Identification of Human Sulfotransferases Active towards Silymarin Flavonolignans and Taxifolin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-00132S
Grantová Agentura České Republiky
PubMed
32806559
PubMed Central
PMC7465014
DOI
10.3390/metabo10080329
PII: metabo10080329
Knihovny.cz E-zdroje
- Klíčová slova
- dihydroquercetin, isosilybin, metabolism, silybin, silychristin, silydianin, sulfation,
- Publikační typ
- časopisecké články MeSH
Natural phenolic compounds are known to be metabolized by phase II metabolic reactions. In this study, we examined the in vitro sulfation of the main constituents of silymarin, an herbal remedy produced from the fruits of the milk thistle. The study focused on major flavonolignan constituents, including silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin, as well as the flavonoid taxifolin. Using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS), individual flavonolignans and taxifolin were found to be sulfated by human liver and human intestinal cytosols. Moreover, experiments with recombinant enzymes revealed that human sulfotransferases (SULTs) 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C4, and 1E1 catalyzed the sulfation of all of the tested compounds, with the exception of silydianin, which was not sulfated by SULT1B1 and SULT1C4. The sulfation products detected were monosulfates, of which some of the major ones were identified as silybin A 20-O-sulfate, silybin B 20-O-sulfate, and isosilybin A 20-O-sulfate. Further, we also observed the sulfation of the tested compounds when they were tested in the silymarin mixture. Sulfates of flavonolignans and of taxifolin were produced by incubating silymarin with all of the above SULT enzymes, with human liver and intestinal cytosols, and also with human hepatocytes, even though the spectrum and amount of the sulfates varied among the metabolic models. Considering our results and the expression patterns of human sulfotransferases in metabolic tissues, we conclude that flavonolignans and taxifolin can potentially undergo both intestinal and hepatic sulfation, and that SULTs 1A1, 1A3, 1B1, and 1E1 could be involved in the biotransformation of the constituents of silymarin.
Zobrazit více v PubMed
Diukendjieva A., Al Sharif M., Alov P., Pencheva T., Tsakovska I., Pajeva I. ADME/Tox properties and biochemical interactions of silybin congeners: In silico study. Nat. Prod. Commun. 2017;12:175–178. doi: 10.1177/1934578X1701200208. PubMed DOI
Chambers C.S., Holeckova V., Petraskova L., Biedermann D., Valentova K., Buchta M., Kren V. The silymarin composition... and why does it matter??? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Diukendjieva A., Alov P., Tsakovska I., Pencheva T., Richarz A., Kren V., Cronin M.T.D., Pajeva I. In vitro and in silico studies of the membrane permeability of natural flavonoids from Silybum marianum (L.) Gaertn. and their derivatives. Phytomedicine. 2019;53:79–85. doi: 10.1016/j.phymed.2018.09.001. PubMed DOI
Federico A., Dallio M., Loguercio C. Silymarin/silybin and chronic liver disease: A marriage of many years. Molecules. 2017;22:191. doi: 10.3390/molecules22020191. PubMed DOI PMC
Sunil C., Xu B. An insight into the health-promoting effects of taxifolin (dihydroquercetin) Phytochemistry. 2019;166:112066. doi: 10.1016/j.phytochem.2019.112066. PubMed DOI
Valentova K., Havlik J., Kosina P., Papouskova B., Jaimes J.D., Kanova K., Petraskova L., Ulrichova J., Kren V. Biotransformation of silymarin flavonolignans by human fecal microbiota. Metabolites. 2020;10:29. doi: 10.3390/metabo10010029. PubMed DOI PMC
Zhang Y., Yang D.H., Zhang Y.T., Chen X.M., Li L.L., Cai S.Q. Biotransformation on the flavonolignan constituents of Silybi Fructus by an intestinal bacterial strain Eubacterium limosum ZL-II. Fitoterapia. 2014;92:61–71. doi: 10.1016/j.fitote.2013.10.001. PubMed DOI
Kren V., Marhol P., Purchartova K., Gabrielova E., Modriansky M. Biotransformation of silybin and its congeners. Curr. Drug Metab. 2013;14:1009–1021. doi: 10.2174/1389200214666131118234507. PubMed DOI
Rowland A., Miners J.O., Mackenzie P.I. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol. 2013;45:1121–1132. doi: 10.1016/j.biocel.2013.02.019. PubMed DOI
Vrba J., Papouskova B., Roubalova L., Zatloukalova M., Biedermann D., Kren V., Valentova K., Ulrichova J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI
Vrba J., Papouskova B., Lnenickova K., Kosina P., Kren V., Ulrichova J. Identification of UDP-glucuronosyltransferases involved in the metabolism of silymarin flavonolignans. J. Pharm. Biomed. Anal. 2020;178:112972. doi: 10.1016/j.jpba.2019.112972. PubMed DOI
Calani L., Brighenti F., Bruni R., Del Rio D. Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine. 2012;20:40–46. doi: 10.1016/j.phymed.2012.09.004. PubMed DOI
