi: 10.1039/C8GC03728K. DOI
Merlini L., Zanarotti A., Pelter A., Rochefort M.P., Hansel R. Biomimetic synthesis of natural silybin. J. Chem. Soc. Chem. Commun. 1979;16:695. doi: 10.1039/C39790000695. DOI
Althagafy H.S., Meza-Avina M.E., Oberlies N.H., Croatt M.P. Mechanistic study of the biomimetic synthesis of flavonolignan diastereoisomers in milk thistle. J. Org. Chem. 2013;78:7594–7600. doi: 10.1021/jo4011377. PubMed DOI PMC
Vanholme R., Demedts B., Morreel K., Ralph J., Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153:895–905. doi: 10.1104/pp.110.155119. PubMed DOI PMC
Lv Y.K., Gao S., Xu S., Du G.C., Zhou J.W., Chen J. Spatial organization of silybin biosynthesis in milk thistle [Silybum marianum (L.) Gaertn] Plant J. 2017;92:995–1004. doi: 10.1111/tpj.13736. PubMed DOI
Torres M., Corchete P. Gene expression and flavonolignan production in fruits and cell cultures of Silybum marianum. J. Plant Physiol. 2016;192:111–117. doi: 10.1016/j.jplph.2016.02.004. PubMed DOI
Martinelli T., Fulvio F., Pietrella M., Focacci M., Lauria M., Paris R. In Silybum marianum Italian wild populations the variability of silymarin profiles results from the combination of only two stable chemotypes. Fitoterapia. 2021;148:104797. doi: 10.1016/j.fitote.2020.104797. PubMed DOI
Davis-Searles P.R., Nakanishi Y., Kim N.-C., Graf T.N., Oberlies N.H., Wani M.C., Wall M.E., Agarwal R., Kroll D.J. Milk thistle and prostate cancer: Differential effects of pure flavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Res. 2005;65:4448–4457. doi: 10.1158/0008-5472.CAN-04-4662. PubMed DOI
Deep G., Oberlies N.H., Kroll D.J., Agarwal R. Isosilybin B and isosilybin A inhibit growth, induce G1 arrest and cause apoptosis in human prostate cancer LNCaP and 22Rv1 cells. Carcinogenesis. 2007;28:1533–1542. doi: 10.1093/carcin/bgm069. PubMed DOI
Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro-derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popović-Bijelić A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Rad. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI
Gažák R., Svobodová A., Psotová J., Sedmera P., Přikrylová V., Walterová D., Křen V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorg. Med. Chem. 2004;12:5677–5687. doi: 10.1016/j.bmc.2004.07.064. PubMed DOI
Qin N., Sasaki T., Li W., Wang J., Zhang X., Li D., Li Z., Cheng M., Hua H., Koike K. Identification of flavonolignans from Silybum marianum seeds as allosteric protein tyrosine phosphatase 1B inhibitors. J. Enzyme Inhib. Med. Chem. 2018;33:1283–1291. doi: 10.1080/14756366.2018.1497020. PubMed DOI PMC
Pelter A., Hänsel R. Struktur des Silybins: I. Abbauversuche. Chem. Ber. 1975;108:790–802. doi: 10.1002/cber.19751080312. DOI
Lotter H., Wagner H. Zur Stereochemie von Silybin. Z. Naturforsch. Sect. C J. Biosci. 1983;38:339–341. doi: 10.1515/znc-1983-5-601. DOI
Tittel G., Wagner H. High-performance liquid chromatographic separationof silymarins and their determination in raw extracts of Silybum marianum Gaertn. J. Chromatogr. A. 1977;135:499–501. doi: 10.1016/S0021-9673(00)88397-1. PubMed DOI
Arnone A., Merlini L., Zanarotti A. Constituents of Silybum marianum. Structure of isosilybin and stereochemistry of silybin. J. Chem. Soc. Chem. Commun. 1979:696–697. doi: 10.1039/c39790000696. DOI
Sy-Cordero A., Day C.S., Oberlies N.H. Absolute configuration of isosilybin A by X-ray crystallography of the heavy atom analogue 7-(4-bromobenzoyl)isosilybin A. J. Nat. Prod. 2012;75:1879–1881. doi: 10.1021/np3005369. PubMed DOI PMC
Zanarotti A. Stereochemistry of silychristin. Mild dehydrogenation of flavonols. Heterocycles. 1982;19:1585–1586. doi: 10.3987/R-1982-09-1585. DOI
Smith W.A., Lauren D.R., Burgess E.J., Perry N.B., Martin R.J. A silychristin isomer and variation of flavonolignan levels in milk thistle (Silybum marianum) fruits. Planta Med. 2005;71:877–880. doi: 10.1055/s-2005-864187. PubMed DOI
Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárova L., Křenková A., Kuzma M., Skuta C., et al. Křen V. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI
Abraham D.J., Takagi S., Rosenstein R., Shiono R., Wagner H., Hörhammer L., Seligmann O., Farnsworth N. Structure of silydianin, an isomer of silymarin (silybin), by X-ray analysis. Tetrahedron Lett. 1970;11:2675–2678. doi: 10.1016/S0040-4039(01)98310-8. DOI
Wagner H., Seligmann O., Seitz M., Abraham D., Sonnenbichler J. Silydianin and silychristin, two isomeric silymarins from Silybum marianum L. Gaertn. (milk thistle) Z. Naturforsch. B. 1976;31:876–884. doi: 10.1515/znb-1976-0630. DOI
Biedermann D., Moravcová V., Valentová K., Kuzma M., Petrásková L., Císařová I., Křen V. Oxidation of flavonolignan silydianin to unexpected lactone-acid derivative. Phytochem. Lett. 2019;30:14–20. doi: 10.1016/j.phytol.2019.01.006. DOI
Křen V., Sedmera P., Kubisch J., Halada P., Přikrylová V., Jegorov A., Cvak L., Gebhardt R., Ulrichová J., Šimánek V. Glycosylation of silybin. J. Chem. Soc. Perkin Trans. 1. 1997:2467–2474. doi: 10.1039/a703283h. DOI
Křen V., Gažák R., Purchartová K., Marhol P., Biedermann D., Sedmera P. Chemoenzymatic preparative separation of silybin A and B. J. Mol. Catal. B Enzymat. 2009;61:247–251. doi: 10.1016/j.molcatb.2009.07.013. DOI
Sy-Cordero A., Graf T.N., Nakanishi Y., Wani M.C., Agarwal R., Kroll D.J., Oberlies N.H. Large-scale isolation of flavonolignans from Silybum marianum extract affords new minor constituents and preliminary structure-activity relationships. Planta Med. 2010;76:644–647. doi: 10.1055/s-0029-1240624. PubMed DOI PMC
Di Fabio G., Romanucci V., di Marino C., de Napoli L., Zarrelli A. A rapid and simple chromatographic separation of diastereomers of silibinin and their oxidation to produce 2,3-dehydrosilybin enantiomers in an optically pure form. Planta Med. 2013;79:1077–1080. doi: 10.1055/s-0032-1328703. PubMed DOI
Gažák R., Fuksová K., Marhol P., Kuzma M., Agarwal R., Křen V. Preparative method for isosilybin isolation based on enzymatic kinetic resolution of silymarin mixture. Proc. Biochem. 2013;48:184–189. doi: 10.1016/j.procbio.2012.11.006. DOI
Carrea G., Riva S. Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. Ed. 2000;39:2226–2254. doi: 10.1002/1521-3773(20000703)39:13<2226::AID-ANIE2226>3.0.CO;2-L. PubMed DOI
Monti D., Gažák R., Marhol P., Biedermann D., Purchartová K., Fedrigo M., Riva S., Křen V. Enzymatic kinetic resolution of silybin diastereoisomers. J. Nat. Prod. 2010;73:613–619. doi: 10.1021/np900758d. PubMed DOI
Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Proc. Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI
Vavříková E., Gavezzotti P., Purchartová K., Fuksová K., Biedermann D., Kuzma M., Riva S., Křen V. Regioselective alcoholysis of silychristin acetates catalyzed by lipases. Int. J. Mol. Sci. 2015;16:11983–11995. doi: 10.3390/ijms160611983. PubMed DOI PMC
Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20. Food. Res. Internat. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI
Csupor D., Csorba A., Hohmann J. Recent advances in the analysis of flavonolignans of Silybum marianum. J. Pharm. Biomed. Anal. 2016;130:301–317. doi: 10.1016/j.jpba.2016.05.034. PubMed DOI
Tittel G., Wagner H. High-performance liquid chromatography of silymarin. II. Quantitative determination of silymarin from Silybum marianum byhigh-performance liquid chromatography. J. Chromatogr. 1978;153:227–232. doi: 10.1016/S0021-9673(00)89876-3. DOI
Hammouda F.M., Ismail S.I., Hassan N.M., Zaki A.K., Kamel A., Rimpler H. Evaluation of the silymarin content in Silybum marianum (L.) Gaertn. cultivated under different agricultural conditions. Phytother. Res. 1993;7:90–91. doi: 10.1002/ptr.2650070122. DOI
Weyhenmeyer R., Mascher H., Birkmayer J. Study on dose-linearity of the pharmacokinetics of silibinin diastereomers using a new stereospecific assay. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992;30:134–138. PubMed
Mascher H., Kikuta C., Weyhenmeyer R. Diastereomeric separation of free and conjugated silibinin in plasma by reversed phase HPLC after specific extraction. J. Liq. Chromatogr. 1993;16:2777–2789. doi: 10.1080/10826079308019612. DOI
