Antithrombotic and antiplatelet effects of plant-derived compounds: a great utility potential for primary, secondary, and tertiary care in the framework of 3P medicine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35990779
PubMed Central
PMC9376584
DOI
10.1007/s13167-022-00293-2
PII: 293
Knihovny.cz E-zdroje
- Klíčová slova
- Anticoagulation, Antiplatelet effects, COVID-19, Circulation, Comorbidities, Health policy, Individualized patient profile, Ischemic stroke, Molecular pathways, Natural drugs, Phytochemicals, Predictive preventive personalized medicine, Primary, secondary, tertiary care, Targets, Therapeutic modalities, Thrombosis, Treated cancers, Vascular disease,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Thromboembolism is the third leading vascular disease, with a high annual incidence of 1 to 2 cases per 1000 individuals within the general population. The broader term venous thromboembolism generally refers to deep vein thrombosis, pulmonary embolism, and/or a combination of both. Therefore, thromboembolism can affect both - the central and peripheral veins. Arterial thromboembolism causes systemic ischemia by disturbing blood flow and oxygen supply to organs, tissues, and cells causing, therefore, apoptosis and/or necrosis in the affected tissues. Currently applied antithrombotic drugs used, e.g. to protect affected individuals against ischemic stroke, demonstrate significant limitations. For example, platelet inhibitors possess only moderate efficacy. On the other hand, thrombolytics and anticoagulants significantly increase hemorrhage. Contextually, new approaches are extensively under consideration to develop next-generation antithrombotics with improved efficacy and more personalized and targeted application. To this end, phytochemicals show potent antithrombotic efficacy demonstrated in numerous in vitro, ex vivo, and in vivo models as well as in clinical evaluations conducted on healthy individuals and persons at high risk of thrombotic events, such as pregnant women (primary care), cancer, and COVID-19-affected patients (secondary and tertiary care). Here, we hypothesized that specific antithrombotic and antiplatelet effects of plant-derived compounds might be of great clinical utility in primary, secondary, and tertiary care. To increase the efficacy, precise patient stratification based on predictive diagnostics is essential for targeted protection and treatments tailored to the person in the framework of 3P medicine. Contextually, this paper aims at critical review toward the involvement of specific classes of phytochemicals in antiplatelet and anticoagulation adapted to clinical needs. The paper exemplifies selected plant-derived drugs, plant extracts, and whole plant foods/herbs demonstrating their specific antithrombotic, antiplatelet, and fibrinolytic activities relevant for primary, secondary, and tertiary care. One of the examples considered is antithrombotic and antiplatelet protection specifically relevant for COVID-19-affected patient groups.
Department of Natural Drugs Faculty of Pharmacy Masaryk University 61200 Brno Czech Republic
Zobrazit více v PubMed
Hiller E. Basic Principles of Hemostasis. In: Munker R, editor. Modern hematology: biology and clinical management. Totowa, NJ: Humana Press; 2007. p. 327–345. 10.1007/978-1-59745-149-9_19.
Setyawan J, Mu F, Yarur A, Zichlin ML, Yang H, Fernan C, et al. Risk of thromboembolic events and associated risk factors, including treatments, in patients with immune-mediated diseases. Clin Ther. 2021;43:1392–1407.e1. doi: 10.1016/j.clinthera.2021.06.008. PubMed DOI
Di Nisio M, van Es N, Büller HR. Deep vein thrombosis and pulmonary embolism. The Lancet. 2016;388:3060–3073. doi: 10.1016/S0140-6736(16)30514-1. PubMed DOI
Vaqar S, Graber M. StatPearls: thromboembolic event. Treasure Island (FL); 2022. PubMed
Lyman GH, Culakova E, Poniewierski MS, Kuderer NM. Morbidity, mortality and costs associated with venous thromboembolism in hospitalized patients with cancer. Thromb Res. 2018;164:S112–S118. doi: 10.1016/j.thromres.2018.01.028. PubMed DOI
Al-Hameed F, Al-Dorzi H, Qadhi A, Shaker A, Al-Gahtani F, Al-Jassir F, et al. Thromboprophylaxis and mortality among patients who developed venous thromboembolism in seven major hospitals in Saudi Arabia. Ann Thorac Med. 2017;12:282. doi: 10.4103/atm.ATM_101_17. PubMed DOI PMC
Amin A, Deitelzweig S, Bucior I, Lin J, Lingohr-Smith M, Menges B, Neuman WR. Frequency of hospital readmissions for venous thromboembolism and associated hospital costs and length of stay among acute medically ill patients in the US. J Med Econ. 2019;22:1119–1125. doi: 10.1080/13696998.2019.1618862. PubMed DOI
Monreal M, Agnelli G, Chuang LH, Cohen AT, Gumbs PD, Bauersachs R, et al. Deep vein thrombosis in Europe—health-related quality of life and mortality. Clin Appl Thromb Hemost. 2019;25:107602961988394. doi: 10.1177/1076029619883946. PubMed DOI PMC
Chan NC, Weitz JI. Antithrombotic agents. Circ Res. 2019;124:426–436. doi: 10.1161/CIRCRESAHA.118.313155. PubMed DOI
Chu DK, Hillis CM, Leong DP, Anand SS, Siegal DM. Benefits and risks of antithrombotic therapy in essential thrombocythemia. Ann Intern Med. 2017;167:170. doi: 10.7326/M17-0284. PubMed DOI
Gupta R, Majumdar M, Imran R, Yi J. A comprehensive review on antithrombotic therapy for peripheral artery disease. Semin Vasc Surg. 2022;35:124–131. doi: 10.1053/j.semvascsurg.2022.04.004. PubMed DOI