Wen Z., Dumas T.E., Schrieber S.J., Hawke R.L., Fried M.W., Smith P.C. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 2008;36:65–72. doi: 10.1124/dmd.107.017566. PubMed DOI
Vacek J., Papouskova B., Kosina P., Vrba J., Kren V., Ulrichova J. Biotransformation of flavonols and taxifolin in hepatocyte in vitro systems as determined by liquid chromatography with various stationary phases and electrospray ionization-quadrupole time-of-flight mass spectrometry. J. Chromatogr. B. 2012;899:109–115. doi: 10.1016/j.jchromb.2012.05.009. PubMed DOI
Vrba J., Kren V., Vacek J., Papouskova B., Ulrichova J. Quercetin, quercetin glycosides and taxifolin differ in their ability to induce AhR activation and CYP1A1 expression in HepG2 cells. Phytother. Res. 2012;26:1746–1752. doi: 10.1002/ptr.4637. PubMed DOI
Yang P., Xu F., Li H.F., Wang Y., Li F.C., Shang M.Y., Liu G.X., Wang X., Cai S.Q. Detection of 191 taxifolin metabolites and their distribution in rats using HPLC-ESI-IT-TOF-MSn. Molecules. 2016;21:1209. doi: 10.3390/molecules21091209. PubMed DOI PMC
Jancova P., Siller M., Anzenbacherova E., Kren V., Anzenbacher P., Simanek V. Evidence for differences in regioselective and stereoselective glucuronidation of silybin diastereomers from milk thistle (Silybum marianum) by human UDP-glucuronosyltransferases. Xenobiotica. 2011;41:743–751. doi: 10.3109/00498254.2011.573017. PubMed DOI
Xie Y., Miranda S.R., Hoskins J.M., Hawke R.L. Role of UDP-glucuronosyltransferase 1A1 in the metabolism and pharmacokinetics of silymarin flavonolignans in patients with HCV and NAFLD. Molecules. 2017;22:142. doi: 10.3390/molecules22010142. PubMed DOI PMC
Petraskova L., Kanova K., Biedermann D., Kren V., Valentova K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:116. doi: 10.3390/foods9020116. PubMed DOI PMC
Lindsay J., Wang L.L., Li Y., Zhou S.F. Structure, function and polymorphism of human cytosolic sulfotransferases. Curr. Drug Metab. 2008;9:99–105. doi: 10.2174/138920008783571819. PubMed DOI
Chen Z., Zheng S., Li L., Jiang H. Metabolism of flavonoids in human: A comprehensive review. Curr. Drug Metab. 2014;15:48–61. doi: 10.2174/138920021501140218125020. PubMed DOI
Noleto-Dias C., Harflett C., Beale M.H., Ward J.L. Sulfated flavanones and dihydroflavonols from willow. Phytochem. Lett. 2020;35:88–93. doi: 10.1016/j.phytol.2019.11.008. PubMed DOI PMC
Agarwal C., Wadhwa R., Deep G., Biedermann D., Gazak R., Kren V., Agarwal R. Anti-cancer efficacy of silybin derivatives—A structure-activity relationship. PLoS ONE. 2013;8:e60074. doi: 10.1371/journal.pone.0060074. PubMed DOI PMC
Marhol P., Hartog A.F., van der Horst M.A., Wever R., Purchartova K., Fuksova K., Kuzma M., Cvacka J., Kren V. Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. J. Mol. Catal. B-Enzym. 2013;89:24–27. doi: 10.1016/j.molcatb.2012.12.005. DOI
Roubalova L., Purchartova K., Papouskova B., Vacek J., Kren V., Ulrichova J., Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg. Med. Chem. 2015;23:5402–5409. doi: 10.1016/j.bmc.2015.07.055. PubMed DOI
Valentova K., Purchartova K., Rydlova L., Roubalova L., Biedermann D., Petraskova L., Krenkova A., Pelantova H., Holeckova-Moravcova V., Tesarova E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC
Purchartova K., Engels L., Marhol P., Sulc M., Kuzma M., Slamova K., Elling L., Kren V. Enzymatic preparation of silybin phase II metabolites: Sulfation using aryl sulfotransferase from rat liver. Appl. Microbiol. Biotechnol. 2013;97:10391–10398. doi: 10.1007/s00253-013-4794-0. PubMed DOI
Purchartova K., Valentova K., Pelantova H., Marhol P., Cvacka J., Havlicek L., Krenkova A., Vavrikova E., Biedermann D., Chambers C.S., et al. Prokaryotic and eukaryotic aryl sulfotransferases: Sulfation of quercetin and its derivatives. ChemCatChem. 2015;7:3152–3162. doi: 10.1002/cctc.201500298. DOI
Abourashed E.A., Mikell J.R., Khan I.A. Bioconversion of silybin to phase I and II microbial metabolites with retained antioxidant activity. Bioorg. Med. Chem. 2012;20:2784–2788. doi: 10.1016/j.bmc.2012.03.046. PubMed DOI
Coughtrie M.W.H. Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem. Biol. Interact. 2016;259:2–7. doi: 10.1016/j.cbi.2016.05.005. PubMed DOI
Riches Z., Stanley E.L., Bloomer J.C., Coughtrie M.W. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: The SULT “pie”. Drug Metab. Dispos. 2009;37:2255–2261. doi: 10.1124/dmd.109.028399. PubMed DOI PMC
Modriansky M., Ulrichova J., Bachleda P., Anzenbacher P., Anzenbacherova E., Walterova D., Simanek V. Human hepatocyte—A model for toxicological studies. Functional and biochemical characterization. Gen. Physiol. Biophys. 2000;19:223–235. PubMed
Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners