Identification of Human Sulfotransferases Active towards Silymarin Flavonolignans and Taxifolin

. 2020 Aug 12 ; 10 (8) : . [epub] 20200812

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32806559

Grantová podpora
18-00132S Grantová Agentura České Republiky

Natural phenolic compounds are known to be metabolized by phase II metabolic reactions. In this study, we examined the in vitro sulfation of the main constituents of silymarin, an herbal remedy produced from the fruits of the milk thistle. The study focused on major flavonolignan constituents, including silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin, as well as the flavonoid taxifolin. Using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS), individual flavonolignans and taxifolin were found to be sulfated by human liver and human intestinal cytosols. Moreover, experiments with recombinant enzymes revealed that human sulfotransferases (SULTs) 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C4, and 1E1 catalyzed the sulfation of all of the tested compounds, with the exception of silydianin, which was not sulfated by SULT1B1 and SULT1C4. The sulfation products detected were monosulfates, of which some of the major ones were identified as silybin A 20-O-sulfate, silybin B 20-O-sulfate, and isosilybin A 20-O-sulfate. Further, we also observed the sulfation of the tested compounds when they were tested in the silymarin mixture. Sulfates of flavonolignans and of taxifolin were produced by incubating silymarin with all of the above SULT enzymes, with human liver and intestinal cytosols, and also with human hepatocytes, even though the spectrum and amount of the sulfates varied among the metabolic models. Considering our results and the expression patterns of human sulfotransferases in metabolic tissues, we conclude that flavonolignans and taxifolin can potentially undergo both intestinal and hepatic sulfation, and that SULTs 1A1, 1A3, 1B1, and 1E1 could be involved in the biotransformation of the constituents of silymarin.

Zobrazit více v PubMed

Diukendjieva A., Al Sharif M., Alov P., Pencheva T., Tsakovska I., Pajeva I. ADME/Tox properties and biochemical interactions of silybin congeners: In silico study. Nat. Prod. Commun. 2017;12:175–178. doi: 10.1177/1934578X1701200208. PubMed DOI

Chambers C.S., Holeckova V., Petraskova L., Biedermann D., Valentova K., Buchta M., Kren V. The silymarin composition... and why does it matter??? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Diukendjieva A., Alov P., Tsakovska I., Pencheva T., Richarz A., Kren V., Cronin M.T.D., Pajeva I. In vitro and in silico studies of the membrane permeability of natural flavonoids from Silybum marianum (L.) Gaertn. and their derivatives. Phytomedicine. 2019;53:79–85. doi: 10.1016/j.phymed.2018.09.001. PubMed DOI

Federico A., Dallio M., Loguercio C. Silymarin/silybin and chronic liver disease: A marriage of many years. Molecules. 2017;22:191. doi: 10.3390/molecules22020191. PubMed DOI PMC

Sunil C., Xu B. An insight into the health-promoting effects of taxifolin (dihydroquercetin) Phytochemistry. 2019;166:112066. doi: 10.1016/j.phytochem.2019.112066. PubMed DOI

Valentova K., Havlik J., Kosina P., Papouskova B., Jaimes J.D., Kanova K., Petraskova L., Ulrichova J., Kren V. Biotransformation of silymarin flavonolignans by human fecal microbiota. Metabolites. 2020;10:29. doi: 10.3390/metabo10010029. PubMed DOI PMC

Zhang Y., Yang D.H., Zhang Y.T., Chen X.M., Li L.L., Cai S.Q. Biotransformation on the flavonolignan constituents of Silybi Fructus by an intestinal bacterial strain Eubacterium limosum ZL-II. Fitoterapia. 2014;92:61–71. doi: 10.1016/j.fitote.2013.10.001. PubMed DOI

Kren V., Marhol P., Purchartova K., Gabrielova E., Modriansky M. Biotransformation of silybin and its congeners. Curr. Drug Metab. 2013;14:1009–1021. doi: 10.2174/1389200214666131118234507. PubMed DOI

Rowland A., Miners J.O., Mackenzie P.I. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol. 2013;45:1121–1132. doi: 10.1016/j.biocel.2013.02.019. PubMed DOI

Vrba J., Papouskova B., Roubalova L., Zatloukalova M., Biedermann D., Kren V., Valentova K., Ulrichova J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI

Vrba J., Papouskova B., Lnenickova K., Kosina P., Kren V., Ulrichova J. Identification of UDP-glucuronosyltransferases involved in the metabolism of silymarin flavonolignans. J. Pharm. Biomed. Anal. 2020;178:112972. doi: 10.1016/j.jpba.2019.112972. PubMed DOI

Calani L., Brighenti F., Bruni R., Del Rio D. Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine. 2012;20:40–46. doi: 10.1016/j.phymed.2012.09.004. PubMed DOI

Wen Z., Dumas T.E., Schrieber S.J., Hawke R.L., Fried M.W., Smith P.C. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 2008;36:65–72. doi: 10.1124/dmd.107.017566. PubMed DOI

Vacek J., Papouskova B., Kosina P., Vrba J., Kren V., Ulrichova J. Biotransformation of flavonols and taxifolin in hepatocyte in vitro systems as determined by liquid chromatography with various stationary phases and electrospray ionization-quadrupole time-of-flight mass spectrometry. J. Chromatogr. B. 2012;899:109–115. doi: 10.1016/j.jchromb.2012.05.009. PubMed DOI

Vrba J., Kren V., Vacek J., Papouskova B., Ulrichova J. Quercetin, quercetin glycosides and taxifolin differ in their ability to induce AhR activation and CYP1A1 expression in HepG2 cells. Phytother. Res. 2012;26:1746–1752. doi: 10.1002/ptr.4637. PubMed DOI

Yang P., Xu F., Li H.F., Wang Y., Li F.C., Shang M.Y., Liu G.X., Wang X., Cai S.Q. Detection of 191 taxifolin metabolites and their distribution in rats using HPLC-ESI-IT-TOF-MSn. Molecules. 2016;21:1209. doi: 10.3390/molecules21091209. PubMed DOI PMC

Jancova P., Siller M., Anzenbacherova E., Kren V., Anzenbacher P., Simanek V. Evidence for differences in regioselective and stereoselective glucuronidation of silybin diastereomers from milk thistle (Silybum marianum) by human UDP-glucuronosyltransferases. Xenobiotica. 2011;41:743–751. doi: 10.3109/00498254.2011.573017. PubMed DOI

Xie Y., Miranda S.R., Hoskins J.M., Hawke R.L. Role of UDP-glucuronosyltransferase 1A1 in the metabolism and pharmacokinetics of silymarin flavonolignans in patients with HCV and NAFLD. Molecules. 2017;22:142. doi: 10.3390/molecules22010142. PubMed DOI PMC

Petraskova L., Kanova K., Biedermann D., Kren V., Valentova K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:116. doi: 10.3390/foods9020116. PubMed DOI PMC

Lindsay J., Wang L.L., Li Y., Zhou S.F. Structure, function and polymorphism of human cytosolic sulfotransferases. Curr. Drug Metab. 2008;9:99–105. doi: 10.2174/138920008783571819. PubMed DOI

Chen Z., Zheng S., Li L., Jiang H. Metabolism of flavonoids in human: A comprehensive review. Curr. Drug Metab. 2014;15:48–61. doi: 10.2174/138920021501140218125020. PubMed DOI

Noleto-Dias C., Harflett C., Beale M.H., Ward J.L. Sulfated flavanones and dihydroflavonols from willow. Phytochem. Lett. 2020;35:88–93. doi: 10.1016/j.phytol.2019.11.008. PubMed DOI PMC

Agarwal C., Wadhwa R., Deep G., Biedermann D., Gazak R., Kren V., Agarwal R. Anti-cancer efficacy of silybin derivatives—A structure-activity relationship. PLoS ONE. 2013;8:e60074. doi: 10.1371/journal.pone.0060074. PubMed DOI PMC

Marhol P., Hartog A.F., van der Horst M.A., Wever R., Purchartova K., Fuksova K., Kuzma M., Cvacka J., Kren V. Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. J. Mol. Catal. B-Enzym. 2013;89:24–27. doi: 10.1016/j.molcatb.2012.12.005. DOI

Roubalova L., Purchartova K., Papouskova B., Vacek J., Kren V., Ulrichova J., Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg. Med. Chem. 2015;23:5402–5409. doi: 10.1016/j.bmc.2015.07.055. PubMed DOI

Valentova K., Purchartova K., Rydlova L., Roubalova L., Biedermann D., Petraskova L., Krenkova A., Pelantova H., Holeckova-Moravcova V., Tesarova E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC

Purchartova K., Engels L., Marhol P., Sulc M., Kuzma M., Slamova K., Elling L., Kren V. Enzymatic preparation of silybin phase II metabolites: Sulfation using aryl sulfotransferase from rat liver. Appl. Microbiol. Biotechnol. 2013;97:10391–10398. doi: 10.1007/s00253-013-4794-0. PubMed DOI

Purchartova K., Valentova K., Pelantova H., Marhol P., Cvacka J., Havlicek L., Krenkova A., Vavrikova E., Biedermann D., Chambers C.S., et al. Prokaryotic and eukaryotic aryl sulfotransferases: Sulfation of quercetin and its derivatives. ChemCatChem. 2015;7:3152–3162. doi: 10.1002/cctc.201500298. DOI

Abourashed E.A., Mikell J.R., Khan I.A. Bioconversion of silybin to phase I and II microbial metabolites with retained antioxidant activity. Bioorg. Med. Chem. 2012;20:2784–2788. doi: 10.1016/j.bmc.2012.03.046. PubMed DOI

Coughtrie M.W.H. Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem. Biol. Interact. 2016;259:2–7. doi: 10.1016/j.cbi.2016.05.005. PubMed DOI

Riches Z., Stanley E.L., Bloomer J.C., Coughtrie M.W. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: The SULT “pie”. Drug Metab. Dispos. 2009;37:2255–2261. doi: 10.1124/dmd.109.028399. PubMed DOI PMC

Modriansky M., Ulrichova J., Bachleda P., Anzenbacher P., Anzenbacherova E., Walterova D., Simanek V. Human hepatocyte—A model for toxicological studies. Functional and biochemical characterization. Gen. Physiol. Biophys. 2000;19:223–235. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners

. 2021 Jul 23 ; 22 (15) : . [epub] 20210723

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...