Bojić M, Maleš Ž, Antolić A, Babić I, Tomičić M. Antithrombotic activity of flavonoids and polyphenols rich plant species. Acta Pharm. 2019;69:483–495. doi: 10.2478/acph-2019-0050. PubMed DOI
Subramani B, Sathiyarajeswaran P. Current update on herbal sources of antithrombotic activity—a comprehensive review. Egypt J Intern Med. 2022;34:e56. doi: 10.1186/s43162-021-00090-9. PubMed DOI PMC
Jones VC, Birrell MA, Maher SA, Griffiths M, Grace M, O'Donnell VB, et al. Role of EP 2 and EP 4 receptors in airway microvascular leak induced by prostaglandin E 2. Br J Pharmacol. 2016;173:992–1004. doi: 10.1111/bph.13400. PubMed DOI PMC
Sinegre T, Teissandier D, Milenkovic D, Morand C, Lebreton A. Epicatechin influences primary hemostasis, coagulation and fibrinolysis. Food Funct. 2019;10:7291–7298. doi: 10.1039/C9FO00816K. PubMed DOI
Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA Journal. 2016;7:77. doi: 10.1186/s13167-016-0072-4. PubMed DOI PMC
Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, et al. All around suboptimal health — a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2021;12:403–433. doi: 10.1007/s13167-021-00253-2. PubMed DOI PMC
Koklesova L, Liskova A, Samec M, Qaradakhi T, Zulli A, Smejkal K, et al. Genoprotective activities of plant natural substances in cancer and chemopreventive strategies in the context of 3P medicine. EPMA Journal. 2020;11:261–287. doi: 10.1007/s13167-020-00210-5. PubMed DOI PMC
Kubatka P, Mazurakova A, Samec M, Koklesova L, Zhai K, AL-Ishaq R, et al. Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J. 2021;12:559–87. 10.1007/s13167-021-00257-y. PubMed PMC
Tamer F, Tullemans BME, Kuijpers MJE, Claushuis TAM, Heemskerk JWM. Nutrition phytochemicals affecting platelet signaling and responsiveness: implications for thrombosis and hemostasis. Thromb Haemost. 2022;122:879–894. doi: 10.1055/a-1683-5599. PubMed DOI
Fuentes E, Wehinger S, Trostchansky A. Regulation of key antiplatelet pathways by bioactive compounds with minimal bleeding risk. IJMS. 2021;22:12380. doi: 10.3390/ijms222212380. PubMed DOI PMC
Navarro-Núñez L, Lozano ML, Palomo M, Martínez C, Vicente V, Castillo J, et al. Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway. J Agric Food Chem. 2008;56:2970–2976. doi: 10.1021/jf0723209. PubMed DOI
Badimon L, Vilahur G, Rocca B, Patrono C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc Res. 2021;117:2001–2015. doi: 10.1093/cvr/cvab003. PubMed DOI
Irfan M, Kwon H-W, Lee D-H, Shin J-H, Yuk HJ, Kim D-S, et al. Ulmus parvifolia modulates platelet functions and inhibits thrombus formation by regulating integrin αIIbβ3 and cAMP signaling. Front Pharmacol. 2020;11:2007. doi: 10.3389/fphar.2020.00698. PubMed DOI PMC
Bijak M, Szelenberger R, Dziedzic A, Saluk-Bijak J. Inhibitory effect of flavonolignans on the P2Y12 pathway in blood platelets. Molecules. 2018;23:374. doi: 10.3390/molecules23020374. PubMed DOI PMC
Fuentes E, Palomo I. Relationship between platelet PPARs, cAMP levels, and P-selectin expression: antiplatelet activity of natural products. Evid Based Complementary Altern Med. 2013;2013:1–10. doi: 10.1155/2013/861786. PubMed DOI PMC
Adam F, Kauskot A, Nurden P, Sulpice E, Hoylaerts MF, Davis RJ, et al. Platelet JNK1 is involved in secretion and thrombus formation. Blood. 2010;115:4083–4092. doi: 10.1182/blood-2009-07-233932. PubMed DOI
Wang L, Liu G, Wu N, Dai B, Han S, Liu Q, et al. mTOR regulates GPVI-mediated platelet activation. J Transl Med. 2021;19:449. doi: 10.1186/s12967-021-02756-y. PubMed DOI PMC
Zhang S, Gui X, Ding Y, Tong H, Ju W, Li Y, et al. Matrine impairs platelet function and thrombosis and inhibits ROS production. Front Pharmacol. 2021;12:e14024. doi: 10.3389/fphar.2021.717725. PubMed DOI PMC
Cho J, Furie BC, Coughlin SR, Furie B. A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. J Clin Invest. 2008 doi: 10.1172/JCI34134. PubMed DOI PMC
Wu H, Su M, Jin H, Li X, Wang P, Chen J, Chen J. Rutin-loaded silver nanoparticles with antithrombotic function. Front Bioeng Biotechnol. 2020;8:160S. doi: 10.3389/fbioe.2020.598977. PubMed DOI PMC
Chiu J, Passam F, Butera D, Hogg P. Protein disulfide isomerase in thrombosis. Semin Thromb Hemost. 2015;41:765–773. doi: 10.1055/s-0035-1564047. PubMed DOI
Smolenski A. Novel roles of cAMP/cGMP-dependent signaling in platelets. J Thromb Haemost. 2012;10:167–176. doi: 10.1111/j.1538-7836.2011.04576.x. PubMed DOI
Freedman JE, Loscalzo J. Nitric oxide and its relationship to thrombotic disorders. J Thromb Haemost. 2003;1:1183–1188. doi: 10.1046/j.1538-7836.2003.00180.x. PubMed DOI
Ikemura M, Sasaki Y, Giddings JC, Yamamoto J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother Res. 2012;26:1272–1277. doi: 10.1002/ptr.3724. PubMed DOI
Gutmann C, Siow R, Gwozdz AM, Saha P, Smith A. Reactive oxygen species in venous thrombosis. IJMS. 2020;21:1918. doi: 10.3390/ijms21061918. PubMed DOI PMC
Wu Y-H, Chuang L-P, Yu C-L, Wang S-W, Chen H-Y, Chang Y-L. Anticoagulant effect of wogonin against tissue factor expression. Eur J Pharmacol. 2019;859:172517. doi: 10.1016/j.ejphar.2019.172517. PubMed DOI
Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res. 2017;196:44–68. doi: 10.1016/j.micres.2016.12.003. PubMed DOI
Hano C, Tungmunnithum D. Plant polyphenols, more than just simple natural antioxidants: oxidative stress, aging and age-related diseases. Medicines. 2020;7:26. doi: 10.3390/medicines7050026. PubMed DOI PMC
Truzzi F, Tibaldi C, Zhang Y, Dinelli G, D′Amen E. An overview on dietary polyphenols and their biopharmaceutical classification system (BCS). IJMS. 2021;22:5514. 10.3390/ijms22115514. PubMed PMC
Meccariello R, D’Angelo S. Impact of polyphenolic-food on longevity: an elixir of life. An overview. Antioxidants. 2021;10:507. doi: 10.3390/antiox10040507. PubMed DOI PMC
Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: chemical characteristics and biological activity. molecules. 2021;26:5377. 10.3390/molecules26175377. PubMed PMC
Liskova A, Koklesova L, Samec M, Smejkal K, Samuel SM, Varghese E, et al. Flavonoids in cancer metastasis. Cancers. 2020;12:1498. doi: 10.3390/cancers12061498. PubMed DOI PMC
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, et al. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25:5243. doi: 10.3390/molecules25225243. PubMed DOI PMC
Abotaleb M, Samuel S, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D. Flavonoids in cancer and apoptosis. Cancers. 2019;11:28. doi: 10.3390/cancers11010028. PubMed DOI PMC
Ahn-Jarvis J, Parihar A, Doseff A. Dietary flavonoids for immunoregulation and cancer: food design for targeting disease. Antioxidants. 2019;8:202. doi: 10.3390/antiox8070202. PubMed DOI PMC
Vazhappilly CG, Ansari SA, Al-Jaleeli R, Al-Azawi AM, Ramadan WS, Menon V, et al. Role of flavonoids in thrombotic, cardiovascular, and inflammatory diseases. Inflammopharmacol. 2019;27:863–869. doi: 10.1007/s10787-019-00612-6. PubMed DOI
Vallance TM, Ravishankar D, Albadawi DAI, Osborn HMI, Vaiyapuri S. Synthetic flavonoids as novel modulators of platelet function and thrombosis. IJMS. 2019;20:3106. doi: 10.3390/ijms20123106. PubMed DOI PMC
Oh TW, Do HJ, Jeon J-H, Kim K. Quercitrin inhibits platelet activation in arterial thrombosis. Phytomedicine. 2021;80:153363. doi: 10.1016/j.phymed.2020.153363. PubMed DOI
Stainer AR, Sasikumar P, Bye AP, Unsworth AJ, Holbrook LM, Tindall M, et al. The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects. TH Open. 2019;03:e244–e258. doi: 10.1055/s-0039-1694028. PubMed DOI PMC
Guglielmone HA, Agnese AM, Nuñez-Montoya SC, Cabrera JL, Cuadra GR. Antithrombotic “in vivo” effects of quercetin 3,7,3’,4’-tetrasulfate isolated from Flaveria bidentis in an experimental thrombosis model in mice. Thromb Res. 2020;195:190–192. doi: 10.1016/j.thromres.2020.07.040. PubMed DOI
Choi J-H, Park S-E, Kim S-J, Kim S. Kaempferol inhibits thrombosis and platelet activation. Biochimie. 2015;115:177–186. doi: 10.1016/j.biochi.2015.06.001. PubMed DOI
Choi J-H, Kim D-W, Park S-E, Lee H-J, Kim K-M, Kim K-J, et al. Anti-thrombotic effect of rutin isolated from Dendropanax morbifera Leveille. J Biosci Bioeng. 2015;120:181–186. doi: 10.1016/j.jbiosc.2014.12.012. PubMed DOI
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:598. doi: 10.1017/jns.2016.41. PubMed DOI PMC
Haggag YA, El-Ashmawy NE, Okasha KM. Is hesperidin essential for prophylaxis and treatment of COVID-19 infection? Med Hypotheses. 2020;144:109957. doi: 10.1016/j.mehy.2020.109957. PubMed DOI PMC
Guerrero JA, Navarro-Nuñez L, Lozano ML, Martínez C, Vicente V, Gibbins JM, Rivera J. Flavonoids inhibit the platelet TxA 2 signalling pathway and antagonize TxA 2 receptors (TP) in platelets and smooth muscle cells. Br J Clin Pharmacol. 2007;64:133–144. doi: 10.1111/j.1365-2125.2007.02881.x. PubMed DOI PMC
Guerrero JA, Lozano ML, Castillo J, Benavente-Garcia O, Vicente V, Rivera J. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J Thromb Haemost. 2005;3:369–376. doi: 10.1111/j.1538-7836.2004.01099.x. PubMed DOI
Ku S-K, Bae J-S. Antithrombotic activities of wogonin and wogonoside via inhibiting platelet aggregation. Fitoterapia. 2014;98:27–35. doi: 10.1016/j.fitote.2014.07.006. PubMed DOI
Kang W-S, Lim I-H, Yuk D-Y, Chung K-H, Park J-B, Yoo H-S, Yun Y-P. Antithrombotic activities of green tea catechins and (−)-epigallocatechin gallate. Thromb Res. 1999;96:229–237. doi: 10.1016/S0049-3848(99)00104-8. PubMed DOI
Montagnana M, Danese E, Angelino D, Mena P, Rosi A, Benati M, et al. Dark chocolate modulates platelet function with a mechanism mediated by flavan-3-ol metabolites. Medicine. 2018;97:e13432. doi: 10.1097/MD.0000000000013432. PubMed DOI PMC
Känel Rv, Meister R, Stutz M, Kummer P, Arpagaus A, Huber S, et al. Effects of dark chocolate consumption on the prothrombotic response to acute psychosocial stress in healthy men. Thromb Haemost. 2014;112:1151–8. 10.1160/th14-05-0450. PubMed
Rinde FB, Fronas SG, Ghanima W, Vik A, Hansen J-B, Brækkan SK. D-dimer as a stand-alone test to rule out deep vein thrombosis. Thromb Res. 2020;191:134–139. doi: 10.1016/j.thromres.2020.04.026. PubMed DOI
Zwicker JI, Schlechter BL, Stopa JD, Liebman HA, Aggarwal A, Puligandla M, et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight. 2019;4:637. doi: 10.1172/jci.insight.125851. PubMed DOI PMC
Kumar N, Goel N. Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnology Reports. 2019;24:e00370. doi: 10.1016/j.btre.2019.e00370. PubMed DOI PMC
Paluszczak J, Baer-Dubowska W. DNA Methylation as a target of cancer chemoprevention by dietary polyphenols. In: Polyphenols in Human Health and Disease: Elsevier; 2014. p. 1385–1392. 10.1016/B978-0-12-398456-2.00105-5.
Espíndola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, et al. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol. 2019;9:541. doi: 10.3389/fonc.2019.00541. PubMed DOI PMC
Genaro-Mattos TC, Maurício ÂQ, Rettori D, Alonso A, Hermes-Lima M. Antioxidant activity of caffeic acid against iron-induced free radical generation—a chemical approach. PLoS ONE. 2015;10:e0129963. 10.1371/journal.pone.0129963. PubMed PMC
Liang N, Kitts D. Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules. 2014;19:19180–19208. doi: 10.3390/molecules191119180. PubMed DOI PMC
Choi HG, Tran PT, Lee J-H, Min BS, Kim JA. Anti-inflammatory activity of caffeic acid derivatives isolated from the roots of Salvia miltiorrhiza Bunge. Arch Pharm Res. 2018;41:64–70. doi: 10.1007/s12272-017-0983-1. PubMed DOI
Khan FA, Maalik A, Murtaza G. Inhibitory mechanism against oxidative stress of caffeic acid. J Food Drug Anal. 2016;24:695–702. doi: 10.1016/j.jfda.2016.05.003. PubMed DOI PMC
Lu Y, Li Q, Liu Y-Y, Sun K, Fan J-Y, Wang C-S, Han J-Y. Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogen-activated protein kinases. Sci Rep. 2015;5:255. doi: 10.1038/srep13824. PubMed DOI PMC
Nam GS, Park H-J, Nam K-S. The antithrombotic effect of caffeic acid is associated with a cAMP-dependent pathway and clot retraction in human platelets. Thromb Res. 2020;195:87–94. doi: 10.1016/j.thromres.2020.07.024. PubMed DOI
Lee D-H, Kim H-H, Cho H-J, Bae J-S, Yu Y-B, Park H-J. Antiplatelet effects of caffeic acid due to Ca2+ mobilization inhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylation. JAT. 2014:23–37. 10.5551/jat.18994. PubMed
Daily JW, Yang M, Park S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: a systematic review and meta-analysis of randomized clinical trials. J Med Food. 2016;19:717–729. doi: 10.1089/jmf.2016.3705. PubMed DOI PMC
Kim D-C, Ku S-K, Bae J-S. Anticoagulant activities of curcumin and its derivative. BMB Rep. 2012;45:221–226. doi: 10.5483/BMBRep.2012.45.4.221. PubMed DOI
Wang K-H, Li S-F, Zhao Y, Li H-X, Zhang L-W. In vitro anticoagulant activity and active components of safflower injection. Molecules. 2018;23:170. doi: 10.3390/molecules23010170. PubMed DOI PMC
Choi J-H, Park J-K, Kim K-M, Lee H-J, Kim S. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. J Biochem Mol Toxicol. 2018;32:e22004. doi: 10.1002/jbt.22004. PubMed DOI
Hong Q, Ma Z-C, Huang H, Wang Y-G, Tan H-L, Xiao C-R, et al. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling. Eur J Pharmacol. 2016;777:1–8. doi: 10.1016/j.ejphar.2016.01.005. PubMed DOI
Merrill-Skoloff G, Dubois C, Atkinson B, Furie B, Furie B. Real time in vivo imaging of platelets during thrombus formation. In: Platelets: Elsevier; 2013. p. 635–649. 10.1016/B978-0-12-387837-3.00031-6.
Wang S, Gao Z, Chen X, Lian X, Zhu H, Zheng J, Sun L. The anticoagulant ability of ferulic acid and its applications for improving the blood compatibility of silk fibroin. Biomed Mater. 2008;3:44106. doi: 10.1088/1748-6041/3/4/044106. PubMed DOI
Kottke RH. Furan derivatives. In: John Wiley & Sons I, editor. Kirk-Othmer Encyclopedia of Chemical Technology: Wiley; 2000. p. 693. 10.1002/0471238961.0621180111152020.a01.
Graening T, Thrun F. Furans and their benzo derivatives: synthesis. In: Comprehensive Heterocyclic Chemistry III: Elsevier; 2008. p. 497–569. 10.1016/B978-008044992-0.00307-2.
Hansen S, Wood DK, Higgins JM. 5-(Hydroxymethyl)furfural restores low-oxygen rheology of sickle trait blood in vitro. Br J Haematol. 2020;188:985–993. doi: 10.1111/bjh.16251. PubMed DOI PMC
Cheng T-F, Zhao J, Wu Q-L, Zeng H-W, Sun Y-T, Zhang Y-H, et al. Compound Dan Zhi tablet attenuates experimental ischemic stroke via inhibiting platelet activation and thrombus formation. Phytomedicine. 2020;79:153330. doi: 10.1016/j.phymed.2020.153330. PubMed DOI
Sirerol JA, Rodríguez ML, Mena S, Asensi MA, Estrela JM, Ortega AL. Role of natural stilbenes in the prevention of cancer. Oxid Med Cell Longev. 2016;2016:1–15. doi: 10.1155/2016/3128951. PubMed DOI PMC
Vijayan N, Haridas M, Abdulhameed S. Stilbenes and their derivatives in traditional medicine. In: Sugathan S, Pradeep NS, Abdulhameed S, editors. Bioresources and bioprocess in biotechnology. Singapore: Springer; 2017. p. 407–418. 10.1007/978-981-10-4284-3_17.
Pecyna P, Wargula J, Murias M, Kucinska M. More than resveratrol: new insights into stilbene-based compounds. Biomolecules. 2020;10:1111. doi: 10.3390/biom10081111. PubMed DOI PMC
Huang T-Y, Yu C-P, Hsieh Y-W, Lin S-P, Hou Y-C. Resveratrol stereoselectively affected (±)warfarin pharmacokinetics and enhanced the anticoagulation effect. Sci Rep. 2020;10:1633. doi: 10.1038/s41598-020-72694-0. PubMed DOI PMC
Chiba T, Kimura Y, Suzuki S, Tatefuji T, Umegaki K. Trans-resveratrol enhances the anticoagulant activity of warfarin in a mouse model. J Atheroscler Thromb. 2016;23:1099–1110. doi: 10.5551/jat.31765. PubMed DOI PMC
Shahidi M, Parhizkary F, Sharifi R, Ghotaslou A, Barati M. Effects of resveratrol on coagulative, fibrinolytic, and inflammatory marker expression and secretion by endothelial cells (human umbilical vein endothelial cells) Blood Coag Fibrinol. 2020;31:207–212. doi: 10.1097/MBC.0000000000000900. PubMed DOI
Xu M, Xue W, Ma Z, Bai J, Wu S. Resveratrol reduces the incidence of portal vein system thrombosis after splenectomy in a rat fibrosis model. Oxid Med Cell Longev. 2016;2016:1–7. doi: 10.1155/2016/7453849. PubMed DOI PMC
Önder A. Anticancer activity of natural coumarins for biological targets. In: Bioactive Natural Products: Elsevier; 2020. p. 85–109. 10.1016/B978-0-12-817903-1.00003-6.
Qu SY, Jiang XL, Zhao XH, Pan DB, Wang XR, Chen YL, et al. Antithrombotic effect of daphnetin in the rat. Yao Xue Xue Bao. 1986;21:498–501. PubMed
Suttie JW. Warfarin and Vitamin K. Clinical Cardiology. 1990;13:VI-16-VI-18. 10.1002/clc.1990.13.s6.16. PubMed
Zimmermann R, Barth P, Masche R. Die antithrombotische Wirkung von Acetylsalicylsäure, Heparin und Phenprocoumon auf die Entstehung von experimentellen Gerinnungsthromben [Antithrombotic effect of acetylsalicylic acid, heparin and phenprocoumon on the formation of experimental coagulation thrombi] Verh Dtsch Ges Inn Med. 1974;80:1446–1448. PubMed
Hsia C-W, Lin K-C, Lee T-Y, Hsia C-H, Chou D-S, Jayakumar T, et al. Esculetin, a coumarin derivative, prevents thrombosis: inhibitory signaling on PLCγ2–PKC–AKT activation in human platelets. IJMS. 2019;20:2731. doi: 10.3390/ijms20112731. PubMed DOI PMC
Jain M, Surin WR, Misra A, Prakash P, Singh V, Khanna V, et al. Antithrombotic activity of a newly synthesized coumarin derivative 3-(5-Hydroxy-2,2-dimethyl-chroman-6-yl)-N-{2-[3-(5-hydroxy-2,2-dimethyl-chroman-6-yl)-propionylamino]-ethyl}-propionamide. Chem Biol Drug Des. 2013;81:499–508. doi: 10.1111/cbdd.12000. PubMed DOI
Bhambhani S, Kondhare KR, Giri AP. Diversity in chemical structures and biological properties of plant alkaloids. Molecules. 2021;26:3374. doi: 10.3390/molecules26113374. PubMed DOI PMC
Hesse M. Alkaloids: nature’s curse or blessing? Weinheim: Wiley-VCH; op; 2002.
Huang C-J, Huang W-C, Lin W-T, Shu L-H, Sheu J-R, Tran O-T, et al. Rutaecarpine, an alkaloid from evodia rutaecarpa, can prevent platelet activation in humans and reduce microvascular thrombosis in mice: crucial role of the PI3K/Akt/GSK3β signal axis through a cyclic nucleotides/VASP—independent mechanism. IJMS. 2021;22:11109. doi: 10.3390/ijms222011109. PubMed DOI PMC
Roach REJ, Siegerink B, Le Cessie S, Rosendaal FR, Cannegieter SC, Lijfering WM. Coffee consumption is associated with a reduced risk of venous thrombosis that is mediated through hemostatic factor levels. J Thromb Haemost. 2012;10:2519–2525. doi: 10.1111/jth.12034. PubMed DOI
Kam T-S. Alkaloids from Malaysian Flora. In: : Elsevier; 1999. p. 285–435. 10.1016/S0735-8210(99)80005-3.
Zhang Q, Chen C, Wang F-Q, Li C-H, Zhang Q-H, Hu Y-J, et al. Simultaneous screening and analysis of antiplatelet aggregation active alkaloids from Rhizoma Corydalis. Pharm Biol. 2016;54:3113–3120. doi: 10.1080/13880209.2016.1211714. PubMed DOI
Ashour AS, El Aziz MMA, Gomha Melad AS. A review on saponins from medicinal plants: chemistry, isolation, and determination. JNMR. 2019;7:282–8. 10.15406/jnmr.2019.07.00199.
Zhai K-f, Zheng J-r, Tang Y-m, Li F, Lv Y-n, Zhang Y-y, et al. The saponin D39 blocks dissociation of non-muscular myosin heavy chain IIA from TNF receptor 2, suppressing tissue factor expression and venous thrombosis. British Journal of Pharmacology. 2017;174:2818–31. 10.1111/bph.13885. PubMed PMC
Zhang R, Huang B, Du D, Guo X, Xin G, Xing Z, et al. Anti-thrombosis effect of diosgenyl saponins in vitro and in vivo. Steroids. 2013;78:1064–1070. doi: 10.1016/j.steroids.2013.07.003. PubMed DOI
Qi H, Huang Y, Yang Y, Dou G, Wan F, Zhang W, et al. Anti-platelet activity of panaxatriol saponins is mediated by suppression of intracellular calcium mobilization and ERK2/p38 activation. BMC Complement Altern Med. 2016;16:97. doi: 10.1186/s12906-016-1160-7. PubMed DOI PMC
Wang C, Gong X, Bo A, Zhang L, Zhang M, Zang E, et al. Iridoids: research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules. 2020;25:287. doi: 10.3390/molecules25020287. PubMed DOI PMC
Yamane H, Konno K, Sabelis M, Takabayashi J, Sassa T, Oikawa H. Chemical defence and toxins of plants. In: Comprehensive Natural Products II: Elsevier; 2010. p. 339–385. 10.1016/B978-008045382-8.00099-X.
Liu H, Chen Y-F, Li F, Zhang H-Y. Fructus Gardenia (Gardenia jasminoides J. Ellis) phytochemistry, pharmacology of cardiovascular, and safety with the perspective of new drugs development. J Asian Nat Prod Res. 2013;15:94–110. 10.1080/10286020.2012.723203. PubMed
Suzuki Y, Kondo K, Ikeda Y, Umemura K. Antithrombotic effect of geniposide and genipin in the mouse thrombosis model. Planta Med. 2001;67:807–810. doi: 10.1055/s-2001-18842. PubMed DOI
Wang P, Wang Q, Luo C, Tan C, Yuan X. Iridoid glycosides extracted from Zhizi (Fructus Gardeniae) decrease collagen-induced platelet aggregation and reduce carotid artery thrombosis in an in vivo rat model. J Tradit Chin Med. 2013;33:531–534. doi: 10.1016/S0254-6272(13)60160-0. PubMed DOI
Awouafack MD, Tane P, Kuete V, Eloff JN. Sesquiterpenes from the medicinal plants of Africa. In: Medicinal Plant Research in Africa: Elsevier; 2013. p. 33–103. 10.1016/B978-0-12-405927-6.00002-3.
