The Effect of Silymarin Flavonolignans and Their Sulfated Conjugates on Platelet Aggregation and Blood Vessels Ex Vivo

. 2019 Sep 24 ; 11 (10) : . [epub] 20190924

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31554252

Grantová podpora
18-00121S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841 EFSA-CDN + EDF
SVV 260 414 Charles University
LTC18003, LTC18071 Ministerstvo Školství, Mládeže a Tělovýchovy
CA16112 NutRedOx, CA16225 EU-CARDIOPROTECTION European Cooperation in Science and Technology

Silymarin is a traditional drug and food supplement employed for numerous liver disorders. The available studies indicate that its activities may be broader, in particular due to claimed benefits in some cardiovascular diseases, but the contributions of individual silymarin components are unclear. Therefore, we tested silymarin flavonolignans as pure diastereomers as well as their sulfated metabolites for potential vasorelaxant and antiplatelet effects in isolated rat aorta and in human blood, respectively. Eleven compounds from a panel of 17 tested exhibited a vasorelaxant effect, with half maximal effective concentrations (EC50) ranging from 20 to 100 µM, and some substances retained certain activity even in the range of hundreds of nM. Stereomers A were generally more potent as vasorelaxants than stereomers B. Interestingly, the most active compound was a metabolite-silychristin-19-O-sulfate. Although initial experiments showed that silybin, 2,3-dehydrosilybin, and 2,3-dehydrosilychristin were able to substantially block platelet aggregation, their effects were rapidly abolished with decreasing concentration, and were negligible at concentrations ≤100 µM. In conclusion, metabolites of silymarin flavonolignans seem to have biologically relevant vasodilatory properties, but the effect of silymarin components on platelets is low or negligible.

Zobrazit více v PubMed

Gažák R., Walterová D., Křen V. Silybin and silymarin--new and emerging applications in medicine. Curr. Med. Chem. 2007;14:315–338. doi: 10.2174/092986707779941159. PubMed DOI

Tajmohammadi A., Razavi B.M., Hosseinzadeh H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother. Res. 2018;32:1933–1949. doi: 10.1002/ptr.6153. PubMed DOI

Taleb A., Ahmad K.A., Ihsan A.U., Qu J., Lin N., Hezam K., Koju N., Hui L., Qilong D. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 2018;102:689–698. doi: 10.1016/j.biopha.2018.03.140. PubMed DOI

Vahabzadeh M., Amiri N., Karimi G. Effects of silymarin on metabolic syndrome: A review. J. Sci. Food Agric. 2018;98:4816–4823. doi: 10.1002/jsfa.9115. PubMed DOI

Bahem R., Hoffmann A., Azonpi A., Caballero-George C., Vanderheyden P. Modulation of calcium signaling of angiotensin AT1, endothelin ETA, and ETB receptors by silibinin, quercetin, crocin, diallyl sulfides, and ginsenoside Rb1. Planta Med. 2015;81:670–678. doi: 10.1055/s-0034-1383408. PubMed DOI

Demirci B., Dost T., Gokalp F., Birincioglu M. Silymarin improves vascular function of aged ovariectomized rats. Phytother. Res. 2014;28:868–872. doi: 10.1002/ptr.5067. PubMed DOI

Li Volti G., Salomone S., Sorrenti V., Mangiameli A., Urso V., Siarkos I., Galvano F., Salamone F. Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc. Diabetol. 2011;10:62. doi: 10.1186/1475-2840-10-62. PubMed DOI PMC

Kang J.S., Park S.K., Yang K.H., Kim H.M. Silymarin inhibits TNF-alpha-induced expression of adhesion molecules in human umbilical vein endothelial cells. FEBS Lett. 2003;550:89–93. doi: 10.1016/S0014-5793(03)00827-5. PubMed DOI

El-Shitany N.A., El-Haggar S., El-Desoky K. Silymarin prevents adriamycin-induced cardiotoxicity and nephrotoxicity in rats. Food Chem. Toxicol. 2008;46:2422–2428. doi: 10.1016/j.fct.2008.03.033. PubMed DOI

Taghiabadi E., Imenshahidi M., Abnous K., Mosafa F., Sankian M., Memar B., Karimi G. Protective effect of silymarin against acrolein-induced cardiotoxicity in mice. Evid. Based Complement. Alternat. Med. 2012;2012:352091. doi: 10.1155/2012/352091. PubMed DOI PMC

Metwally M.A.A., El-Gellal A.M., El-Sawaisi S.M. Effects of silymarin on lipid metabolism in rats. World Appl. Sci. J. 2009;6:1634–1637.

Heidarian E., Rafieian-Kopaei M. Effect of silymarin on liver phoshpatidate phosphohydrolase in hyperlipidemic rats. Biosci. Res. 2012;9:59–67.

Krečman V., Škottová N., Walterová D., Ulrichová J., Šimánek V. Silymarin inhibits the development of diet-induced hypercholesterolemia in rats. Planta Med. 1998;64:138–142. doi: 10.1055/s-2006-957391. PubMed DOI

Škottová N., Krečman V. Dietary silymarin improves removal of low density lipoproteins by the perfused rat liver. Acta Univ. Palacki. Olomouc. Fac. Med. 1998;141:39–40. PubMed

Bijak M., Saluk-Bijak J. Flavonolignans inhibit the arachidonic acid pathway in blood platelets. BMC Complement. Altern. Med. 2017;17:396–403. doi: 10.1186/s12906-017-1897-7. PubMed DOI PMC

Hawke R.L., Schrieber S.J., Soule T.A., Wen Z., Smith P.C., Reddy K.R., Wahed A.S., Belle S.H., Afdhal N.H., Navarro V.J., et al. Silymarin ascending multiple oral dosing phase I study in noncirrhotic patients with chronic hepatitis C. J. Clin. Pharmacol. 2010;50:434–449. doi: 10.1177/0091270009347475. PubMed DOI PMC

Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition... and why does it matter??? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Biedermann D., Vavříková E., Cvak L., Křen V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. doi: 10.1039/C3NP70122K. PubMed DOI

Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI

Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Džubák P., Hajdúch M., Gažák R., Svobodová A., Psotová J., Walterová D., Sedmera P., Křen V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg. Med. Chem. 2006;14:3793–3810. doi: 10.1016/j.bmc.2006.01.035. PubMed DOI

Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC

Company C.C. COX (Ovine/Human) Inhibitor Screening Assay Kit. [(accessed on 15 July 2019)]; Available online: https://www.caymanchem.com/product/560131.

Chang T.S., Kim H.M., Lee K.S., Khil L.Y., Mar W.C., Ryu C.K., Moon C.K. Thromboxane A2 synthase inhibition and thromboxane A2 receptor blockade by 2-[(4-cyanophenyl)amino]-3-chloro-1,4-naphthalenedione (NQ-Y15) in rat platelets. Biochem. Pharmacol. 1997;54:259–268. doi: 10.1016/S0006-2952(97)00179-2. PubMed DOI

Company C.C. Thromboxane B2 ELISA Kit. [(accessed on 15 July 2019)]; Available online: https://www.caymanchem.com/product/501020.

Theodosiou E., Purchartová K., Stamatis H., Kolisis F., Křen V. Bioavailability of silymarin flavonolignans: Drug formulations and biotransformation. Phytochem. Rev. 2014;13:1–18. doi: 10.1007/s11101-013-9285-5. DOI

Vrba J., Papoušková B., Roubalová L., Zatloukalová M., Biedermann D., Křen V., Valentová K., Ulrichová J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI

Marhol P., Bednář P., Kolářová P., Večeřa R., Ulrichova J., Tesařová E., Vavříková E., Kuzma M., Křen V. Pharmacokinetics of pure silybin diastereoisomers and identification of their metabolites in rat plasma. J. Funct. Foods. 2015;14:570–580. doi: 10.1016/j.jff.2015.02.031. DOI

Han Y.H., Lou H.X., Ren D.M., Sun L.R., Ma B., Ji M. Stereoselective metabolism of silybin diastereoisomers in the glucuronidation process. J. Pharm. Biomed. Anal. 2004;34:1071–1078. doi: 10.1016/j.jpba.2003.12.002. PubMed DOI

Jančová P., Šiller M., Anzenbacherová E., Křen V., Anzenbacher P., Šimánek V. Evidence for differences in regioselective and stereoselective glucuronidation of silybin diastereomers from milk thistle (Silybum marianum) by human UDP-glucuronosyltransferases. Xenobiotica. 2011;41:743–751. doi: 10.3109/00498254.2011.573017. PubMed DOI

Křen V., Ulrichová J., Kosina P., Stevenson D., Sedmera P., Přikrylová V., Halada P., Šimánek V. Chemoenzymatic preparation of silybin β-glucuronides and their biological evaluation. Drug Metab. Dispos. 2000;28:1513–1517. PubMed

Najmanová I., Pourová J., Vopršalová M., Pilarová V., Semecký V., Novaková L., Mladěnka P. Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats. Mol. Nutr. Food Res. 2016;60:981–991. doi: 10.1002/mnfr.201500761. PubMed DOI

