Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners

. 2021 Jul 23 ; 22 (15) : . [epub] 20210723

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34360650

Grantová podpora
21-01799S Grantová Agentura České Republiky

This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.

Zobrazit více v PubMed

Warnholtz A., Munzel T. Why do antioxidants fail to provide clinical benefit? Curr. Control Trials Cardiovasc. Med. 2000;1:38–40. doi: 10.1186/CVM-1-1-038. PubMed DOI PMC

Forman H.J., Davies K.J.A., Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Rad. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. PubMed DOI PMC

Anthony K.P., Saleh M.A. Free radical scavenging and antioxidant activities of silymarin components. Antioxidants. 2013;2:398–407. doi: 10.3390/antiox2040398. PubMed DOI PMC

Egea J., Fabregat I., Frapart Y.M., Ghezzi P., Görlach A., Kietzmann T., Kubaichuk K., Knaus U.G., Lopez M.G., Olaso-Gonzalez G., et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS) Redox Biol. 2017;13:94–162. doi: 10.1016/j.redox.2017.05.007. PubMed DOI PMC

Křen V., Walterová D. Silybin and silymarin—New effects and applications. Biomed Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2005;149:29–41. doi: 10.5507/bp.2005.002. PubMed DOI

Biedermann D., Vavříková E., Cvak L., Křen V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1156. doi: 10.1039/C3NP70122K. PubMed DOI

Szilagyi I., Tetenyi P., Antus S., Seligmann O., Chari V.M., Seitz M., Wagner H. Struktur von Silandrin und Silymonin, zwei neuen Flavanolignanen aus einer weißblühenden Silybum marianum Varietät. Planta Med. 1981;43:121–127. doi: 10.1055/s-2007-971488. PubMed DOI

Martinelli T., Whittaker A., Benedettelli S., Carboni A., Andrzejewska J. The study of flavonolignan association patterns in fruits of diverging Silybum marianum (L.) Gaertn. chemotypes provides new insights into the silymarin biosynthetic pathway. Phytochemistry. 2017;144:9–18. doi: 10.1016/j.phytochem.2017.08.013. PubMed DOI

Chambers S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition and why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Petrásková L., Káňová K., Valentová K., Biedermann D., Křen V. A Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:116. doi: 10.3390/foods9020116. PubMed DOI PMC

Fenclová M., Stránská-Zachariášová M., Beneš F., Nováková A., Jonatová P., Křen V., Vítek L., Hajšlová J. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal. Bioanal. Chem. 2020;412:819–832. doi: 10.1007/s00216-019-02274-3. PubMed DOI

Kroll D.J., Shaw H.S., Oberlies N.H. Milk thistle nomenclature: Why it matters in cancer research and pharmacokinetic studies. Integr. Cancer Ther. 2007;6:110–119. doi: 10.1177/1534735407301825. PubMed DOI

Šimánek V., Křen V., Ulrichová J., Vičar J., Cvak L. Silymarin: “What is in the name...?” An appeal for a change of editorial policy. Hepatology. 2000;32:442–443. doi: 10.1053/jhep.2000.9770. PubMed DOI

Křen V. Silibinin chirality. J. Photochem. Photobiol. A. 2009;203:222–223. doi: 10.1016/j.jphotochem.2009.02.014. DOI

Křen V., Gažák R., Biedermann D., Marhol P. Silybin (silibinin) structure and chirality. Chromatographia. 2010;71:167–168. doi: 10.1365/s10337-009-1419-y. DOI

O’Neil M.J., editor. Merck Index. 14th ed. The Merck Publishing Group; Whitehouse Station, NJ, USA: 2006. pp. 8523–8524.

O’Neil M.J., editor. Merck Index. 15th ed. Royal Society of Chemistry; Cambridge, UK: 2013. entry #8532.

Malan E., Swinny E., Ferreira D. A 3-oxygenated flavonolignoid from Distemonanthus benthamianus. Phytochemistry. 1994;37:1771–1772. doi: 10.1016/S0031-9422(00)89611-9. DOI

Yang L.X., Huang K.X., Li H.B., Gong J.X., Wang F., Feng Y.B., Tao Q.F., Wu Y.H., Li X.K., Wu X.M., et al. Synthesis, and examination of neuron protective properties of alkenylated and amidated dehydro-silybin derivatives. J. Med. Chem. 2009;52:7732–7752. doi: 10.1021/jm900735p. PubMed DOI

Pelter A., Hänsel R. The structure of silybin (silybum substance E6), the first flavonolignan. Tetrahedron Lett. 1968;25:2911–2916. doi: 10.1016/S0040-4039(00)89610-0. DOI

Kim C., Graf T.N., Sparacino C.M., Wani M.C., Wall M.E. Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum) Org. Biomol. Chem. 2003;1:1684–1689. doi: 10.1039/b300099k. Erratum in 2003, 1, 3470. PubMed DOI

Graf T.N., Wani M.C., Agarwal R., Kroll D.J., Oberlies N.H. Gram-scale purification of flavonolignan diastereomes from Silybum marianum (milk thistle) extract in support of preclinical in vivo studies for prostate cancer chemoprevention. Planta Med. 2007;73:1495–1501. doi: 10.1055/s-2007-990239. PubMed DOI

Napolitano J.G., Lankin D.C., Graf T.N., Friesen J.B., Chen S.-N., McAlpine J.B., Oberlies N.H., Pauli G.F. HiFSA fingerprinting applied to isomers with near-identical NMR spectra: The silybin/isosilybin case. J. Org. Chem. 2013;78:2827–2839. doi: 10.1021/jo302720h. PubMed DOI PMC

Lee D.Y.-W., Liu Y. Molecular structure and stereochemistry of silybin A, silybin B, isosilybin A, and isosilybin B, isolated from Silybum marianum (milk thistle) J. Nat. Prod. 2003;66:1171–1174. doi: 10.1021/np030163b. Erratum in 2003, 66, 1632. PubMed DOI