Rickling B., Hans B., Kramarczyk R., Krumbiegel G., Weyhenmeyer R. Two high-performance liquidchromatographic assays for the determination of free and total silibinin diastereomers in plasma using column switching with electrochemical detection and reversed-phase chromatography with ultraviolet detection. J. Chromatogr. B Biomed. Appl. 1995;670:267–277. doi: 10.1016/0378-4347(95)00168-9. PubMed DOI
Hoh C.S.L., Boocock D.J., Marczylo T.H., Brown V.A., Cai H., Steward W.P., Berry D.P., Gescher A.J. Quantitation of silibinin, a putative cancer chemopreventive agent derived from milk thistle (Silybum marianum), in human plasma by high-performance liquid chromatography and identification of possible metabolites. J. Agric. Food Chem. 2007;55:2532–2535. doi: 10.1021/jf063156c. PubMed DOI
Hadad G.M., Emara S., Abdel-Salam R.A. Validated optimized method for simultaneous analysis of active silymarin components and dimethyl-4’-dimethoxy-5,6,5’,6’-dimethylenedioxybiphenyl-2,2’-dicarboxylate in a pharmaceutical preparation by use of a monolithic silica. Chromatographia. 2009;70:217–221. doi: 10.1365/s10337-009-1127-7. DOI
Marhol P., Gažák R., Bednář P., Křen V. Narrow-bore core-shell particles and monolithic columns in the analysis of silybin diastereoisomers. J. Sep. Sci. 2011;34:2206–2213. doi: 10.1002/jssc.201100309. PubMed DOI
Quaglia M.G., Bossu E., Donati E., Mazzanti G., Brandt A. Determination of silymarine in the extract from the dried Silybum marianum fruits by high performance liquid chromatography and capillary electrophoresis. J. Pharm. Biomed. Anal. 1999;19:435–442. doi: 10.1016/S0731-7085(98)00231-3. PubMed DOI
Fibigr J., Šatínský D., Solich P. A new approach to the rapid separation of isomeric compounds in a Silybum marianum extract using UHPLC core-shell column with F5 stationary phase. J. Pharm. Biomed. Anal. 2017;134:203–213. doi: 10.1016/j.jpba.2016.11.042. PubMed DOI
Khan A., Wu H.-F. Analysis of silymarin extracted from a commercialdosage by combining liquid–liquid extraction with negative electrospraytandem mass spectrometry. Rapid Commun. Mass Spectrom. 2004;18:2960–2962. doi: 10.1002/rcm.1700. PubMed DOI
Kuki A., Biri B., Nagy L., Deak G., Kalmar J., Mandi A., Nagy M., Zsuga M., Kéki S. Collision induced dissociation study of the major components of silymarin. Int. J. Mass Spectrom. 2012;315:46–54. doi: 10.1016/j.ijms.2012.02.021. DOI
Kuki A., Nagy L., Deák G., Nagy M., Zsuga M., Kéki S. Identification of silymarin constituents: An improved HPLC–MS method. Chromatographia. 2012;75:175–180. doi: 10.1007/s10337-011-2163-7. DOI
Solís-Gómez A., Sato-Berrú R.Y., Mata-Zamora M.E., Saniger J.M., Guirado-López R.A. Characterizing the properties of anticancer silibinin and silybin B complexes with UV-Vis, FT-IR, and Raman spectroscopies: A combined experimental and theoretical study. J. Mol. Struct. 2019;1182:109–118. doi: 10.1016/j.molstruc.2019.01.042. DOI
Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Tentative sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and antioxidant evaluation. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC
Tvrdý V., Catapano M.C., Rawlik T., Karlíčková J., Biedermann D., Křen V., Mladěnka P., Valentová K. Interaction of isolated silymarin flavonolignans with iron and copper. J. Inorg. Biochem. 2018;189:115–123. doi: 10.1016/j.jinorgbio.2018.09.006. PubMed DOI
Křen V., Minghetti A., Sedmera P., Havlíček V., Přikrylová V., Crespi-Perellino N. Glucosylation of silybin by plant cell cultures of Papaver somniferum var. setigerum. Phytochemistry. 1998;47:217–220. doi: 10.1016/S0031-9422(97)00559-1. DOI
Křen V., Ulrichová J., Kosina P., Stevenson D., Sedmera P., Přikrylová V., Halada P., Šimánek V. Chemoenzymatic preparation of silybine β-glucuronides and their biological evaluation. Drug Metab. Disp. 2000;28:1513–1517. PubMed
Charrier C., Azerad R., Marhol P., Purchartová K., Kuzma M., Křen V. Preparation of silybin phase II metabolites: Streptomyces catalyzed glucuronidation. J. Mol. Catal. B Enzym. 2014;102:167–173. doi: 10.1016/j.molcatb.2014.02.008. DOI