Lee MH, Son YK, Han YN. Tissue factor inhibitory sesquiterpene glycoside from Eriobotrya japonica. Arch Pharm Res. 2004;27:168. doi: 10.1007/BF02980160. PubMed DOI
Fang H, Gao B, Zhao Y, Fang X, Bian M, Xia Q. Curdione inhibits thrombin-induced platelet aggregation via regulating the AMP-activated protein kinase-vinculin/talin-integrin αIIbβ3 sign pathway. Phytomedicine. 2019;61:152859. doi: 10.1016/j.phymed.2019.152859. PubMed DOI
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. Thrombosis and systemic and cardiac oxidative stress and DNA damage induced by pulmonary exposure to diesel exhaust particles and the effect of nootkatone thereon. Am J Physiol Heart Circ Physiol. 2018;314:H917–H927. doi: 10.1152/ajpheart.00313.2017. PubMed DOI
Ciancia M, Fernández PV, Leliaert F. Diversity of sulfated polysaccharides from cell walls of coenocytic green algae and their structural relationships in view of green algal evolution. Front Plant Sci. 2020;11:554585. doi: 10.3389/fpls.2020.554585. PubMed DOI PMC
Quinderé A-LG, Santos GRC, Oliveira S-NMCG, Glauser BF, Fontes BP, Queiroz INL, et al. Is the antithrombotic effect of sulfated galactans independent of serpin? J Thromb Haemost. 2014;12:43–53. 10.1111/jth.12448. PubMed
Farias WR, Nazareth RA, Mourão PA. Dual effects of sulfated D-galactans from the red algae Botryocladia occidentalis preventing thrombosis and inducing platelet aggregation. Thromb Haemost. 2001;86:1540–1546. doi: 10.1055/s-0037-1616760. PubMed DOI
Fernández PV, Quintana I, Cerezo AS, Caramelo JJ, Pol-Fachin L, Verli H, et al. Anticoagulant activity of a unique sulfated pyranosic (1→3)-β-l-Arabinan through direct interaction with thrombin. J Biol Chem. 2013;288:223–233. doi: 10.1074/jbc.M112.386441. PubMed DOI PMC
Noor-E-Tabassum, Das R, Lami MS, Chakraborty AJ, Mitra S, Tallei TE, et al. Ginkgo biloba: a treasure of functional phytochemicals with multimedicinal applications. Evid Based Complementary Alternat Med. 2022;2022:1–30. 10.1155/2022/8288818. PubMed PMC
Chen T-R, Wei L-H, Guan X-Q, Huang C, Liu Z-Y, Wang F-J, et al. Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorg Chem. 2019;92:103199. doi: 10.1016/j.bioorg.2019.103199. PubMed DOI
Ke J, Li M-T, Huo Y-J, Cheng Y-Q, Guo S-F, Wu Y, et al. The synergistic effect of Ginkgo biloba extract 50 and aspirin against platelet aggregation. DDDT. 2021;15:3543–3560. doi: 10.2147/DDDT.S318515. PubMed DOI PMC
Chiu Y-L, Tsai W-C, Wu C-H, Wu C-H, Cheng C-C, Lin W-S, et al. Ginkgo biloba induces thrombomodulin expression and tissue-type plasminogen activator secretion via the activation of Krüppel-like factor 2 within endothelial cells. Am J Chin Med. 2020;48:357–372. doi: 10.1142/S0192415X20500184. PubMed DOI
Lamponi S. Bioactive natural compounds with antiplatelet and anticoagulant activity and their potential role in the treatment of thrombotic disorders. Life. 2021;11:1095. doi: 10.3390/life11101095. PubMed DOI PMC
Pierre S, Crosbie L, Duttaroy AK. Inhibitory effect of aqueous extracts of some herbs on human platelet aggregation in vitro. Platelets. 2005;16:469–473. doi: 10.1080/09537100500129540. PubMed DOI
Bijak M, Saluk J, Tsirigotis-Maniecka M, Komorowska H, Wachowicz B, Zaczyńska E, et al. The influence of conjugates isolated from Matricaria chamomilla L. on platelets activity and cytotoxicity. Int J Biol Macromol. 2013;61:218–29. 10.1016/j.ijbiomac.2013.06.046. PubMed
Țigu AB, Moldovan CS, Toma V-A, Farcaș AD, Moț AC, Jurj A, et al. Phytochemical analysis and in vitro effects of Allium fistulosum L. and Allium sativum L. extracts on human normal and tumor cell lines: a comparative study. Molecules. 2021;26:574. 10.3390/molecules26030574. PubMed PMC
Bhandari J, Muhammad B, Thapa P, Shrestha BG. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii. BMC Complement Altern Med. 2017;17:125. doi: 10.1186/s12906-017-1622-6. PubMed DOI PMC
Deka B, Manna P, Borah JC, Talukdar NC. A review on phytochemical, pharmacological attributes and therapeutic uses of Allium hookeri. Phytomedicine Plus. 2022;2:100262. doi: 10.1016/j.phyplu.2022.100262. DOI
Bhandari SR, Yoon MK, Kwak J-H. Contents of phytochemical constituents and antioxidant activity of 19 garlic (Allium sativum L.) parental lines and cultivars. Hortic. Environ. Biotechnol. 2014;55:138–47. 10.1007/s13580-014-0155-x.
Sobenin IA, Myasoedova VA, Iltchuk MI, ZHANG D-W, Orekhov AN. Therapeutic effects of garlic in cardiovascular atherosclerotic disease. Chin J Nat Med. 2019;17:721–8. 10.1016/S1875-5364(19)30088-3. PubMed
Mikaili P, Maadirad S, Moloudizargari M, Aghajanshakeri S, Sarahroodi S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran J Basic Med Sci. 2013;16:1031–1048. PubMed PMC
Sadeghi M, Safaeian L, Ghazvini M, Ramezani M. Evaluation of fibrinolytic and antioxidant effects of Allium affine hydroalcoholic extract. Res Pharma Sci. 2017;12:299. doi: 10.4103/1735-5362.212047. PubMed DOI PMC
Hiyasat B, Sabha D, Grötzinger K, Kempfert J, Rauwald J-W, Mohr F-W, Dhein S. Antiplatelet activity of Allium ursinum and Allium sativum. Pharmacology. 2009;83:197–204. doi: 10.1159/000196811. PubMed DOI
Lorigooini Z, Ayatollahi SA, Amidi S, Kobarfard F. Evaluation of anti-platelet aggregation effect of some allium species. Iran J Pharm Res. 2015;14:1225–1231. PubMed PMC
Shafiekhani M, Faridi P, Kojuri J, Namazi S. Comparison of antiplatelet activity of garlic tablets with cardio-protective dose of aspirin in healthy volunteers: a randomized clinical trial. Avicenna J Phytomed. 2016;6:550–557. PubMed PMC
Alzoubi HK, Khabour FO, Alkofahi SA, Mhaidat MN, Abu-Siniyeh AA. Anticancer and antimutagenic activity of Silybum marianum L. and Eucalyptus camaldulensis Dehnh. against skin cancer induced by DMBA: in vitro and in vivo models. Pak J Pharm Sci. 2021;34:987–93. PubMed
Aghazadeh S, Amini R, Yazdanparast R, Ghaffari SH. Anti-apoptotic and anti-inflammatory effects of Silybum marianum in treatment of experimental steatohepatitis. Exp Toxicol Pathol. 2011;63:569–574. doi: 10.1016/j.etp.2010.04.009. PubMed DOI
Bijak M, Szelenberger R, Saluk J, Nowak P. Flavonolignans inhibit ADP induced blood platelets activation and aggregation in whole blood. Int J Biol Macromol. 2017;95:682–688. doi: 10.1016/j.ijbiomac.2016.12.002. PubMed DOI
Bijak M, Saluk-Bijak J. Flavonolignans inhibit the arachidonic acid pathway in blood platelets. BMC Complement Altern Med. 2017;17:561. doi: 10.1186/s12906-017-1897-7. PubMed DOI PMC
Pourová J, Applová L, Macáková K, Vopršalová M, Migkos T, Bentanachs R, et al. The effect of silymarin flavonolignans and their sulfated conjugates on platelet aggregation and blood vessels ex vivo. nutrients. 2019;11:2286. 10.3390/nu11102286. PubMed PMC
Goshua G, Pine AB, Meizlish ML, Chang C-H, Zhang H, Bahel P, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7:e575–e582. doi: 10.1016/S2352-3026(20)30216-7. PubMed DOI PMC
Kumar A, Narayan RK, Kumari C, Faiq MA, Kulandhasamy M, Kant K, Pareek V. SARS-CoV-2 cell entry receptor ACE2 mediated endothelial dysfunction leads to vascular thrombosis in COVID-19 patients. Med Hypotheses. 2020;145:110320. doi: 10.1016/j.mehy.2020.110320. PubMed DOI PMC
Singh AK, Khunti K. Assessment of risk, severity, mortality, glycemic control and antidiabetic agents in patients with diabetes and COVID-19: a narrative review. Diabetes Res Clin Pract. 2020;165:108266. doi: 10.1016/j.diabres.2020.108266. PubMed DOI PMC
Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet. 2020;395:1417–1418. doi: 10.1016/S0140-6736(20)30937-5. PubMed DOI PMC
Samuel SM, Varghese E, Büsselberg D. Therapeutic potential of metformin in COVID-19: reasoning for its protective role. Trends Microbiol. 2021;29:894–907. doi: 10.1016/j.tim.2021.03.004. PubMed DOI PMC
Varghese E, Samuel SM, Liskova A, Kubatka P, Büsselberg D. Diabetes and coronavirus (SARS-CoV-2): molecular mechanism of metformin intervention and the scientific basis of drug repurposing. PLoS Pathog. 2021;17:e1009634. doi: 10.1371/journal.ppat.1009634. PubMed DOI PMC
He L, Mäe MA, Muhl L, Sun Y, Pietilä R, Nahar K, et al. Pericyte-specific vascular expression of SARS-CoV-2 receptor ACE2 – implications for microvascular inflammation and hypercoagulopathy in COVID-19; 2020.
Ward A, Sarraju A, Lee D, Bhasin K, Gad S, Beetel R, et al. COVID-19 is associated with higher risk of venous thrombosis, but not arterial thrombosis, compared with influenza: insights from a large US cohort; 2021. PubMed PMC
Stefan A, Petkovic M, König A, Koch J, Hagemann F, Wuerstlein R, et al. Increased risk for thromboembolic events from combination of a gynecologic malignancy with severe acute respiratory syndrome coronavirus 2 infection: a case report. J Med Case Reports. 2022;16:1004. doi: 10.1186/s13256-022-03340-8. PubMed DOI PMC
Tufano A, Rendina D, Abate V, Casoria A, Marra A, Buonanno P, et al. Venous thromboembolism in COVID-19 compared to non-COVID-19 cohorts: a systematic review with meta-analysis. JCM. 2021;10:4925. doi: 10.3390/jcm10214925. PubMed DOI PMC
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–847. doi: 10.1111/jth.14768. PubMed DOI PMC
Ribes A, Vardon-Bounes F, Mémier V, Poette M, Au-Duong J, Garcia C, et al. Thromboembolic events and Covid-19. Adv Biol Regul. 2020;77:100735. doi: 10.1016/j.jbior.2020.100735. PubMed DOI PMC
Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020;8:782–792. doi: 10.1016/S2213-8587(20)30238-2. PubMed DOI PMC
Gavriilaki E, Anyfanti P, Gavriilaki M, Lazaridis A, Douma S, Gkaliagkousi E. Endothelial dysfunction in COVID-19: lessons learned from coronaviruses. Curr Hypertens Rep. 2020;22:1417. doi: 10.1007/s11906-020-01078-6. PubMed DOI PMC
Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Sig Transduct Target Ther. 2020;5:270. doi: 10.1038/s41392-020-00454-7. PubMed DOI PMC
Elbadawi A, Elgendy IY, Sahai A, Bhandari R, McCarthy M, Gomes M, et al. Incidence and outcomes of thrombotic events in symptomatic patients with COVID-19. ATVB. 2020;75:2950. doi: 10.1161/ATVBAHA.120.315304. PubMed DOI PMC