Novotná M., Gažák R., Biedermann D., di Meo F., Marhol P., Kuzma M., Bednárová L., Fuksová K., Trouillas P., Křen V. Cis-trans isomerization of silybins A and B. Beilstein J. Org. Chem. 2014;10:1047–1063. doi: 10.3762/bjoc.10.105. PubMed DOI PMC

Schrall R., Becker H. Callus- und Suspensionskulturen von Silybum marianum. II. Mitteilung: Umsetzung von Flavonoiden mit Coniferylalkohol zu Flavonolignanen. Planta Med. 1977;32:27–32. doi: 10.1055/s-0028-1097554. DOI

Lv Y.K., Xu S., Lyu Y.B., Zhou S.H., Du G.C., Chen J., Zhou J.W. Engineering enzymatic cascades for the efficient biotransformation of eugenol and taxifolin to silybin and isosilybin. Green Chem. 2019;21:1660–1667. doi: 10.1039/C8GC03728K. DOI

Merlini L., Zanarotti A., Pelter A., Rochefort M.P., Hansel R. Biomimetic synthesis of natural silybin. J. Chem. Soc. Chem. Commun. 1979;16:695. doi: 10.1039/C39790000695. DOI

Althagafy H.S., Meza-Avina M.E., Oberlies N.H., Croatt M.P. Mechanistic study of the biomimetic synthesis of flavonolignan diastereoisomers in milk thistle. J. Org. Chem. 2013;78:7594–7600. doi: 10.1021/jo4011377. PubMed DOI PMC

Vanholme R., Demedts B., Morreel K., Ralph J., Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153:895–905. doi: 10.1104/pp.110.155119. PubMed DOI PMC

Lv Y.K., Gao S., Xu S., Du G.C., Zhou J.W., Chen J. Spatial organization of silybin biosynthesis in milk thistle [Silybum marianum (L.) Gaertn] Plant J. 2017;92:995–1004. doi: 10.1111/tpj.13736. PubMed DOI

Torres M., Corchete P. Gene expression and flavonolignan production in fruits and cell cultures of Silybum marianum. J. Plant Physiol. 2016;192:111–117. doi: 10.1016/j.jplph.2016.02.004. PubMed DOI

Martinelli T., Fulvio F., Pietrella M., Focacci M., Lauria M., Paris R. In Silybum marianum Italian wild populations the variability of silymarin profiles results from the combination of only two stable chemotypes. Fitoterapia. 2021;148:104797. doi: 10.1016/j.fitote.2020.104797. PubMed DOI

Davis-Searles P.R., Nakanishi Y., Kim N.-C., Graf T.N., Oberlies N.H., Wani M.C., Wall M.E., Agarwal R., Kroll D.J. Milk thistle and prostate cancer: Differential effects of pure flavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Res. 2005;65:4448–4457. doi: 10.1158/0008-5472.CAN-04-4662. PubMed DOI

Deep G., Oberlies N.H., Kroll D.J., Agarwal R. Isosilybin B and isosilybin A inhibit growth, induce G1 arrest and cause apoptosis in human prostate cancer LNCaP and 22Rv1 cells. Carcinogenesis. 2007;28:1533–1542. doi: 10.1093/carcin/bgm069. PubMed DOI

Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro-derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popović-Bijelić A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Rad. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Gažák R., Svobodová A., Psotová J., Sedmera P., Přikrylová V., Walterová D., Křen V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorg. Med. Chem. 2004;12:5677–5687. doi: 10.1016/j.bmc.2004.07.064. PubMed DOI

Qin N., Sasaki T., Li W., Wang J., Zhang X., Li D., Li Z., Cheng M., Hua H., Koike K. Identification of flavonolignans from Silybum marianum seeds as allosteric protein tyrosine phosphatase 1B inhibitors. J. Enzyme Inhib. Med. Chem. 2018;33:1283–1291. doi: 10.1080/14756366.2018.1497020. PubMed DOI PMC

Pelter A., Hänsel R. Struktur des Silybins: I. Abbauversuche. Chem. Ber. 1975;108:790–802. doi: 10.1002/cber.19751080312. DOI

Lotter H., Wagner H. Zur Stereochemie von Silybin. Z. Naturforsch. Sect. C J. Biosci. 1983;38:339–341. doi: 10.1515/znc-1983-5-601. DOI

Tittel G., Wagner H. High-performance liquid chromatographic separationof silymarins and their determination in raw extracts of Silybum marianum Gaertn. J. Chromatogr. A. 1977;135:499–501. doi: 10.1016/S0021-9673(00)88397-1. PubMed DOI

Arnone A., Merlini L., Zanarotti A. Constituents of Silybum marianum. Structure of isosilybin and stereochemistry of silybin. J. Chem. Soc. Chem. Commun. 1979:696–697. doi: 10.1039/c39790000696. DOI

Sy-Cordero A., Day C.S., Oberlies N.H. Absolute configuration of isosilybin A by X-ray crystallography of the heavy atom analogue 7-(4-bromobenzoyl)isosilybin A. J. Nat. Prod. 2012;75:1879–1881. doi: 10.1021/np3005369. PubMed DOI PMC

Zanarotti A. Stereochemistry of silychristin. Mild dehydrogenation of flavonols. Heterocycles. 1982;19:1585–1586. doi: 10.3987/R-1982-09-1585. DOI

Smith W.A., Lauren D.R., Burgess E.J., Perry N.B., Martin R.J. A silychristin isomer and variation of flavonolignan levels in milk thistle (Silybum marianum) fruits. Planta Med. 2005;71:877–880. doi: 10.1055/s-2005-864187. PubMed DOI

Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárova L., Křenková A., Kuzma M., Skuta C., et al. Křen V. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI

Abraham D.J., Takagi S., Rosenstein R., Shiono R., Wagner H., Hörhammer L., Seligmann O., Farnsworth N. Structure of silydianin, an isomer of silymarin (silybin), by X-ray analysis. Tetrahedron Lett. 1970;11:2675–2678. doi: 10.1016/S0040-4039(01)98310-8. DOI

Wagner H., Seligmann O., Seitz M., Abraham D., Sonnenbichler J. Silydianin and silychristin, two isomeric silymarins from Silybum marianum L. Gaertn. (milk thistle) Z. Naturforsch. B. 1976;31:876–884. doi: 10.1515/znb-1976-0630. DOI

Biedermann D., Moravcová V., Valentová K., Kuzma M., Petrásková L., Císařová I., Křen V. Oxidation of flavonolignan silydianin to unexpected lactone-acid derivative. Phytochem. Lett. 2019;30:14–20. doi: 10.1016/j.phytol.2019.01.006. DOI

Křen V., Sedmera P., Kubisch J., Halada P., Přikrylová V., Jegorov A., Cvak L., Gebhardt R., Ulrichová J., Šimánek V. Glycosylation of silybin. J. Chem. Soc. Perkin Trans. 1. 1997:2467–2474. doi: 10.1039/a703283h. DOI

Křen V., Gažák R., Purchartová K., Marhol P., Biedermann D., Sedmera P. Chemoenzymatic preparative separation of silybin A and B. J. Mol. Catal. B Enzymat. 2009;61:247–251. doi: 10.1016/j.molcatb.2009.07.013. DOI

Sy-Cordero A., Graf T.N., Nakanishi Y., Wani M.C., Agarwal R., Kroll D.J., Oberlies N.H. Large-scale isolation of flavonolignans from Silybum marianum extract affords new minor constituents and preliminary structure-activity relationships. Planta Med. 2010;76:644–647. doi: 10.1055/s-0029-1240624. PubMed DOI PMC

Di Fabio G., Romanucci V., di Marino C., de Napoli L., Zarrelli A. A rapid and simple chromatographic separation of diastereomers of silibinin and their oxidation to produce 2,3-dehydrosilybin enantiomers in an optically pure form. Planta Med. 2013;79:1077–1080. doi: 10.1055/s-0032-1328703. PubMed DOI

Gažák R., Fuksová K., Marhol P., Kuzma M., Agarwal R., Křen V. Preparative method for isosilybin isolation based on enzymatic kinetic resolution of silymarin mixture. Proc. Biochem. 2013;48:184–189. doi: 10.1016/j.procbio.2012.11.006. DOI

Carrea G., Riva S. Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. Ed. 2000;39:2226–2254. doi: 10.1002/1521-3773(20000703)39:13<2226::AID-ANIE2226>3.0.CO;2-L. PubMed DOI

Monti D., Gažák R., Marhol P., Biedermann D., Purchartová K., Fedrigo M., Riva S., Křen V. Enzymatic kinetic resolution of silybin diastereoisomers. J. Nat. Prod. 2010;73:613–619. doi: 10.1021/np900758d. PubMed DOI

Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Proc. Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI

Vavříková E., Gavezzotti P., Purchartová K., Fuksová K., Biedermann D., Kuzma M., Riva S., Křen V. Regioselective alcoholysis of silychristin acetates catalyzed by lipases. Int. J. Mol. Sci. 2015;16:11983–11995. doi: 10.3390/ijms160611983. PubMed DOI PMC

Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20. Food. Res. Internat. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Csupor D., Csorba A., Hohmann J. Recent advances in the analysis of flavonolignans of Silybum marianum. J. Pharm. Biomed. Anal. 2016;130:301–317. doi: 10.1016/j.jpba.2016.05.034. PubMed DOI

Tittel G., Wagner H. High-performance liquid chromatography of silymarin. II. Quantitative determination of silymarin from Silybum marianum byhigh-performance liquid chromatography. J. Chromatogr. 1978;153:227–232. doi: 10.1016/S0021-9673(00)89876-3. DOI

Hammouda F.M., Ismail S.I., Hassan N.M., Zaki A.K., Kamel A., Rimpler H. Evaluation of the silymarin content in Silybum marianum (L.) Gaertn. cultivated under different agricultural conditions. Phytother. Res. 1993;7:90–91. doi: 10.1002/ptr.2650070122. DOI

Weyhenmeyer R., Mascher H., Birkmayer J. Study on dose-linearity of the pharmacokinetics of silibinin diastereomers using a new stereospecific assay. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992;30:134–138. PubMed

Mascher H., Kikuta C., Weyhenmeyer R. Diastereomeric separation of free and conjugated silibinin in plasma by reversed phase HPLC after specific extraction. J. Liq. Chromatogr. 1993;16:2777–2789. doi: 10.1080/10826079308019612. DOI

Rickling B., Hans B., Kramarczyk R., Krumbiegel G., Weyhenmeyer R. Two high-performance liquidchromatographic assays for the determination of free and total silibinin diastereomers in plasma using column switching with electrochemical detection and reversed-phase chromatography with ultraviolet detection. J. Chromatogr. B Biomed. Appl. 1995;670:267–277. doi: 10.1016/0378-4347(95)00168-9. PubMed DOI

Hoh C.S.L., Boocock D.J., Marczylo T.H., Brown V.A., Cai H., Steward W.P., Berry D.P., Gescher A.J. Quantitation of silibinin, a putative cancer chemopreventive agent derived from milk thistle (Silybum marianum), in human plasma by high-performance liquid chromatography and identification of possible metabolites. J. Agric. Food Chem. 2007;55:2532–2535. doi: 10.1021/jf063156c. PubMed DOI

Hadad G.M., Emara S., Abdel-Salam R.A. Validated optimized method for simultaneous analysis of active silymarin components and dimethyl-4’-dimethoxy-5,6,5’,6’-dimethylenedioxybiphenyl-2,2’-dicarboxylate in a pharmaceutical preparation by use of a monolithic silica. Chromatographia. 2009;70:217–221. doi: 10.1365/s10337-009-1127-7. DOI

Marhol P., Gažák R., Bednář P., Křen V. Narrow-bore core-shell particles and monolithic columns in the analysis of silybin diastereoisomers. J. Sep. Sci. 2011;34:2206–2213. doi: 10.1002/jssc.201100309. PubMed DOI

Quaglia M.G., Bossu E., Donati E., Mazzanti G., Brandt A. Determination of silymarine in the extract from the dried Silybum marianum fruits by high performance liquid chromatography and capillary electrophoresis. J. Pharm. Biomed. Anal. 1999;19:435–442. doi: 10.1016/S0731-7085(98)00231-3. PubMed DOI

Fibigr J., Šatínský D., Solich P. A new approach to the rapid separation of isomeric compounds in a Silybum marianum extract using UHPLC core-shell column with F5 stationary phase. J. Pharm. Biomed. Anal. 2017;134:203–213. doi: 10.1016/j.jpba.2016.11.042. PubMed DOI

Khan A., Wu H.-F. Analysis of silymarin extracted from a commercialdosage by combining liquid–liquid extraction with negative electrospraytandem mass spectrometry. Rapid Commun. Mass Spectrom. 2004;18:2960–2962. doi: 10.1002/rcm.1700. PubMed DOI

Kuki A., Biri B., Nagy L., Deak G., Kalmar J., Mandi A., Nagy M., Zsuga M., Kéki S. Collision induced dissociation study of the major components of silymarin. Int. J. Mass Spectrom. 2012;315:46–54. doi: 10.1016/j.ijms.2012.02.021. DOI

Kuki A., Nagy L., Deák G., Nagy M., Zsuga M., Kéki S. Identification of silymarin constituents: An improved HPLC–MS method. Chromatographia. 2012;75:175–180. doi: 10.1007/s10337-011-2163-7. DOI

Solís-Gómez A., Sato-Berrú R.Y., Mata-Zamora M.E., Saniger J.M., Guirado-López R.A. Characterizing the properties of anticancer silibinin and silybin B complexes with UV-Vis, FT-IR, and Raman spectroscopies: A combined experimental and theoretical study. J. Mol. Struct. 2019;1182:109–118. doi: 10.1016/j.molstruc.2019.01.042. DOI

Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Tentative sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and antioxidant evaluation. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC

Tvrdý V., Catapano M.C., Rawlik T., Karlíčková J., Biedermann D., Křen V., Mladěnka P., Valentová K. Interaction of isolated silymarin flavonolignans with iron and copper. J. Inorg. Biochem. 2018;189:115–123. doi: 10.1016/j.jinorgbio.2018.09.006. PubMed DOI

Křen V., Minghetti A., Sedmera P., Havlíček V., Přikrylová V., Crespi-Perellino N. Glucosylation of silybin by plant cell cultures of Papaver somniferum var. setigerum. Phytochemistry. 1998;47:217–220. doi: 10.1016/S0031-9422(97)00559-1. DOI

Křen V., Ulrichová J., Kosina P., Stevenson D., Sedmera P., Přikrylová V., Halada P., Šimánek V. Chemoenzymatic preparation of silybine β-glucuronides and their biological evaluation. Drug Metab. Disp. 2000;28:1513–1517. PubMed

Charrier C., Azerad R., Marhol P., Purchartová K., Kuzma M., Křen V. Preparation of silybin phase II metabolites: Streptomyces catalyzed glucuronidation. J. Mol. Catal. B Enzym. 2014;102:167–173. doi: 10.1016/j.molcatb.2014.02.008. DOI

Gufford B.T., Graf T.N., Paguigan N.D., Oberlies N.H., Paine M.F. Chemoenzymatic synthesis, characterization, and scale-up of milk thistle flavonolignan glucuronides. Drug Metab. Disp. 2015;43:1734–1743. doi: 10.1124/dmd.115.066076. PubMed DOI PMC

Jančová P., Anzenbacherová E., Šiller M., Křen V., Anzenbacher P., Šimánek V. Stereoselective metabolism of silybin by UDP glucuronosyltransferases in vitro. Xenobiotica. 2011;41:743–751. doi: 10.3109/00498254.2011.573017. PubMed DOI

Purchartová K., Engels L., Marhol P., Slámová K., Šulc M., Kuzma M., Elling L., Křen V. Enzymatic preparation of silybin phase II metabolites: Sulfation using aryl sulfotransferase from rat liver. Appl. Microbiol. Biotechnol. 2013;97:10391–10398. doi: 10.1007/s00253-013-4794-0. PubMed DOI

Marhol P., Bednář P., Kolářová P., Večeřa R., Ulrichová J., Tesařová E., Vavříková E., Kuzma M., Křen V. Pharmacokinetics of pure silybin diastereoisomers and identification of their metabolites in rat plasma. J. Funct. Foods. 2015;14:570–580. doi: 10.1016/j.jff.2015.02.031. DOI

Marhol P., Hartog A.F., van der Horst M.A., Wever R., Purchartová K., Fuksová K., Kuzma M., Cvačka J., Křen V. Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. J. Mol. Catal. B Enzymat. 2013;89:24–27. doi: 10.1016/j.molcatb.2012.12.005. DOI

Agarwal C., Wadhwa R., Deep G., Biedermann D., Gažák R., Křen V., Agarwal R. Agarwal: Anti-cancer efficacy of silybin derivatives—A structure-activity relationship. PLoS ONE. 2013;8:e60074. doi: 10.1371/journal.pone.0060074. PubMed DOI PMC

Purchartová K., Marhol P., Gažák R., Monti D., Riva S., Kuzma M., Křen V. Regioselective alcoholysis of silybin A and B acetates with lipases. J. Mol. Catal. B Enzymat. 2011;71:119–123. doi: 10.1016/j.molcatb.2011.04.007. DOI

Chambers S., Valentová K., Křen V. Non-taxifolin derived flavonolignans: Phytochemistry and biology. Curr. Pharm. Design. 2015;21:5489–5500. doi: 10.2174/1381612821666151002112720. PubMed DOI

Huang G., Schramm S., Heilmann J., Biedermann D., Křen V., Decker M. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins. Beilstein J. Org. Chem. 2016;12:662–669. doi: 10.3762/bjoc.12.66. PubMed DOI PMC

Vimberg V., Kuzma M., Stodůlková E., Novák P., Bednárová L., Šulc M., Gažák R. Hydnocarpin-type flavonolignans: Semisynthesis and inhibitory effects on Staphylococcus aureus biofilm formation. J. Nat. Prod. 2015;78:2095–2103. doi: 10.1021/acs.jnatprod.5b00430. PubMed DOI

Zarrelli A., Romanucci V., de Napoli L., Previtera L., di Fabio G. Synthesis of new silybin derivatives and evaluation of their antioxidant properties. Helv. Chim. Acta. 2015;98:399–409. doi: 10.1002/hlca.201400282. DOI

Gavezzotti P., Vavříková E., Valentová K., Fronza G., Kudanga T., Kuzma M., Riva S., Biedermann D., Křen V. Enzymatic oxidative dimerization of silymarin flavonolignans. J. Mol. Catal. B Enzymat. 2014;109:24–30. doi: 10.1016/j.molcatb.2014.07.012. DOI

Gažák R., Sedmera P., Vrbacký M., Vostálová J., Drahota Z., Marhol P., Walterová D., Křen V. Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity—Role of individual hydroxyl groups. Free Rad. Biol. Med. 2009;46:745–758. doi: 10.1016/j.freeradbiomed.2008.11.016. PubMed DOI

Trouillas P., Marsal P., Svobodová A., Vostálová J., Hrbáč J., Gažák R., Křen V., Lazzaroni R., Duroux J.-L., Sedmera P., et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI

Džubák P., Hajdúch M., Gažák R., Svobodová A., Psotová J., Walterová D., Sedmera P., Křen V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg. Med. Chem. 2006;14:3793–3810. doi: 10.1016/j.bmc.2006.01.035. PubMed DOI

Althagafy H.S., Graf T.N., Sy-Cordero A.A., Gufford B.T., Paine M.F., Wagoner J., Polyak S.J., Croatt M.P., Oberlies N.H. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle. Bioorg. Med. Chem. 2013;21:3919–3926. doi: 10.1016/j.bmc.2013.04.017. PubMed DOI PMC

Sy-Cordero A., Graf T.N., Runyon S.P., Wani M.C., Kroll D.J., Agarwal R., Brantley S.J., Paine M.F., Polyak S.J., Oberlies N.H. Enhanced bioactivity of silybin B methylation products. Bioorg. Med. Chem. 2013;21:742–747. doi: 10.1016/j.bmc.2012.11.035. PubMed DOI PMC

Hurtová M., Biedermann D., Kuzma M., Křen V. Mild and selective method of bromination of flavonoids. J. Nat. Prod. 2020;83:3324–3331. doi: 10.1021/acs.jnatprod.0c00655. PubMed DOI

Gažák R., Valentová K., Fuksová K., Marhol P., Kuzma M., Medina M.A., Oborná I., Ulrichová J., Křen V. Synthesis and antiangiogenic activity of new silybin galloyl esters. J. Med. Chem. 2011;54:7397–7407. doi: 10.1021/jm201034h. PubMed DOI

Schramm S., Huang G., Gunesch S., Lang F., Roa J., Högger P., Sabaté R., Maher P., Decker M. Regioselective synthesis of 7-O-esters of the flavonolignan silibinin and SARs lead to compounds with overadditive neuroprotective effects. Eur. J. Med. Chem. 2018;146:93–107. doi: 10.1016/j.ejmech.2018.01.036. PubMed DOI

Sciacca M.F.M., Romanucci V., Zarrelli A., Monaco I., Lolicato F., Spinella N., Galati C., Grasso G., D’Urso L., Romeo M., et al. Inhibition of Aβ amyloid growth and toxicity by silybins: The crucial role of stereochemistry. ACS Chem. Neurosci. 2017;8:1767–1778. doi: 10.1021/acschemneuro.7b00110. PubMed DOI

García-Vinñuales S., Ahmed R., Sciacca M.F.M., Lanza V., Giuffrida M.L., Zimbone S., Romanucci V., Zarrelli A., Bongiorno C., Spinella N., et al. Trehalose conjugates of silybin as prodrugs for targeting toxic Aβ aggregates. ACS Chem. Neurosci. 2020;11:2566–2576. doi: 10.1021/acschemneuro.0c00232. PubMed DOI

Křen V., Marhol P., Purchartová K., Gabrielová E., Modrianský M. Biotransformation of silybin and its congeners. Curr. Drug. Metab. 2013;14:1009–1021. doi: 10.2174/1389200214666131118234507. PubMed DOI

Theodosiou E., Purchartová K., Stamatis H., Kolisis F., Křen V. Bioavailability of silymarin flavonolignans: Drug formulations and biotransformation. Phytochem. Rev. 2014;13:1–18. doi: 10.1007/s11101-013-9285-5. DOI

Tvrdý V., Pourová J., Jirkovský E., Křen V., Valentová K., Mladěnka P. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med. Res. Rev. 2021;41:2195–2246. doi: 10.1002/med.21791. PubMed DOI

Han Y.H., Lou H.X., Ren D.M., Sun L.R., Ma B., Ji M. Stereoselective metabolism of silybin diastereoisomers in the glucuronidation process. J. Pharm. Biomed. Anal. 2004;34:1071–1078. doi: 10.1016/j.jpba.2003.12.002. PubMed DOI

Wen Z., Dumas T.E., Schrieber S.J., Hawke R.L., Fried M.W., Smith P.C. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 2008;36:65–72. doi: 10.1124/dmd.107.017566. PubMed DOI

Zhu H.-J., Brinda B.J., Chavin K.D., Bernstein H.J., Patrick K.S., Markowitz J.S. An assessment of pharmacokinetics and antioxidant activity of free silymarin flavonolignans in healthy volunteers: A dose escalation study. Drug Metab. Dispos. 2013;41:1679–1685. doi: 10.1124/dmd.113.052423. PubMed DOI PMC

Gunaratna C., Zhang T. Application of liquid chromatography-electrospray ionization-ion trap mass spectrometry to investigate the metabolism of silibinin in human liver microsomes. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003;794:303–310. doi: 10.1016/S1570-0232(03)00484-7. PubMed DOI

Jančová P., Anzenbacherová E., Papoušková B., Lemr K., Lužná P., Veinlichová A., Anzenbacher P., Šimánek V. Silybin is metabolized by cytochrome P450 2C8 in vitro. Drug Metab. Dispos. 2007;35:2035–2039. doi: 10.1124/dmd.107.016410. PubMed DOI

Zhang Y., Yang D.-H., Zhang Y.-T., Chen X.-M., Li L.-L., Cai S.-Q. Biotransformation on the flavonolignan constituents of Silybi Fructus by an intestinal bacterial strain Eubacterium limosum ZL-II. Fitoterapia. 2014;92:61–71. doi: 10.1016/j.fitote.2013.10.001. PubMed DOI

Vrba J., Papoušková B., Roubalová L., Zatloukalová M., Biedermann D., Křen V., Valentová K., Ulrichová J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI

Chen Y., Yu J., Wang X., Li H., Mao X., Peng Y., Zheng J. Characterization of glutathione conjugates derived from reactive metabolites of seven silymarin isomers. Xenobiotica. 2019;49:1269–1278. doi: 10.1080/00498254.2018.1549340. PubMed DOI

Vrba J., Papoušková B., Lněničková K., Kosina P., Křen V., Ulrichová J. Identification of UDP-glucuronosyltransferases involved in the metabolism of silymarin flavonolignans. J. Pharm. Biomed. Anal. 2020;178:112972. doi: 10.1016/j.jpba.2019.112972. PubMed DOI

Vrba J., Papoušková B., Kosina P., Lněničková K., Valentová K., Ulrichová J. Identification of human sulfotransferases active towards silymarin flavonolignans and taxifolin. Metabolites. 2020;10:329. doi: 10.3390/metabo10080329. PubMed DOI PMC

Miranda S.R., Lee J.K., Brouwer K.L., Wen Z., Smith P.C., Hawke R.L. Hepatic metabolism and biliary excretion of silymarin flavonolignans in isolated perfused rat livers: Role of multidrug resistance-associated protein 2 (Abcc2) Drug Metab. Dispos. 2008;36:2219–2226. doi: 10.1124/dmd.108.021790. PubMed DOI PMC

Plíšková M., Vondráček J., Křen V., Gažák R., Sedmera P., Walterová D., Psotová J., Šimánek V., Machala M. Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Toxicology. 2005;215:80–89. doi: 10.1016/j.tox.2005.06.020. PubMed DOI

Pferschy-Wenzig E.M., Atanasov A.G., Malainer C., Noha S.M., Kunert O., Schuster D., Heiss E.H., Oberlies N.H., Wagner H., Bauer R., et al. Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J. Nat. Prod. 2014;77:842–847. doi: 10.1021/np400943b. PubMed DOI PMC

Wang L., Rotter S., Ladurner A., Heiss E.H., Oberlies N.H., Dirsch V.M., Atanasov A.G. Silymarin constituents enhance ABCA1 expression in THP-1 macrophages. Molecules. 2016;21:55. doi: 10.3390/molecules21010055. PubMed DOI PMC

Wang J., Zhang X., Zhang L., Yan T., Wu B., Xuc F., Jia Y. Silychristin A activates Nrf2-HO-1/SOD2 pathway to reduce apoptosis and improve GLP-1 production through upregulation of estrogen receptor α in GLUTag cells. Eur. J. Pharmacol. 2020;881:173236. doi: 10.1016/j.ejphar.2020.173236. PubMed DOI

Qin N., Hu X., Li S., Wang J., Li Z., Li D., Xu F., Gao M., Hua H. Hypoglycemic effect of silychristin A from Silybum marianum fruit via protecting pancreatic islet β cells from oxidative damage and inhibiting α-glucosidase activity in vitro and in rats with type 1 diabetes. J. Funct. Foods. 2017;38:168–179. doi: 10.1016/j.jff.2017.09.013. DOI

Sheehan A., Messer A., Papadaki M., Choudhry A., Křen V., Biedermann D., Blagg B., Kandelwahl A., Marston S. Molecular defects in cardiac myofilament Ca2+- regulation leading to hypertrophic cardiomyopathy can be reversed by small molecules binding to troponin. Front. Physiol. Striated Muscle Physiol. 2018;9:243. doi: 10.3389/fphys.2018.00243. PubMed DOI PMC

Pourová J., Applová L., Macáková K., Vopršalová M., Migkos T., Bentanachs R., Biedermann D., Petrásková L., Tvrdý V., Hrubša M., et al. The effect of silymarin flavonolignans and their sulfated conjugates on platelet aggregation and blood vessels ex vivo. Nutrients. 2019;11:2286. doi: 10.3390/nu11102286. PubMed DOI PMC

Deep G., Oberlies N.H., Kroll D.J., Agarwal R. Isosilybin B causes androgen receptor degradation in human prostate carcinoma cells via PI3K-Akt-Mdm2-mediated pathway. Oncogene. 2008;27:3986–3998. doi: 10.1038/onc.2008.45. PubMed DOI