Gufford B.T., Graf T.N., Paguigan N.D., Oberlies N.H., Paine M.F. Chemoenzymatic synthesis, characterization, and scale-up of milk thistle flavonolignan glucuronides. Drug Metab. Disp. 2015;43:1734–1743. doi: 10.1124/dmd.115.066076. PubMed DOI PMC
Jančová P., Anzenbacherová E., Šiller M., Křen V., Anzenbacher P., Šimánek V. Stereoselective metabolism of silybin by UDP glucuronosyltransferases in vitro. Xenobiotica. 2011;41:743–751. doi: 10.3109/00498254.2011.573017. PubMed DOI
Purchartová K., Engels L., Marhol P., Slámová K., Šulc M., Kuzma M., Elling L., Křen V. Enzymatic preparation of silybin phase II metabolites: Sulfation using aryl sulfotransferase from rat liver. Appl. Microbiol. Biotechnol. 2013;97:10391–10398. doi: 10.1007/s00253-013-4794-0. PubMed DOI
Marhol P., Bednář P., Kolářová P., Večeřa R., Ulrichová J., Tesařová E., Vavříková E., Kuzma M., Křen V. Pharmacokinetics of pure silybin diastereoisomers and identification of their metabolites in rat plasma. J. Funct. Foods. 2015;14:570–580. doi: 10.1016/j.jff.2015.02.031. DOI
Marhol P., Hartog A.F., van der Horst M.A., Wever R., Purchartová K., Fuksová K., Kuzma M., Cvačka J., Křen V. Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. J. Mol. Catal. B Enzymat. 2013;89:24–27. doi: 10.1016/j.molcatb.2012.12.005. DOI
Agarwal C., Wadhwa R., Deep G., Biedermann D., Gažák R., Křen V., Agarwal R. Agarwal: Anti-cancer efficacy of silybin derivatives—A structure-activity relationship. PLoS ONE. 2013;8:e60074. doi: 10.1371/journal.pone.0060074. PubMed DOI PMC
Purchartová K., Marhol P., Gažák R., Monti D., Riva S., Kuzma M., Křen V. Regioselective alcoholysis of silybin A and B acetates with lipases. J. Mol. Catal. B Enzymat. 2011;71:119–123. doi: 10.1016/j.molcatb.2011.04.007. DOI
Chambers S., Valentová K., Křen V. Non-taxifolin derived flavonolignans: Phytochemistry and biology. Curr. Pharm. Design. 2015;21:5489–5500. doi: 10.2174/1381612821666151002112720. PubMed DOI
Huang G., Schramm S., Heilmann J., Biedermann D., Křen V., Decker M. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins. Beilstein J. Org. Chem. 2016;12:662–669. doi: 10.3762/bjoc.12.66. PubMed DOI PMC
Vimberg V., Kuzma M., Stodůlková E., Novák P., Bednárová L., Šulc M., Gažák R. Hydnocarpin-type flavonolignans: Semisynthesis and inhibitory effects on Staphylococcus aureus biofilm formation. J. Nat. Prod. 2015;78:2095–2103. doi: 10.1021/acs.jnatprod.5b00430. PubMed DOI
Zarrelli A., Romanucci V., de Napoli L., Previtera L., di Fabio G. Synthesis of new silybin derivatives and evaluation of their antioxidant properties. Helv. Chim. Acta. 2015;98:399–409. doi: 10.1002/hlca.201400282. DOI
Gavezzotti P., Vavříková E., Valentová K., Fronza G., Kudanga T., Kuzma M., Riva S., Biedermann D., Křen V. Enzymatic oxidative dimerization of silymarin flavonolignans. J. Mol. Catal. B Enzymat. 2014;109:24–30. doi: 10.1016/j.molcatb.2014.07.012. DOI
Gažák R., Sedmera P., Vrbacký M., Vostálová J., Drahota Z., Marhol P., Walterová D., Křen V. Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity—Role of individual hydroxyl groups. Free Rad. Biol. Med. 2009;46:745–758. doi: 10.1016/j.freeradbiomed.2008.11.016. PubMed DOI
Trouillas P., Marsal P., Svobodová A., Vostálová J., Hrbáč J., Gažák R., Křen V., Lazzaroni R., Duroux J.-L., Sedmera P., et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI
Džubák P., Hajdúch M., Gažák R., Svobodová A., Psotová J., Walterová D., Sedmera P., Křen V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg. Med. Chem. 2006;14:3793–3810. doi: 10.1016/j.bmc.2006.01.035. PubMed DOI
Althagafy H.S., Graf T.N., Sy-Cordero A.A., Gufford B.T., Paine M.F., Wagoner J., Polyak S.J., Croatt M.P., Oberlies N.H. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle. Bioorg. Med. Chem. 2013;21:3919–3926. doi: 10.1016/j.bmc.2013.04.017. PubMed DOI PMC
Sy-Cordero A., Graf T.N., Runyon S.P., Wani M.C., Kroll D.J., Agarwal R., Brantley S.J., Paine M.F., Polyak S.J., Oberlies N.H. Enhanced bioactivity of silybin B methylation products. Bioorg. Med. Chem. 2013;21:742–747. doi: 10.1016/j.bmc.2012.11.035. PubMed DOI PMC
