The Effect of Silymarin Flavonolignans and Their Sulfated Conjugates on Platelet Aggregation and Blood Vessels Ex Vivo
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-00121S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841
EFSA-CDN + EDF
SVV 260 414
Charles University
LTC18003, LTC18071
Ministerstvo Školství, Mládeže a Tělovýchovy
CA16112 NutRedOx, CA16225 EU-CARDIOPROTECTION
European Cooperation in Science and Technology
PubMed
31554252
PubMed Central
PMC6836034
DOI
10.3390/nu11102286
PII: nu11102286
Knihovny.cz E-zdroje
- Klíčová slova
- Silybum marianum, aorta, blood coagulation, metabolites, milk thistle, sulfates, thrombocytes, vasorelaxant,
- MeSH
- agregace trombocytů účinky léků MeSH
- aorta účinky léků MeSH
- flavonolignany chemie farmakologie MeSH
- inhibitory agregace trombocytů chemie farmakologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- molekulární struktura MeSH
- vazodilatancia MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flavonolignany MeSH
- inhibitory agregace trombocytů MeSH
- vazodilatancia MeSH
Silymarin is a traditional drug and food supplement employed for numerous liver disorders. The available studies indicate that its activities may be broader, in particular due to claimed benefits in some cardiovascular diseases, but the contributions of individual silymarin components are unclear. Therefore, we tested silymarin flavonolignans as pure diastereomers as well as their sulfated metabolites for potential vasorelaxant and antiplatelet effects in isolated rat aorta and in human blood, respectively. Eleven compounds from a panel of 17 tested exhibited a vasorelaxant effect, with half maximal effective concentrations (EC50) ranging from 20 to 100 µM, and some substances retained certain activity even in the range of hundreds of nM. Stereomers A were generally more potent as vasorelaxants than stereomers B. Interestingly, the most active compound was a metabolite-silychristin-19-O-sulfate. Although initial experiments showed that silybin, 2,3-dehydrosilybin, and 2,3-dehydrosilychristin were able to substantially block platelet aggregation, their effects were rapidly abolished with decreasing concentration, and were negligible at concentrations ≤100 µM. In conclusion, metabolites of silymarin flavonolignans seem to have biologically relevant vasodilatory properties, but the effect of silymarin components on platelets is low or negligible.
Zobrazit více v PubMed
Gažák R., Walterová D., Křen V. Silybin and silymarin--new and emerging applications in medicine. Curr. Med. Chem. 2007;14:315–338. doi: 10.2174/092986707779941159. PubMed DOI
Tajmohammadi A., Razavi B.M., Hosseinzadeh H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother. Res. 2018;32:1933–1949. doi: 10.1002/ptr.6153. PubMed DOI
Taleb A., Ahmad K.A., Ihsan A.U., Qu J., Lin N., Hezam K., Koju N., Hui L., Qilong D. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 2018;102:689–698. doi: 10.1016/j.biopha.2018.03.140. PubMed DOI
Vahabzadeh M., Amiri N., Karimi G. Effects of silymarin on metabolic syndrome: A review. J. Sci. Food Agric. 2018;98:4816–4823. doi: 10.1002/jsfa.9115. PubMed DOI
Bahem R., Hoffmann A., Azonpi A., Caballero-George C., Vanderheyden P. Modulation of calcium signaling of angiotensin AT1, endothelin ETA, and ETB receptors by silibinin, quercetin, crocin, diallyl sulfides, and ginsenoside Rb1. Planta Med. 2015;81:670–678. doi: 10.1055/s-0034-1383408. PubMed DOI
Demirci B., Dost T., Gokalp F., Birincioglu M. Silymarin improves vascular function of aged ovariectomized rats. Phytother. Res. 2014;28:868–872. doi: 10.1002/ptr.5067. PubMed DOI
Li Volti G., Salomone S., Sorrenti V., Mangiameli A., Urso V., Siarkos I., Galvano F., Salamone F. Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc. Diabetol. 2011;10:62. doi: 10.1186/1475-2840-10-62. PubMed DOI PMC
Kang J.S., Park S.K., Yang K.H., Kim H.M. Silymarin inhibits TNF-alpha-induced expression of adhesion molecules in human umbilical vein endothelial cells. FEBS Lett. 2003;550:89–93. doi: 10.1016/S0014-5793(03)00827-5. PubMed DOI
El-Shitany N.A., El-Haggar S., El-Desoky K. Silymarin prevents adriamycin-induced cardiotoxicity and nephrotoxicity in rats. Food Chem. Toxicol. 2008;46:2422–2428. doi: 10.1016/j.fct.2008.03.033. PubMed DOI
Taghiabadi E., Imenshahidi M., Abnous K., Mosafa F., Sankian M., Memar B., Karimi G. Protective effect of silymarin against acrolein-induced cardiotoxicity in mice. Evid. Based Complement. Alternat. Med. 2012;2012:352091. doi: 10.1155/2012/352091. PubMed DOI PMC
Metwally M.A.A., El-Gellal A.M., El-Sawaisi S.M. Effects of silymarin on lipid metabolism in rats. World Appl. Sci. J. 2009;6:1634–1637.