Huertas A, Montani D, Savale L, Pichon J, Tu L, Parent F, et al. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur Respir J. 2020;56:2001634. doi: 10.1183/13993003.01634-2020. PubMed DOI PMC
Triggle CR, Ding H, Marei I, Anderson TJ, Hollenberg MD. Why the endothelium? The endothelium as a target to reduce diabetes-associated vascular disease. Can J Physiol Pharmacol. 2020;98:415–430. doi: 10.1139/cjpp-2019-0677. PubMed DOI
Bonaventura A, Vecchié A, Dagna L, Martinod K, Dixon DL, van Tassell BW, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21:319–329. doi: 10.1038/s41577-021-00536-9. PubMed DOI PMC
Gu SX, Tyagi T, Jain K, Gu VW, Lee SH, Hwa JM, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol. 2021;18:194–209. doi: 10.1038/s41569-020-00469-1. PubMed DOI PMC
Nägele MP, Haubner B, Tanner FC, Ruschitzka F, Flammer AJ. Endothelial dysfunction in COVID-19: current findings and therapeutic implications. Atherosclerosis. 2020;314:58–62. doi: 10.1016/j.atherosclerosis.2020.10.014. PubMed DOI PMC
Kyriakoulis KG, Kollias A, Kyriakoulis IG, Kyprianou IA, Papachrysostomou C, Makaronis P, et al. Thromboprophylaxis in Patients with COVID-19: systematic review of national and international clinical guidance reports. CVP. 2022;20:96–110. doi: 10.2174/1570161119666210824160332. PubMed DOI
Helms J, Severac F, Merdji H, Schenck M, Clere-Jehl R, Baldacini M, et al. Higher anticoagulation targets and risk of thrombotic events in severe COVID-19 patients: bi-center cohort study. Ann Intensive Care. 2021;11:1559. doi: 10.1186/s13613-021-00809-5. PubMed DOI PMC
Kollias A, Kyriakoulis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol. 2020;189:846–847. doi: 10.1111/bjh.16727. PubMed DOI PMC
Beura SK, Panigrahi AR, Yadav P, Singh SK. Phytochemicals as potential therapeutics for SARS-CoV-2–induced cardiovascular complications: thrombosis and platelet perspective. Front Pharmacol. 2021;12:1443. doi: 10.3389/fphar.2021.658273. PubMed DOI PMC
Kraft P, de Meyer SF, Kleinschnitz C. Next-generation antithrombotics in ischemic stroke: preclinical perspective on ‘bleeding-free antithrombosis’. J Cereb Blood Flow Metab. 2012;32:1831–1840. doi: 10.1038/jcbfm.2012.108. PubMed DOI PMC
Payne AB, Adamski A, Abe K, Reyes NL, Richardson LC, Hooper WC, Schieve LA. Epidemiology of cerebral venous sinus thrombosis and cerebral venous sinus thrombosis with thrombocytopenia in the United States, 2018 and 2019. Res Pract Thromb Haemost. 2022;6:e12682. doi: 10.1002/rth2.12682. PubMed DOI PMC
Camargo EC, Singhal AB. Stroke in pregnancy: a multidisciplinary approach. Obstet Gynecol Clin North Am. 2021;48:75–96. doi: 10.1016/j.ogc.2020.11.004. PubMed DOI PMC
Roeder HJ, Lopez JR, Miller EC. Ischemic stroke and cerebral venous sinus thrombosis in pregnancy. Handb Clin Neurol. 2020;172:3–31. doi: 10.1016/B978-0-444-64240-0.00001-5. PubMed DOI PMC
Zambrano MD, Miller EC. Maternal stroke: an update. Curr Atheroscler Rep. 2019;21:33. doi: 10.1007/s11883-019-0798-2. PubMed DOI PMC
Mszar R, Gopal DJ, Chowdary R, Smith CL, Dolin CD, Irwin ML, et al. Racial/ethnic disparities in screening for and awareness of high cholesterol among pregnant women receiving prenatal care. J Am Heart Assoc. 2021;10:e017415. doi: 10.1161/JAHA.120.017415. PubMed DOI PMC
Pétursdóttir Maack H, Larsson A, Axelsson O, Olovsson M, Wikström A-K, Sundström PI. Pregnancy in metabolic healthy and unhealthy obese women. Acta Obstet Gynecol Scand. 2020;99:1640–1648. doi: 10.1111/aogs.13929. PubMed DOI
Evsevieva M, Sergeeva O, Mazurakova A, Koklesova L, Prokhorenko-Kolomoytseva I, Shchetinin E, et al. Pre-pregnancy check-up of maternal vascular status and associated phenotype is crucial for the health of mother and offspring. EPMA J. 2022;13. 10.1007/s13167-022-00294-1. PubMed PMC
Lee NT, Ong LK, Gyawali P, Nassir CMNCM, Mustapha M, Nandurkar HH, Sashindranath M. Role of purinergic signalling in endothelial dysfunction and thrombo-inflammation in ischaemic stroke and cerebral small vessel disease. Biomolecules 2021. 10.3390/biom11070994. PubMed PMC
Mukai M, Oka T. Mechanism and management of cancer-associated thrombosis. J Cardiol. 2018;72:89–93. doi: 10.1016/j.jjcc.2018.02.011. PubMed DOI
Hsu P-Y, Mammadova A, Benkirane-Jessel N, Désaubry L, Nebigil CG. Updates on anticancer therapy-mediated vascular toxicity and new horizons in therapeutic strategies. Front Cardiovasc Med. 2021;8:694711. doi: 10.3389/fcvm.2021.694711. PubMed DOI PMC
Mazurakova A, Koklesova L, Samec M, Kudela E, Kajo K, Skuciova V, et al. Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA J. 2022;13:315–334. doi: 10.1007/s13167-022-00277-2. PubMed DOI PMC
Koklesova L, Mazurakova A, Samec M, Biringer K, Samuel SM, Büsselberg D, et al. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J. 2021;12:477–505. doi: 10.1007/s13167-021-00263-0. PubMed DOI PMC
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J. 2021;12:265–305. doi: 10.1007/s13167-021-00248-z. PubMed DOI PMC
Nannoni S, de Groot R, Bell S, Markus HS. Stroke in COVID-19: a systematic review and meta-analysis. Int J Stroke. 2021;16:137–149. doi: 10.1177/1747493020972922. PubMed DOI PMC
Berkman SA, Song SS. Ischemic stroke in the young. Clin Appl Thromb Hemost. 2021;27:10760296211002274. doi: 10.1177/10760296211002274. PubMed DOI PMC
Liskova A, Koklesova L, Samec M, Abdellatif B, Zhai K, Siddiqui M, et al. Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks. EPMA J. 2021;12:325–347. doi: 10.1007/s13167-021-00249-y. PubMed DOI PMC