Pourová J., Najmanová I., Vopršalová M., Migkos T., Pilarová V., Applová L., Novaková L., Mladěnka P. Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vascul. Pharmacol. 2018;111:36–43. doi: 10.1016/j.vph.2018.08.008. PubMed DOI

Ribaudo G., Pagano M.A., Pavan V., Redaelli M., Zorzan M., Pezzani R., Mucignat-Caretta C., Vendrame T., Bova S., Zagotto G. Semi-synthetic derivatives of natural isoflavones from Maclura pomifera as a novel class of PDE-5A inhibitors. Fitoterapia. 2015;105:132–138. doi: 10.1016/j.fitote.2015.06.020. PubMed DOI

Fermini B., Ramirez D.S., Sun S., Bassyouni A., Hemkens M., Wisialowski T., Jenkinson S. L-type calcium channel antagonism - Translation from in vitro to in vivo. J. Pharmacol. Toxicol. Methods. 2017;84:86–92. doi: 10.1016/j.vascn.2016.11.002. PubMed DOI

Egea J., Fabregat I., Frapart Y.M., Ghezzi P., Görlach A., Kietzmann T., Kubaichuk K., Knaus U.G., Lopez M.G., Olaso-Gonzalez G., et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS) Redox Biol. 2017;13:94–162. doi: 10.1016/j.redox.2017.05.007. PubMed DOI PMC

Parveen R., Baboota S., Ali J., Ahuja A., Vasudev S.S., Ahmad S. Oil based nanocarrier for improved oral delivery of silymarin: In vitro and in vivo studies. Int. J. Pharm. 2011;413:245–253. doi: 10.1016/j.ijpharm.2011.04.041. PubMed DOI

Jadhav G.B., Upasani C.D. Antihypertensive effect of Silymarin on DOCA salt induced hypertension in unilateral nephrectomized rats. Orient. Pharm. Exp. Med. 2011;11:101–106. doi: 10.1007/s13596-011-0018-2. DOI

Chen H., Chen S.C., Zhang T.H., Tian H.C., Guan Y., Su D.F. Protective effects of silybin and tetrandrine on the outcome of spontaneously hypertensive rats subjected to acute coronary artery occlusion. Int. J. Cardiol. 1993;41:103–108. doi: 10.1016/0167-5273(93)90148-A. PubMed DOI

Mosua A.M., Numan A.T., Saeed B.N. Adjuvant use of silymarin in patients with hypertension and microalbuminuria. Int. Res. J. Pharm. 2012;3:95–96.

Calani L., Brighenti F., Bruni R., Del Rio D. Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine. 2012;20:40–46. doi: 10.1016/j.phymed.2012.09.004. PubMed DOI

Jackson S.P. The growing complexity of platelet aggregation. Blood. 2007;109:5087–5095. doi: 10.1182/blood-2006-12-027698. PubMed DOI

Bijak M., Dziedzic A., Saluk-Bijak J. Flavonolignans reduce the response of blood platelet to collagen. Int. J. Biol. Macromol. 2018;106:878–884. doi: 10.1016/j.ijbiomac.2017.08.091. PubMed DOI

Bijak M., Szelenberger R., Saluk J., Nowak P. Flavonolignans inhibit ADP induced blood platelets activation and aggregation in whole blood. Int. J. Biol. Macromol. 2017;95:682–688. doi: 10.1016/j.ijbiomac.2016.12.002. PubMed DOI

Dehmlow C., Murawski N., de Groot H. Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. Life Sci. 1996;58:1591–1600. doi: 10.1016/0024-3205(96)00134-8. PubMed DOI

Rui Y.C. Advances in pharmacological studies of silymarin. Mem. Inst. Oswaldo Cruz. 1991;86(Suppl. 2):79–85. doi: 10.1590/S0074-02761991000600020. PubMed DOI

Litvinov R.I., Weisel J.W. Role of red blood cells in haemostasis and thrombosis. ISBT Sci. Ser. 2017;12:176–183. doi: 10.1111/voxs.12331. PubMed DOI PMC

Karlíčková J., Říha M., Filipský T., Macaková K., Hrdina R., Mladěnka P. Antiplatelet effects of flavonoids mediated by inhibition of arachidonic acid based pathway. Planta Med. 2016;82:76–83. doi: 10.1055/s-0035-1557902. PubMed DOI

Applová L., Karlíčková J., Říha M., Filipský T., Macáková K., Spilková J., Mladěnka P. The isoflavonoid tectorigenin has better antiplatelet potential than acetylsalicylic acid. Phytomedicine. 2017;35:11–17. doi: 10.1016/j.phymed.2017.08.023. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...