Heidarian E., Rafieian-Kopaei M. Effect of silymarin on liver phoshpatidate phosphohydrolase in hyperlipidemic rats. Biosci. Res. 2012;9:59–67.
Krečman V., Škottová N., Walterová D., Ulrichová J., Šimánek V. Silymarin inhibits the development of diet-induced hypercholesterolemia in rats. Planta Med. 1998;64:138–142. doi: 10.1055/s-2006-957391. PubMed DOI
Škottová N., Krečman V. Dietary silymarin improves removal of low density lipoproteins by the perfused rat liver. Acta Univ. Palacki. Olomouc. Fac. Med. 1998;141:39–40. PubMed
Bijak M., Saluk-Bijak J. Flavonolignans inhibit the arachidonic acid pathway in blood platelets. BMC Complement. Altern. Med. 2017;17:396–403. doi: 10.1186/s12906-017-1897-7. PubMed DOI PMC
Hawke R.L., Schrieber S.J., Soule T.A., Wen Z., Smith P.C., Reddy K.R., Wahed A.S., Belle S.H., Afdhal N.H., Navarro V.J., et al. Silymarin ascending multiple oral dosing phase I study in noncirrhotic patients with chronic hepatitis C. J. Clin. Pharmacol. 2010;50:434–449. doi: 10.1177/0091270009347475. PubMed DOI PMC
Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition... and why does it matter??? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Biedermann D., Vavříková E., Cvak L., Křen V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. doi: 10.1039/C3NP70122K. PubMed DOI
Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI
Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI
Džubák P., Hajdúch M., Gažák R., Svobodová A., Psotová J., Walterová D., Sedmera P., Křen V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg. Med. Chem. 2006;14:3793–3810. doi: 10.1016/j.bmc.2006.01.035. PubMed DOI
Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC
Company C.C. COX (Ovine/Human) Inhibitor Screening Assay Kit. [(accessed on 15 July 2019)]; Available online: https://www.caymanchem.com/product/560131.
Chang T.S., Kim H.M., Lee K.S., Khil L.Y., Mar W.C., Ryu C.K., Moon C.K. Thromboxane A2 synthase inhibition and thromboxane A2 receptor blockade by 2-[(4-cyanophenyl)amino]-3-chloro-1,4-naphthalenedione (NQ-Y15) in rat platelets. Biochem. Pharmacol. 1997;54:259–268. doi: 10.1016/S0006-2952(97)00179-2. PubMed DOI
Company C.C. Thromboxane B2 ELISA Kit. [(accessed on 15 July 2019)]; Available online: https://www.caymanchem.com/product/501020.
Theodosiou E., Purchartová K., Stamatis H., Kolisis F., Křen V. Bioavailability of silymarin flavonolignans: Drug formulations and biotransformation. Phytochem. Rev. 2014;13:1–18. doi: 10.1007/s11101-013-9285-5. DOI
Vrba J., Papoušková B., Roubalová L., Zatloukalová M., Biedermann D., Křen V., Valentová K., Ulrichová J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI
Marhol P., Bednář P., Kolářová P., Večeřa R., Ulrichova J., Tesařová E., Vavříková E., Kuzma M., Křen V. Pharmacokinetics of pure silybin diastereoisomers and identification of their metabolites in rat plasma. J. Funct. Foods. 2015;14:570–580. doi: 10.1016/j.jff.2015.02.031. DOI
Han Y.H., Lou H.X., Ren D.M., Sun L.R., Ma B., Ji M. Stereoselective metabolism of silybin diastereoisomers in the glucuronidation process. J. Pharm. Biomed. Anal. 2004;34:1071–1078. doi: 10.1016/j.jpba.2003.12.002. PubMed DOI
Jančová P., Šiller M., Anzenbacherová E., Křen V., Anzenbacher P., Šimánek V. Evidence for differences in regioselective and stereoselective glucuronidation of silybin diastereomers from milk thistle (Silybum marianum) by human UDP-glucuronosyltransferases. Xenobiotica. 2011;41:743–751. doi: 10.3109/00498254.2011.573017. PubMed DOI
Křen V., Ulrichová J., Kosina P., Stevenson D., Sedmera P., Přikrylová V., Halada P., Šimánek V. Chemoenzymatic preparation of silybin β-glucuronides and their biological evaluation. Drug Metab. Dispos. 2000;28:1513–1517. PubMed