Deep G., Oberlies N.H., Kroll D.J., Agarwal R. Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. Int. J. Cancer. 2008;123:41–50. doi: 10.1002/ijc.23485. PubMed DOI

Deep G., Gangar S.C., Oberlies N.H., Kroll D.J., Agarwal R. Isosilybin A induces apoptosis in human prostate cancer cells via targeting Akt, NF-kappaB, and androgen receptor signaling. Mol. Carcinog. 2010;49:902–912. doi: 10.1002/mc.20670. PubMed DOI PMC

Deep G., Gangar S.C., Rajamanickam S., Raina K., Gu M., Agarwal C., Oberlies N.H., Agarwal R. Angiopreventive efficacy of pure flavonolignans from milk thistle extract against prostate cancer: Targeting VEGF-VEGFR signaling. PLoS ONE. 2012;7:e34630. doi: 10.1371/journal.pone.0034630. PubMed DOI PMC

Lin A.-S., Shibano M., Nakagawa-Goto K., Tokuda H., Itokawa H., Morris-Natschke S.L., Lee K.-H. Cancer preventive agents. 7. Antitumor-promoting effects of seven active flavonolignans from milk thistle (Silybum marianum) on Epstein-Barr virus activation. Pharm. Biol. 2007;45:735–738. doi: 10.1080/13880200701585592. DOI

Zhang J., Luana Q., Liub Y., Lee D.Y.-W., Wang Z. A comparison of the diastereoisomers, silybin A and silybin B, on the induction of apoptosis in K562 cells. Nat. Prod. Commun. 2011;6:1653–1656. doi: 10.1177/1934578X1100601122. PubMed DOI

Polyak J., Morishima C., Lohmann V., Pal S., Lee D.Y., Liu Y., Graf T.N., Oberlies N.H. Identification of hepatoprotective flavonolignans from silymarin. Proc. Natl. Acad. Sci. USA. 2010;107:5995–5999. doi: 10.1073/pnas.0914009107. PubMed DOI PMC

Ahmed-Belkacem N., Ahnou L., Barbotte C., Wychowski C., Pallier R., Brillet R.-T., Pohl J.-M. Pawlotsky, Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Gastroenterology. 2010;138:1112–1122. doi: 10.1053/j.gastro.2009.11.053. PubMed DOI

Olías-Molero A.I., Jiménez-Antón M.D., Biedermann D., Corral M.J., Alunda J.M. In-vitro activity of silybin and related flavonolignans against Leishmania infantum and L. donovani. Molecules. 2018;23:1560. doi: 10.3390/molecules23071560. PubMed DOI PMC

Chen X., Deng X., Han X., Liang Y., Meng Z., Liu R., Su W., Zhu H., Fu T. Inhibition of lysozyme amyloid fibrillation by silybin diastereoisomers: The effects of stereochemistry. ACS Omega. 2021;6:3307–3318. doi: 10.1021/acsomega.0c05788. PubMed DOI PMC

Filippopoulou K., Papaevgeniou N., Lefaki M., Paraskevopoulou A., Biedermann D., Křen V., Chondrogianni N. 2,3-Dehydrosilybin A and B as a pro-longevity and anti-aggregation compound. Free Rad. Biol. Med. 2017;103:256–267. doi: 10.1016/j.freeradbiomed.2016.12.042. PubMed DOI

Esselun C., Bruns B., Hagl S., Grewal R., Eckert G.P. Differential effects of silibinin a on mitochondrial function in neuronal PC12 and HepG2 liver cells. Oxid. Med. Cell Longev. 2019:1652609. doi: 10.1155/2019/1652609. PubMed DOI PMC

Diukendjieva A., Zaharieva M.M., Mori M., Alov P., Tsakovska I., Pencheva T., Najdenski H., Křen V., Felici C., Bufalieri F., et al. Dual Smo/BRAF inhibition by flavonolignans from Silybum marianum. Antioxidants. 2020;9:384. doi: 10.3390/antiox9050384. PubMed DOI PMC

Köck K., Xie Y., Hawke R.L., Oberlies N.H., Brouwer K.L. Interaction of silymarin flavonolignans with organic anion-transporting polypeptides. Drug metabolism and disposition: The biological fate of chemicals. Drug Metab. Disp. 2013;41:958–965. doi: 10.1124/dmd.112.048272. PubMed DOI PMC

Kubala M., Čechová P., Geletičová J., Biler M., Štenclová T., Trouillas P., Biedermann D. Flavonolignans as a novel class of sodium pump inhibitors. Front. Physiol. 2016;7:115. doi: 10.3389/fphys.2016.00115. PubMed DOI PMC

Johannes J., Jayarama-Naidu R., Meyer F., Wirth E.K., Schweizer U., Schomburg L., Köhrle J., Renko K. Silychristin, a flavonolignan derived from the milk thistle is a potent inhibitor of the thyroid hormone transporter MCT8. Endocrinology. 2016;157:1694–1701. doi: 10.1210/en.2015-1933. PubMed DOI

Dobiasová S., Řehořová K., Kučerová D., Biedermann D., Káňová K., Petrásková L., Koucká K., Václavíková R., Valentová K., Ruml T., et al. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential. Antioxidants. 2020;9:455. doi: 10.3390/antiox9050455. PubMed DOI PMC

Viktorová J., Dobiášová S., Řehořová K., Biedermann D., Káňová K., Šeborová K., Václavíková R., Valentová K., Ruml T., Křen V., et al. Antioxidant, anti-inflammatory and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8:303. doi: 10.3390/antiox8080303. PubMed DOI PMC

Kim J.Y., Kim J.Y., Jenis J., Li Z.P., Ban Y.J., Baiseitova A., Park K.H. Tyrosinase inhibitory study of flavonolignans from the seeds of Silybum marianum (Milk thistle) Bioorg. Med. Chem. 2019;27:2499–2507. doi: 10.1016/j.bmc.2019.03.013. PubMed DOI

Brantley S.J., Oberlies N.H., Kroll D.J., Paine M.F. Two flavonolignans from milk thistle (Silybum marianum) inhibit CYP2C9-mediated warfarin metabolism at clinically achievable concentrations. J. Pharmacol. Exp. Ther. 2010;332:1081–1087. doi: 10.1124/jpet.109.161927. PubMed DOI PMC

Brantley S.J., Graf T.N., Oberlies N.H., Paine M.F. A systematic approach to evaluate herb-drug interaction mechanisms: Investigation of milk thistle extracts and eight isolated constituents as CYP3A inhibitors. Drug Metab. Dispos. 2013;41:1662–1670. doi: 10.1124/dmd.113.052563. PubMed DOI PMC

Gufford B.T., Chen G., Lazarus P., Graf T.N., Oberlies N.H., Paine M.F. Identification of diet-derived constituents as potent inhibitors of intestinal glucuronidation. Drug Metab. Disp. 2014;42:1675–1683. doi: 10.1124/dmd.114.059451. PubMed DOI PMC

Šuk J., Jašprová J., Biedermann D., Petrásková L., Valentová K., Křen V., Muchová L., Vítek L. Isolated silymarin flavonoids increase systemic and hepatic bilirubin concentrations and lower lipoperoxidation in mice. Oxid. Med. Cell. Longev. 2019;2019:6026902. doi: 10.1155/2019/6026902. PubMed DOI PMC

Seidlova-Wuttke D., Becker T., Christoffel V., Jarry H., Wuttke W. Silymarin is a selective estrogen receptor β (ERβ) agonist and has estrogenic effects in the metaphysis of the femur but no or antiestrogenic effects in uterus of ovariectomized (ovx) rats. J. Steroid Biochem. Mol. Biol. 2003;86:179–188. doi: 10.1016/S0960-0760(03)00270-X. PubMed DOI

Škottová N., Krečman V. Silymarin as a potential hypocholesterolaemic drug. Physiol. Res. 1998;47:1–7. PubMed

MacDonald-Ramos K., Michán L., Martínez-Ibarraa A., Cerbón M. Silymarin is an ally against insulin resistance: A review. Ann. Hepatol. 2021;23:100255. doi: 10.1016/j.aohep.2020.08.072. PubMed DOI

Agarwal R., Agarwal C., Ichikawa H., Singh R.P., Aggarwal B.B. Anticancer potential of silymarin: From bench to bed side. Anticancer Res. 2006;26:4457–4498. PubMed

Deep G., Raina K., Singh R.P., Oberlies N.H., Kroll D.J., Agarwal R. Isosilibinin inhibits advanced human prostate cancer growth in athymic nude mice: Comparison with silymarin and silibinin. Int. J. Cancer. 2008;123:2750–2758. doi: 10.1002/ijc.23879. PubMed DOI

Kondo T., Ohta T., Igura K., Hara Y., Kaji K. Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett. 2002;180:139–144. doi: 10.1016/S0304-3835(02)00007-1. PubMed DOI

Vue B., Zhang S., Zhang X., Parisis K., Zhang Q., Zheng S., Wang G., Chen Q.-H. Silibinin derivatives as anti-prostate cancer agents: Synthesis and cell-based evaluations. Eur. J. Med. Chem. 2016;109:36–46. doi: 10.1016/j.ejmech.2015.12.041. PubMed DOI PMC

Vue B., Chen Q.H. The potential of flavonolignans in prostate cancer management. Curr. Med. Chem. 2016;23:3925–3950. doi: 10.2174/0929867323666160823151833. PubMed DOI

Liu C.-H., Jassey A., Hsu H.-Y., Lin L.-T. Antiviral activities of silymarin and derivatives. Molecules. 2019;24:1552. doi: 10.3390/molecules24081552. PubMed DOI PMC

Polyak J., Ferenci P., Pawlotsky J.-M. Hepatoprotective and antiviral functions of silymarin components in hepatitis C virus infection. Hepatology. 2013;57:1262–1271. doi: 10.1002/hep.26179. PubMed DOI PMC

Bosch-Barrera J., Martin-Castillo B., Buxó M., Brunet J., Encinar J.A., Menendez J.A. Silibinin and SARS-CoV-2: Dual targeting of host cytokine storm and virus replication machinery for clinical management of COVID-19 patients. J. Clin. Med. 2020;9:1770. doi: 10.3390/jcm9061770. PubMed DOI PMC

Srivastava R., Tripathi S., Unni S., Hussain A., Haque S., Dasgupta N., Singh V., Mishra B.N. Silybin B and cianidanol inhibit Mpro and spike protein of SARS-CoV-2: Evidence from in silico molecular docking studies. Curr. Pharm. Design. 2021;27:in press. doi: 10.2174/1381612826666201210122726. PubMed DOI

Faixová D., Hrčková G., Kubašková T.M., Mudroňová D. Antiparasitic effects of selected isoflavones on flatworms. Helminthologia. 2021;58:1–16. doi: 10.2478/helm-2021-0004. PubMed DOI PMC

Flaig T.W., Gustafson D.L., Su L.J., Zirrolli J.A., Crighton F., Harrison G.S., Pierson A.A., Agarwal R., Glodé L.M. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investig. New Drugs. 2007;25:139–146. doi: 10.1007/s10637-006-9019-2. PubMed DOI

Vítek L., Bellarosa C., Tiribelli C. Induction of mild hyperbilirubinemia: Hype or real therapeutic opportunity? Clin. Pharm. Ther. 2019;106:568–575. doi: 10.1002/cpt.1341. PubMed DOI

Chambers S., Viktorová J., Řehořová K., Biedermann D., Turková L., Macek T., Křen V., Valentová K. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J. Agric. Food Chem. 2020;68:1763–1779. doi: 10.1021/acs.jafc.9b00694. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...