Hurtová M., Biedermann D., Kuzma M., Křen V. Mild and selective method of bromination of flavonoids. J. Nat. Prod. 2020;83:3324–3331. doi: 10.1021/acs.jnatprod.0c00655. PubMed DOI
Gažák R., Valentová K., Fuksová K., Marhol P., Kuzma M., Medina M.A., Oborná I., Ulrichová J., Křen V. Synthesis and antiangiogenic activity of new silybin galloyl esters. J. Med. Chem. 2011;54:7397–7407. doi: 10.1021/jm201034h. PubMed DOI
Schramm S., Huang G., Gunesch S., Lang F., Roa J., Högger P., Sabaté R., Maher P., Decker M. Regioselective synthesis of 7-O-esters of the flavonolignan silibinin and SARs lead to compounds with overadditive neuroprotective effects. Eur. J. Med. Chem. 2018;146:93–107. doi: 10.1016/j.ejmech.2018.01.036. PubMed DOI
Sciacca M.F.M., Romanucci V., Zarrelli A., Monaco I., Lolicato F., Spinella N., Galati C., Grasso G., D’Urso L., Romeo M., et al. Inhibition of Aβ amyloid growth and toxicity by silybins: The crucial role of stereochemistry. ACS Chem. Neurosci. 2017;8:1767–1778. doi: 10.1021/acschemneuro.7b00110. PubMed DOI
García-Vinñuales S., Ahmed R., Sciacca M.F.M., Lanza V., Giuffrida M.L., Zimbone S., Romanucci V., Zarrelli A., Bongiorno C., Spinella N., et al. Trehalose conjugates of silybin as prodrugs for targeting toxic Aβ aggregates. ACS Chem. Neurosci. 2020;11:2566–2576. doi: 10.1021/acschemneuro.0c00232. PubMed DOI
Křen V., Marhol P., Purchartová K., Gabrielová E., Modrianský M. Biotransformation of silybin and its congeners. Curr. Drug. Metab. 2013;14:1009–1021. doi: 10.2174/1389200214666131118234507. PubMed DOI
Theodosiou E., Purchartová K., Stamatis H., Kolisis F., Křen V. Bioavailability of silymarin flavonolignans: Drug formulations and biotransformation. Phytochem. Rev. 2014;13:1–18. doi: 10.1007/s11101-013-9285-5. DOI
Tvrdý V., Pourová J., Jirkovský E., Křen V., Valentová K., Mladěnka P. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med. Res. Rev. 2021;41:2195–2246. doi: 10.1002/med.21791. PubMed DOI
Han Y.H., Lou H.X., Ren D.M., Sun L.R., Ma B., Ji M. Stereoselective metabolism of silybin diastereoisomers in the glucuronidation process. J. Pharm. Biomed. Anal. 2004;34:1071–1078. doi: 10.1016/j.jpba.2003.12.002. PubMed DOI
Wen Z., Dumas T.E., Schrieber S.J., Hawke R.L., Fried M.W., Smith P.C. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 2008;36:65–72. doi: 10.1124/dmd.107.017566. PubMed DOI
Zhu H.-J., Brinda B.J., Chavin K.D., Bernstein H.J., Patrick K.S., Markowitz J.S. An assessment of pharmacokinetics and antioxidant activity of free silymarin flavonolignans in healthy volunteers: A dose escalation study. Drug Metab. Dispos. 2013;41:1679–1685. doi: 10.1124/dmd.113.052423. PubMed DOI PMC
Gunaratna C., Zhang T. Application of liquid chromatography-electrospray ionization-ion trap mass spectrometry to investigate the metabolism of silibinin in human liver microsomes. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003;794:303–310. doi: 10.1016/S1570-0232(03)00484-7. PubMed DOI
Jančová P., Anzenbacherová E., Papoušková B., Lemr K., Lužná P., Veinlichová A., Anzenbacher P., Šimánek V. Silybin is metabolized by cytochrome P450 2C8 in vitro. Drug Metab. Dispos. 2007;35:2035–2039. doi: 10.1124/dmd.107.016410. PubMed DOI
Zhang Y., Yang D.-H., Zhang Y.-T., Chen X.-M., Li L.-L., Cai S.-Q. Biotransformation on the flavonolignan constituents of Silybi Fructus by an intestinal bacterial strain Eubacterium limosum ZL-II. Fitoterapia. 2014;92:61–71. doi: 10.1016/j.fitote.2013.10.001. PubMed DOI
Vrba J., Papoušková B., Roubalová L., Zatloukalová M., Biedermann D., Křen V., Valentová K., Ulrichová J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI
Chen Y., Yu J., Wang X., Li H., Mao X., Peng Y., Zheng J. Characterization of glutathione conjugates derived from reactive metabolites of seven silymarin isomers. Xenobiotica. 2019;49:1269–1278. doi: 10.1080/00498254.2018.1549340. PubMed DOI
Vrba J., Papoušková B., Lněničková K., Kosina P., Křen V., Ulrichová J. Identification of UDP-glucuronosyltransferases involved in the metabolism of silymarin flavonolignans. J. Pharm. Biomed. Anal. 2020;178:112972. doi: 10.1016/j.jpba.2019.112972. PubMed DOI
Vrba J., Papoušková B., Kosina P., Lněničková K., Valentová K., Ulrichová J. Identification of human sulfotransferases active towards silymarin flavonolignans and taxifolin. Metabolites. 2020;10:329. doi: 10.3390/metabo10080329. PubMed DOI PMC
Miranda S.R., Lee J.K., Brouwer K.L., Wen Z., Smith P.C., Hawke R.L. Hepatic metabolism and biliary excretion of silymarin flavonolignans in isolated perfused rat livers: Role of multidrug resistance-associated protein 2 (Abcc2) Drug Metab. Dispos. 2008;36:2219–2226. doi: 10.1124/dmd.108.021790. PubMed DOI PMC
Plíšková M., Vondráček J., Křen V., Gažák R., Sedmera P., Walterová D., Psotová J., Šimánek V., Machala M. Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Toxicology. 2005;215:80–89. doi: 10.1016/j.tox.2005.06.020. PubMed DOI
Pferschy-Wenzig E.M., Atanasov A.G., Malainer C., Noha S.M., Kunert O., Schuster D., Heiss E.H., Oberlies N.H., Wagner H., Bauer R., et al. Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J. Nat. Prod. 2014;77:842–847. doi: 10.1021/np400943b. PubMed DOI PMC
Wang L., Rotter S., Ladurner A., Heiss E.H., Oberlies N.H., Dirsch V.M., Atanasov A.G. Silymarin constituents enhance ABCA1 expression in THP-1 macrophages. Molecules. 2016;21:55. doi: 10.3390/molecules21010055. PubMed DOI PMC
Wang J., Zhang X., Zhang L., Yan T., Wu B., Xuc F., Jia Y. Silychristin A activates Nrf2-HO-1/SOD2 pathway to reduce apoptosis and improve GLP-1 production through upregulation of estrogen receptor α in GLUTag cells. Eur. J. Pharmacol. 2020;881:173236. doi: 10.1016/j.ejphar.2020.173236. PubMed DOI
Qin N., Hu X., Li S., Wang J., Li Z., Li D., Xu F., Gao M., Hua H. Hypoglycemic effect of silychristin A from Silybum marianum fruit via protecting pancreatic islet β cells from oxidative damage and inhibiting α-glucosidase activity in vitro and in rats with type 1 diabetes. J. Funct. Foods. 2017;38:168–179. doi: 10.1016/j.jff.2017.09.013. DOI
Sheehan A., Messer A., Papadaki M., Choudhry A., Křen V., Biedermann D., Blagg B., Kandelwahl A., Marston S. Molecular defects in cardiac myofilament Ca2+- regulation leading to hypertrophic cardiomyopathy can be reversed by small molecules binding to troponin. Front. Physiol. Striated Muscle Physiol. 2018;9:243. doi: 10.3389/fphys.2018.00243. PubMed DOI PMC
Pourová J., Applová L., Macáková K., Vopršalová M., Migkos T., Bentanachs R., Biedermann D., Petrásková L., Tvrdý V., Hrubša M., et al. The effect of silymarin flavonolignans and their sulfated conjugates on platelet aggregation and blood vessels ex vivo. Nutrients. 2019;11:2286. doi: 10.3390/nu11102286. PubMed DOI PMC
Deep G., Oberlies N.H., Kroll D.J., Agarwal R. Isosilybin B causes androgen receptor degradation in human prostate carcinoma cells via PI3K-Akt-Mdm2-mediated pathway. Oncogene. 2008;27:3986–3998. doi: 10.1038/onc.2008.45. PubMed DOI
Deep G., Oberlies N.H., Kroll D.J., Agarwal R. Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. Int. J. Cancer. 2008;123:41–50. doi: 10.1002/ijc.23485. PubMed DOI
Deep G., Gangar S.C., Oberlies N.H., Kroll D.J., Agarwal R. Isosilybin A induces apoptosis in human prostate cancer cells via targeting Akt, NF-kappaB, and androgen receptor signaling. Mol. Carcinog. 2010;49:902–912. doi: 10.1002/mc.20670. PubMed DOI PMC
Deep G., Gangar S.C., Rajamanickam S., Raina K., Gu M., Agarwal C., Oberlies N.H., Agarwal R. Angiopreventive efficacy of pure flavonolignans from milk thistle extract against prostate cancer: Targeting VEGF-VEGFR signaling. PLoS ONE. 2012;7:e34630. doi: 10.1371/journal.pone.0034630. PubMed DOI PMC
Lin A.-S., Shibano M., Nakagawa-Goto K., Tokuda H., Itokawa H., Morris-Natschke S.L., Lee K.-H. Cancer preventive agents. 7. Antitumor-promoting effects of seven active flavonolignans from milk thistle (Silybum marianum) on Epstein-Barr virus activation. Pharm. Biol. 2007;45:735–738. doi: 10.1080/13880200701585592. DOI
Zhang J., Luana Q., Liub Y., Lee D.Y.-W., Wang Z. A comparison of the diastereoisomers, silybin A and silybin B, on the induction of apoptosis in K562 cells. Nat. Prod. Commun. 2011;6:1653–1656. doi: 10.1177/1934578X1100601122. PubMed DOI
Polyak J., Morishima C., Lohmann V., Pal S., Lee D.Y., Liu Y., Graf T.N., Oberlies N.H. Identification of hepatoprotective flavonolignans from silymarin. Proc. Natl. Acad. Sci. USA. 2010;107:5995–5999. doi: 10.1073/pnas.0914009107. PubMed DOI PMC
Ahmed-Belkacem N., Ahnou L., Barbotte C., Wychowski C., Pallier R., Brillet R.-T., Pohl J.-M. Pawlotsky, Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Gastroenterology. 2010;138:1112–1122. doi: 10.1053/j.gastro.2009.11.053. PubMed DOI
Olías-Molero A.I., Jiménez-Antón M.D., Biedermann D., Corral M.J., Alunda J.M. In-vitro activity of silybin and related flavonolignans against Leishmania infantum and L. donovani. Molecules. 2018;23:1560. doi: 10.3390/molecules23071560. PubMed DOI PMC
Chen X., Deng X., Han X., Liang Y., Meng Z., Liu R., Su W., Zhu H., Fu T. Inhibition of lysozyme amyloid fibrillation by silybin diastereoisomers: The effects of stereochemistry. ACS Omega. 2021;6:3307–3318. doi: 10.1021/acsomega.0c05788. PubMed DOI PMC
Filippopoulou K., Papaevgeniou N., Lefaki M., Paraskevopoulou A., Biedermann D., Křen V., Chondrogianni N. 2,3-Dehydrosilybin A and B as a pro-longevity and anti-aggregation compound. Free Rad. Biol. Med. 2017;103:256–267. doi: 10.1016/j.freeradbiomed.2016.12.042. PubMed DOI
Esselun C., Bruns B., Hagl S., Grewal R., Eckert G.P. Differential effects of silibinin a on mitochondrial function in neuronal PC12 and HepG2 liver cells. Oxid. Med. Cell Longev. 2019:1652609. doi: 10.1155/2019/1652609. PubMed DOI PMC
Diukendjieva A., Zaharieva M.M., Mori M., Alov P., Tsakovska I., Pencheva T., Najdenski H., Křen V., Felici C., Bufalieri F., et al. Dual Smo/BRAF inhibition by flavonolignans from Silybum marianum. Antioxidants. 2020;9:384. doi: 10.3390/antiox9050384. PubMed DOI PMC
Köck K., Xie Y., Hawke R.L., Oberlies N.H., Brouwer K.L. Interaction of silymarin flavonolignans with organic anion-transporting polypeptides. Drug metabolism and disposition: The biological fate of chemicals. Drug Metab. Disp. 2013;41:958–965. doi: 10.1124/dmd.112.048272. PubMed DOI PMC
Kubala M., Čechová P., Geletičová J., Biler M., Štenclová T., Trouillas P., Biedermann D. Flavonolignans as a novel class of sodium pump inhibitors. Front. Physiol. 2016;7:115. doi: 10.3389/fphys.2016.00115. PubMed DOI PMC
Johannes J., Jayarama-Naidu R., Meyer F., Wirth E.K., Schweizer U., Schomburg L., Köhrle J., Renko K. Silychristin, a flavonolignan derived from the milk thistle is a potent inhibitor of the thyroid hormone transporter MCT8. Endocrinology. 2016;157:1694–1701. doi: 10.1210/en.2015-1933. PubMed DOI
Dobiasová S., Řehořová K., Kučerová D., Biedermann D., Káňová K., Petrásková L., Koucká K., Václavíková R., Valentová K., Ruml T., et al. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential. Antioxidants. 2020;9:455. doi: 10.3390/antiox9050455. PubMed DOI PMC
Viktorová J., Dobiášová S., Řehořová K., Biedermann D., Káňová K., Šeborová K., Václavíková R., Valentová K., Ruml T., Křen V., et al. Antioxidant, anti-inflammatory and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8:303. doi: 10.3390/antiox8080303. PubMed DOI PMC
Kim J.Y., Kim J.Y., Jenis J., Li Z.P., Ban Y.J., Baiseitova A., Park K.H. Tyrosinase inhibitory study of flavonolignans from the seeds of Silybum marianum (Milk thistle) Bioorg. Med. Chem. 2019;27:2499–2507. doi: 10.1016/j.bmc.2019.03.013. PubMed DOI
Brantley S.J., Oberlies N.H., Kroll D.J., Paine M.F. Two flavonolignans from milk thistle (Silybum marianum) inhibit CYP2C9-mediated warfarin metabolism at clinically achievable concentrations. J. Pharmacol. Exp. Ther. 2010;332:1081–1087. doi: 10.1124/jpet.109.161927. PubMed DOI PMC
Brantley S.J., Graf T.N., Oberlies N.H., Paine M.F. A systematic approach to evaluate herb-drug interaction mechanisms: Investigation of milk thistle extracts and eight isolated constituents as CYP3A inhibitors. Drug Metab. Dispos. 2013;41:1662–1670. doi: 10.1124/dmd.113.052563. PubMed DOI PMC
Gufford B.T., Chen G., Lazarus P., Graf T.N., Oberlies N.H., Paine M.F. Identification of diet-derived constituents as potent inhibitors of intestinal glucuronidation. Drug Metab. Disp. 2014;42:1675–1683. doi: 10.1124/dmd.114.059451. PubMed DOI PMC
Šuk J., Jašprová J., Biedermann D., Petrásková L., Valentová K., Křen V., Muchová L., Vítek L. Isolated silymarin flavonoids increase systemic and hepatic bilirubin concentrations and lower lipoperoxidation in mice. Oxid. Med. Cell. Longev. 2019;2019:6026902. doi: 10.1155/2019/6026902. PubMed DOI PMC
Seidlova-Wuttke D., Becker T., Christoffel V., Jarry H., Wuttke W. Silymarin is a selective estrogen receptor β (ERβ) agonist and has estrogenic effects in the metaphysis of the femur but no or antiestrogenic effects in uterus of ovariectomized (ovx) rats. J. Steroid Biochem. Mol. Biol. 2003;86:179–188. doi: 10.1016/S0960-0760(03)00270-X. PubMed DOI
Škottová N., Krečman V. Silymarin as a potential hypocholesterolaemic drug. Physiol. Res. 1998;47:1–7. PubMed
MacDonald-Ramos K., Michán L., Martínez-Ibarraa A., Cerbón M. Silymarin is an ally against insulin resistance: A review. Ann. Hepatol. 2021;23:100255. doi: 10.1016/j.aohep.2020.08.072. PubMed DOI
Agarwal R., Agarwal C., Ichikawa H., Singh R.P., Aggarwal B.B. Anticancer potential of silymarin: From bench to bed side. Anticancer Res. 2006;26:4457–4498. PubMed
Deep G., Raina K., Singh R.P., Oberlies N.H., Kroll D.J., Agarwal R. Isosilibinin inhibits advanced human prostate cancer growth in athymic nude mice: Comparison with silymarin and silibinin. Int. J. Cancer. 2008;123:2750–2758. doi: 10.1002/ijc.23879. PubMed DOI
Kondo T., Ohta T., Igura K., Hara Y., Kaji K. Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett. 2002;180:139–144. doi: 10.1016/S0304-3835(02)00007-1. PubMed DOI
Vue B., Zhang S., Zhang X., Parisis K., Zhang Q., Zheng S., Wang G., Chen Q.-H. Silibinin derivatives as anti-prostate cancer agents: Synthesis and cell-based evaluations. Eur. J. Med. Chem. 2016;109:36–46. doi: 10.1016/j.ejmech.2015.12.041. PubMed DOI PMC
Vue B., Chen Q.H. The potential of flavonolignans in prostate cancer management. Curr. Med. Chem. 2016;23:3925–3950. doi: 10.2174/0929867323666160823151833. PubMed DOI
Liu C.-H., Jassey A., Hsu H.-Y., Lin L.-T. Antiviral activities of silymarin and derivatives. Molecules. 2019;24:1552. doi: 10.3390/molecules24081552. PubMed DOI PMC
Polyak J., Ferenci P., Pawlotsky J.-M. Hepatoprotective and antiviral functions of silymarin components in hepatitis C virus infection. Hepatology. 2013;57:1262–1271. doi: 10.1002/hep.26179. PubMed DOI PMC
Bosch-Barrera J., Martin-Castillo B., Buxó M., Brunet J., Encinar J.A., Menendez J.A. Silibinin and SARS-CoV-2: Dual targeting of host cytokine storm and virus replication machinery for clinical management of COVID-19 patients. J. Clin. Med. 2020;9:1770. doi: 10.3390/jcm9061770. PubMed DOI PMC
Srivastava R., Tripathi S., Unni S., Hussain A., Haque S., Dasgupta N., Singh V., Mishra B.N. Silybin B and cianidanol inhibit Mpro and spike protein of SARS-CoV-2: Evidence from in silico molecular docking studies. Curr. Pharm. Design. 2021;27:in press. doi: 10.2174/1381612826666201210122726. PubMed DOI
Faixová D., Hrčková G., Kubašková T.M., Mudroňová D. Antiparasitic effects of selected isoflavones on flatworms. Helminthologia. 2021;58:1–16. doi: 10.2478/helm-2021-0004. PubMed DOI PMC
Flaig T.W., Gustafson D.L., Su L.J., Zirrolli J.A., Crighton F., Harrison G.S., Pierson A.A., Agarwal R., Glodé L.M. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investig. New Drugs. 2007;25:139–146. doi: 10.1007/s10637-006-9019-2. PubMed DOI
Vítek L., Bellarosa C., Tiribelli C. Induction of mild hyperbilirubinemia: Hype or real therapeutic opportunity? Clin. Pharm. Ther. 2019;106:568–575. doi: 10.1002/cpt.1341. PubMed DOI
Chambers S., Viktorová J., Řehořová K., Biedermann D., Turková L., Macek T., Křen V., Valentová K. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J. Agric. Food Chem. 2020;68:1763–1779. doi: 10.1021/acs.jafc.9b00694. PubMed DOI