Najmanová I., Pourová J., Vopršalová M., Pilarová V., Semecký V., Novaková L., Mladěnka P. Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats. Mol. Nutr. Food Res. 2016;60:981–991. doi: 10.1002/mnfr.201500761. PubMed DOI
Pourová J., Najmanová I., Vopršalová M., Migkos T., Pilarová V., Applová L., Novaková L., Mladěnka P. Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vascul. Pharmacol. 2018;111:36–43. doi: 10.1016/j.vph.2018.08.008. PubMed DOI
Ribaudo G., Pagano M.A., Pavan V., Redaelli M., Zorzan M., Pezzani R., Mucignat-Caretta C., Vendrame T., Bova S., Zagotto G. Semi-synthetic derivatives of natural isoflavones from Maclura pomifera as a novel class of PDE-5A inhibitors. Fitoterapia. 2015;105:132–138. doi: 10.1016/j.fitote.2015.06.020. PubMed DOI
Fermini B., Ramirez D.S., Sun S., Bassyouni A., Hemkens M., Wisialowski T., Jenkinson S. L-type calcium channel antagonism - Translation from in vitro to in vivo. J. Pharmacol. Toxicol. Methods. 2017;84:86–92. doi: 10.1016/j.vascn.2016.11.002. PubMed DOI
Egea J., Fabregat I., Frapart Y.M., Ghezzi P., Görlach A., Kietzmann T., Kubaichuk K., Knaus U.G., Lopez M.G., Olaso-Gonzalez G., et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS) Redox Biol. 2017;13:94–162. doi: 10.1016/j.redox.2017.05.007. PubMed DOI PMC
Parveen R., Baboota S., Ali J., Ahuja A., Vasudev S.S., Ahmad S. Oil based nanocarrier for improved oral delivery of silymarin: In vitro and in vivo studies. Int. J. Pharm. 2011;413:245–253. doi: 10.1016/j.ijpharm.2011.04.041. PubMed DOI
Jadhav G.B., Upasani C.D. Antihypertensive effect of Silymarin on DOCA salt induced hypertension in unilateral nephrectomized rats. Orient. Pharm. Exp. Med. 2011;11:101–106. doi: 10.1007/s13596-011-0018-2. DOI
Chen H., Chen S.C., Zhang T.H., Tian H.C., Guan Y., Su D.F. Protective effects of silybin and tetrandrine on the outcome of spontaneously hypertensive rats subjected to acute coronary artery occlusion. Int. J. Cardiol. 1993;41:103–108. doi: 10.1016/0167-5273(93)90148-A. PubMed DOI
Mosua A.M., Numan A.T., Saeed B.N. Adjuvant use of silymarin in patients with hypertension and microalbuminuria. Int. Res. J. Pharm. 2012;3:95–96.
Calani L., Brighenti F., Bruni R., Del Rio D. Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine. 2012;20:40–46. doi: 10.1016/j.phymed.2012.09.004. PubMed DOI
Jackson S.P. The growing complexity of platelet aggregation. Blood. 2007;109:5087–5095. doi: 10.1182/blood-2006-12-027698. PubMed DOI
Bijak M., Dziedzic A., Saluk-Bijak J. Flavonolignans reduce the response of blood platelet to collagen. Int. J. Biol. Macromol. 2018;106:878–884. doi: 10.1016/j.ijbiomac.2017.08.091. PubMed DOI
Bijak M., Szelenberger R., Saluk J., Nowak P. Flavonolignans inhibit ADP induced blood platelets activation and aggregation in whole blood. Int. J. Biol. Macromol. 2017;95:682–688. doi: 10.1016/j.ijbiomac.2016.12.002. PubMed DOI
Dehmlow C., Murawski N., de Groot H. Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. Life Sci. 1996;58:1591–1600. doi: 10.1016/0024-3205(96)00134-8. PubMed DOI
Rui Y.C. Advances in pharmacological studies of silymarin. Mem. Inst. Oswaldo Cruz. 1991;86(Suppl. 2):79–85. doi: 10.1590/S0074-02761991000600020. PubMed DOI
Litvinov R.I., Weisel J.W. Role of red blood cells in haemostasis and thrombosis. ISBT Sci. Ser. 2017;12:176–183. doi: 10.1111/voxs.12331. PubMed DOI PMC
Karlíčková J., Říha M., Filipský T., Macaková K., Hrdina R., Mladěnka P. Antiplatelet effects of flavonoids mediated by inhibition of arachidonic acid based pathway. Planta Med. 2016;82:76–83. doi: 10.1055/s-0035-1557902. PubMed DOI
Applová L., Karlíčková J., Říha M., Filipský T., Macáková K., Spilková J., Mladěnka P. The isoflavonoid tectorigenin has better antiplatelet potential than acetylsalicylic acid. Phytomedicine. 2017;35:11–17. doi: 10.1016/j.phymed.2017.08.023. PubMed DOI
Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners