Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
34367380
PubMed Central
PMC8329620
DOI
10.1007/s13167-021-00249-y
PII: 249
Knihovny.cz E-resources
- Keywords
- ARDS, Anti-inflammation, Antibacterial, Antiviral, COVID-19, Cancer, Chronic diseases, Coumarins, Cytokine storm, Disease management, Flavonoids, Health economy, Health policy, Immunity, Inflammation, Lung damage, Phenolic acids, Phenolic compounds, Phytochemicals, Predictive preventive personalized medicine (3PM/PPPM), Risk assessment, Signaling pathways, Stilbenoids, Therapy efficacy,
- Publication type
- Journal Article MeSH
- Review MeSH
The risks related to the COVID-19 are multi-faceted including but by far not restricted to the following: direct health risks by poorly understood effects of COVID-19 infection, overloaded capacities of healthcare units, restricted and slowed down care of patients with non-communicable disorders such as cancer, neurologic and cardiovascular pathologies, among others; social risks-restricted and broken social contacts, isolation, professional disruption, explosion of aggression in the society, violence in the familial environment; mental risks-loneliness, helplessness, defenceless, depressions; and economic risks-slowed down industrial productivity, broken delivery chains, unemployment, bankrupted SMEs, inflation, decreased capacity of the state to perform socially important programs and to support socio-economically weak subgroups in the population. Directly or indirectly, the above listed risks will get reflected in a healthcare occupation and workload which is a tremendous long-term challenge for the healthcare capacity and robustness. The article does not pretend to provide solutions for all kind of health risks. However, it aims to present the scientific evidence of great clinical utility for primary, secondary, and tertiary care to protect affected individuals in a cost-effective manner. To this end, due to pronounced antimicrobial, antioxidant, anti-inflammatory, and antiviral properties, naturally occurring plant substances are capable to protect affected individuals against COVID-19-associated life-threatening complications such as lung damage. Furthermore, they can be highly effective, if being applied to secondary and tertiary care of noncommunicable diseases under pandemic condition. Thus, the stratification of patients evaluating specific health conditions such as sleep quality, periodontitis, smoking, chronic inflammation and diseases, metabolic disorders and obesity, vascular dysfunction, and cancers would enable effective managemenet of COVID-19-associated complications in primary, secondary, and tertiary care in the context of predictive, preventive, and personalized medicine (3PM).
Museum of Literature in Moravia Klášter 1 66461 Rajhrad Czech Republic
Weill Cornell Medicine Qatar Education City Qatar Foundation Doha 24144 Qatar
See more in PubMed
Skladany L, Koller T, Adamcova Selcanova S, Vnencakova J, Jancekova D, Durajova V, et al. Challenging management of severe chronic disorders in acute pandemic situation: chronic liver disease under COVID-19 pandemic as the proof-of-principle model to orchestrate the measures in 3PM context. EPMA J. 2021;12(1):1–14. 10.1007/s13167-021-00231-8. PubMed PMC
Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R, Vittadini G, Desiderio DM. EPMA position paper in cancer: current overview and future perspectives. EPMA J. 2015;6:9. doi: 10.1186/s13167-015-0030-6. PubMed DOI PMC
Theoharides TC, Conti P. COVID-19 and multisystem inflammatory syndrome, or is it mast cell activation syndrome? J Biol Regul Homeost Agents. 2020;34:1633–1636. doi: 10.23812/20-EDIT3. PubMed DOI
Sampson V, Kamona N, Sampson A. Could there be a link between oral hygiene and the severity of SARS-CoV-2 infections? Br Dent J. 2020;228:971–975. doi: 10.1038/s41415-020-1747-8. PubMed DOI PMC
Xiang Z, Koo H, Chen Q, Zhou X, Liu Y, Simon-Soro A. Potential implications of SARS-CoV-2 oral infection in the host microbiota. J Oral Microbiol. 2020;13:1853451. doi: 10.1080/20002297.2020.1853451. PubMed DOI PMC
Botros N, Iyer P, Ojcius DM. Is there an association between oral health and severity of COVID-19 complications? Biom J. 2020;43:325–327. doi: 10.1016/j.bj.2020.05.016. PubMed DOI PMC
Baindara P, Chakraborty R, Holliday ZM, Mandal SM, Schrum AG. Oral probiotics in coronavirus disease 2019: connecting the gut–lung axis to viral pathogenesis, inflammation, secondary infection and clinical trials. New Microbes New Infect. 2021;40:100837. doi: 10.1016/j.nmni.2021.100837. PubMed DOI PMC
Tachalov V, Orechova L, Kudriavtseva T, Loboda E, Pachkoria M, Berezkina I, Golubnitschaja O. Making a complex dental care tailored to the person: population health in focus of predictive, preventive and personalised (3P) medical approach. EPMA J 2021 ;12(2):1–12. 10.1007/s13167-021-00240-7. PubMed PMC
Richter K, Kellner S, Hillemacher T, Golubnitschaja O. Sleep quality and COVID-19 outcomes: the evidence-based lessons in the framework of predictive, preventive and personalised (3P) medicine. EPMA J. 2021;12(2):1–21. 10.1007/s13167-021-00245-2. PubMed PMC
Marouf N, Cai W, Said KN, Daas H, Diab H, Chinta VR, Hssain AA, Nicolau B, Sanz M, Tamimi F. Association between periodontitis and severity of COVID-19 infection: a case-control study. J Clin Periodontol. 2021;48:483–491. doi: 10.1111/jcpe.13435. PubMed DOI PMC
Haddad C, Bou Malhab S, Sacre H, Salameh P. Smoking and COVID-19: a scoping review. Tob Use Insights. 2021;14:1–9. 10.1177/1179173X21994612. PubMed PMC
Lee SC, Son KJ, Han CH, Park SC, Jung JY. Impact of COPD on COVID-19 prognosis: a nationwide population-based study in South Korea. Sci Rep. 2021;11:3735. 10.1038/s41598-021-83226-9. PubMed PMC
Izquierdo JL, Almonacid C, González Y, Del Rio-Bermudez C, Ancochea J, Cárdenas R, et al. The impact of COVID-19 on patients with asthma. Eur Respir J. 2021;57:2003142. 10.1183/13993003.03142-2020. PubMed PMC
Chiappetta S, Sharma AM, Bottino V, Stier C. COVID-19 and the role of chronic inflammation in patients with obesity. Int J Obes. 2020;44:1790–1792. doi: 10.1038/s41366-020-0597-4. PubMed DOI PMC
Ratchford SM, Stickford JL, Province VM, Stute N, Augenreich MA, Koontz LK, Bobo LK, Stickford ASL. Vascular alterations among young adults with SARS-CoV-2. Am J Physiol Heart Circ Physiol. 2021;320:H404–H410. doi: 10.1152/ajpheart.00897.2020. PubMed DOI PMC
Rodilla E, López-Carmona MD, Cortes X, Cobos-Palacios L, Canales S, Sáez MC, Campos Escudero S, Rubio-Rivas M, Díez Manglano J, Freire Castro SJ, et al. Impact of arterial stiffness on all-cause mortality in patients hospitalized with COVID-19 in Spain. Hypertension. 2021;77:856–867. doi: 10.1161/HYPERTENSIONAHA.120.16563. PubMed DOI PMC
Montopoli M, Zumerle S, Vettor R, Rugge M, Zorzi M, Catapano CV, Carbone GM, Cavalli A, Pagano F, Ragazzi E, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532) Ann Oncol. 2020;31:1040–1045. doi: 10.1016/j.annonc.2020.04.479. PubMed DOI PMC
Muchtaridi M, Fauzi M, Khairul Ikram NK, Mohd Gazzali A, Wahab HA. Natural flavonoids as potential angiotensinconverting enzyme 2 inhibitors for anti-SARS-CoV-2. Molecules. 2020;25(17):3980. 10.3390/molecules25173980. PubMed PMC
Liskova A, Samec M, Koklesova L, Samuel SM, Zhai K, Al-Ishaq RK, Abotaleb M, Nosal V, Kajo K, Ashrafizadeh M, et al. Flavonoids against the SARS-CoV-2 Induced Inflammatory Storm. Biomed Pharmacother. 2021;138:111430. doi: 10.1016/j.biopha.2021.111430. PubMed DOI PMC
Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D. Flavonoids in cancer and apoptosis. Cancers (Basel) 2018;11(1):28. 10.3390/cancers11010028. PubMed PMC
Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol. 2017;162:2539–2551. doi: 10.1007/s00705-017-3417-y. PubMed DOI PMC
Wang L, Song J, Liu A, Xiao B, Li S, Wen Z, Lu Y, Du G. Research progress of the antiviral bioactivities of natural flavonoids. Nat Prod Bioprospect. 2020;10:271–283. doi: 10.1007/s13659-020-00257-x. PubMed DOI PMC
Wu Y-H, Zhang B-Y, Qiu L-P, Guan R-F, Ye Z-H, Yu X-P. Structure properties and mechanisms of action of naturally originated phenolic acids and their derivatives against human viral infections. Curr Med Chem. 2017;24:4279–4302. doi: 10.2174/0929867324666170815102917. PubMed DOI
Ikeda K, Nishide M, Tsujimoto K, Nagashima S, Kuwahara T, Mitani T, Koyama AH. Antiviral and virucidal activities of umesu phenolics on influenza viruses. Jpn J Infect Dis. 2020;73:8–13. doi: 10.7883/yoken.JJID.2018.522. PubMed DOI
Loaiza-Cano V, Monsalve-Escudero LM, Filho C, da SMB, Martinez-Gutierrez M, De Sousa DP. Antiviral role of phenolic compounds against dengue virus: a review. Biomolecules. 2020:11(1):11. 10.3390/biom11010011. PubMed PMC
Solnier J, Fladerer J-P. Flavonoids: a complementary approach to conventional therapy of COVID-19? Phytochem Rev. 2020:1–23. 10.1007/s11101-020-09720-6. PubMed PMC
Haridas M, Sasidhar V, Nath P, Abhithaj J, Sabu A, Rammanohar P. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: in silico evidence for cues from Ayurveda. Futur J Pharm Sci. 2021;7:13. doi: 10.1186/s43094-020-00171-6. PubMed DOI PMC
Patel A, Rajendran M, Shah A, Patel H, Pakala SB, Karyala P. Virtual screening of curcumin and its analogs against the spike surface glycoprotein of SARS-CoV-2 and SARS-CoV. J Biomol Struct Dyn. 2021:1–9. 10.1080/07391102.2020.1868338. PubMed PMC
Kumar B, Zaidi S, Haque S, Dasgupta N, Hussain A, Unni S, et al. In silico studies reveal antiviral effects of traditional indian spices on COVID-19. Curr Pharm Des. 2020. 10.2174/1381612826666201223095548. PubMed
Shih W-L, Fang C-T, Chen P-J. Anti-viral treatment and cancer control. Recent Results Cancer Res. 2014;193:269–290. doi: 10.1007/978-3-642-38965-8_14. PubMed DOI
Šudomová M, Hassan STS. Nutraceutical curcumin with promising protection against herpesvirus infections and their associated inflammation: mechanisms and pathways. Microorganisms. 2021;9. 10.3390/microorganisms9020292. PubMed PMC
Šudomová M, Berchová-Bímová K, Marzocco S, Liskova A, Kubatka P, Hassan STS. Berberine in human oncogenic herpesvirus infections and their linked cancers. Viruses. 2021;13:1014. doi: 10.3390/v13061014. PubMed DOI PMC
Wu Y-H. Naturally derived anti-hepatitis B virus agents and their mechanism of action. World J Gastroenterol. 2016;22:188–204. doi: 10.3748/wjg.v22.i1.188. PubMed DOI PMC
Wu C-C, Fang C-Y, Cheng Y-J, Hsu H-Y, Chou S-P, Huang S-Y, et al. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J Biomed Sci. 2017;24. 10.1186/s12929-016-0313-9. PubMed PMC
Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21. 10.3390/molecules21101374. PubMed PMC
Saibabu V, Fatima Z, Khan LA, Hameed S. Therapeutic potential of dietary phenolic acids. Adv Pharmacol Sci. 2015;2015. 10.1155/2015/823539. PubMed PMC
Su X, Zhang J, Wang H, Xu J, He J, Liu L, et al. Phenolic acid profiling, antioxidant, and anti-inflammatory activities, and MiRNA regulation in the polyphenols of 16 blueberry samples from China. Molecules. 2017;22. 10.3390/molecules22020312. PubMed PMC
Cheng J, Yi X, Chen H, Wang Y, He X. Anti-inflammatory phenylpropanoids and phenolics from Ficus hirta Vahl. Fitoterapia. 2017;121:229–234. doi: 10.1016/j.fitote.2017.07.018. PubMed DOI
Ginwala R, Bhavsar R, Chigbu DGI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants (Basel). 2019:8. 10.3390/antiox8020035. PubMed PMC
Yixi X, Weijie Y, Fen T, Xiaoqing C, Licheng R. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2014;22:132–149. doi: 10.2174/0929867321666140916113443. PubMed DOI
Mandal SM, Dias RO, Franco OL. Phenolic compounds in antimicrobial therapy. J Med Food. 2017;20:1031–1038. doi: 10.1089/jmf.2017.0017. PubMed DOI
Gálvez Ranilla L, Christopher A, Sarkar D, Shetty K, Chirinos R, Campos D. Phenolic composition and evaluation of the antimicrobial activity of free and bound phenolic fractions from a Peruvian purple corn (Zea mays L.) Accession. J Food Sci. 2017;82:2968–2976. doi: 10.1111/1750-3841.13973. PubMed DOI
Zairi A, Nouir S. M Hamdi, N.; Bennani, M.; Bergaoui, I.; Mtiraoui, A.; Chaouachi, M.; Trabelsi, M. Antioxidant, antimicrobial and the phenolic content of infusion, decoction and methanolic extracts of thyme and rosmarinus species. Curr Pharm Biotechnol. 2018;19:590–599. doi: 10.2174/1389201019666180817141512. PubMed DOI
Li Y, Zhang T, Chen GY. Flavonoids and colorectal cancer prevention. Antioxidants (Basel). 2018:7. 10.3390/antiox7120187. PubMed PMC
Espín JC, González-Sarrías A, Tomás-Barberán FA. The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol. 2017;139:82–93. doi: 10.1016/j.bcp.2017.04.033. PubMed DOI
Kumar Singh A, Cabral C, Kumar R, Ganguly R, Kumar Rana H, Gupta A, et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients. 2019;11. 10.3390/nu11092216. PubMed PMC
Fernández-Rojas B, Gutiérrez-Venegas G. Flavonoids exert multiple periodontic benefits including anti-inflammatory, periodontal ligament-supporting, and alveolar bone-preserving effects. Life Sci. 2018;209:435–454. doi: 10.1016/j.lfs.2018.08.029. PubMed DOI
Dimbath E, Maddipati V, Stahl J, Sewell K, Domire Z, George S, Vahdati A. Implications of microscale lung damage for COVID-19 pulmonary ventilation dynamics: a narrative review. Life Sci. 2021;274:119341. doi: 10.1016/j.lfs.2021.119341. PubMed DOI PMC
Frizzelli A, Tuttolomondo D, Aiello M, Majori M, Bertorelli G, Chetta A. What happens to people’s lungs when they get coronavirus disease 2019? Acta Biomed. 2020;91:146–149. doi: 10.23750/abm.v91i2.9574. PubMed DOI PMC
El-Shahat RA, El-Demerdash RS, El Sherbini ES, Saad EA. HCl-induced acute lung injury: a study of the curative role of mesenchymal stem/stromal cells and cobalt protoporphyrin. J Genet Eng Biotechnol. 2021;19:41. doi: 10.1186/s43141-021-00139-w. PubMed DOI PMC
Cuadrado A, Pajares M, Benito C, Jiménez-Villegas J, Escoll M, Fernández-Ginés R, Garcia Yagüe AJ, Lastra D, Manda G, Rojo AI, et al. Can activation of NRF2 be a strategy against COVID-19? Trends Pharmacol Sci. 2020;41:598–610. doi: 10.1016/j.tips.2020.07.003. PubMed DOI PMC
Batah SS, Fabro AT. Pulmonary pathology of ARDS in COVID-19: a pathological review for clinicians. Respir Med. 2021;176:106239. doi: 10.1016/j.rmed.2020.106239. PubMed DOI PMC
Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, Rech R, Colombo R, Antinori S, Corbellino M, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from Northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20:1135–1140. doi: 10.1016/S1473-3099(20)30434-5. PubMed DOI PMC
Mauad T, Duarte-Neto AN, da Silva LFF, de Oliveira EP, de Brito JM, do Nascimento ECT, de Almeida Monteiro RA, Ferreira JC, de Carvalho CRR, do Nascimento Saldiva PH, et al. Tracking the time course of pathological patterns of lung injury in severe COVID-19. Respir Res. 2021;22:32. doi: 10.1186/s12931-021-01628-9. PubMed DOI PMC
Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55. 10.1183/13993003.00607-2020. PubMed PMC
Doglioni C, Ravaglia C, Chilosi M, Rossi G, Dubini A, Pedica F, et al. Covid-19 interstitial pneumonia: histological and immunohistochemical features on cryobiopsies. RES. 2021:1–11. 10.1159/000514822. PubMed PMC
McGonagle D, Bridgewood C, Ramanan AV, Meaney JFM, Watad A. COVID-19 vasculitis and novel vasculitis mimics. The Lancet Rheumatology. 2021;3:e224–e233. doi: 10.1016/S2665-9913(20)30420-3. PubMed DOI PMC
Chen W, Pan JY. Anatomical and pathological observation and analysis of SARS and COVID-19: microthrombosis is the main cause of death. Biol Proced Online. 2021;23. 10.1186/s12575-021-00142-y. PubMed PMC
Gustine JN, Jones D. Immunopathology of Hyperinflammation in COVID-19. Am J Pathol. 2021;191:4–17. doi: 10.1016/j.ajpath.2020.08.009. PubMed DOI PMC
Roshanravan N, Seif F, Ostadrahimi A, Pouraghaei M, Ghaffari S. Targeting cytokine storm to manage patients with COVID-19: a mini-review. Arch Med Res. 2020. 10.1016/j.arcmed.2020.06.012. PubMed PMC
Kandasamy M. NF-ΚB signalling as a pharmacological target in COVID-19: potential roles for IKKβ inhibitors. Naunyn Schmiedeberg's Arch Pharmacol. 2021:1–7. 10.1007/s00210-020-02035-5. PubMed PMC
Hariharan A, Hakeem AR, Radhakrishnan S, Reddy MS, Rela M. The role and therapeutic potential of NF-kappa-b pathway in severe COVID-19 patients. Inflammopharmacology. 2020:1–10. 10.1007/s10787-020-00773-9. PubMed PMC
Leng L, Cao R, Ma J, Mou D, Zhu Y, Li W, Lv L, Gao D, Zhang S, Gong F, et al. Pathological features of COVID-19-associated lung injury: a preliminary proteomics report based on clinical samples. Signal Transduction and Targeted Therapy. 2020;5:1–9. doi: 10.1038/s41392-020-00355-9. PubMed DOI PMC
Ueland T, Holter J, Holten A, Müller K, Lind A, Bekken G, Dudman S, Aukrust P, Dyrhol-Riise A, Heggelund L. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure. J Inf Secur. 2020;81:e41–e43. doi: 10.1016/j.jinf.2020.06.061. PubMed DOI PMC
Satarker S, Tom AA, Shaji RA, Alosious A, Luvis M, Nampoothiri M. JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgrad Med. 2020:1–19. 10.1080/00325481.2020.1855921. PubMed PMC
Solimani F, Meier K, Ghoreschi K. Janus kinase signaling as risk factor and therapeutic target for severe SARS-CoV-2 infection. Eur J Immunol. 2021. 10.1002/eji.202149173. PubMed PMC
Grimes JM, Grimes KV. P38 MAPK inhibition: a promising therapeutic approach for COVID-19. J Mol Cell Cardiol. 2020;144:63–65. doi: 10.1016/j.yjmcc.2020.05.007. PubMed DOI PMC
Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, Benoliel J-J, Becker C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20:515–516. doi: 10.1038/s41577-020-0407-1. PubMed DOI PMC
Hoxha M. What about COVID-19 and arachidonic acid pathway? Eur J Clin Pharmacol. 2020:1–4. 10.1007/s00228-020-02941-w. PubMed PMC
Spadaro S, Fogagnolo A, Campo G, Zucchetti O, Verri M, Ottaviani I, Tunstall T, Grasso S, Scaramuzzo V, Murgolo F, et al. Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients. Crit Care. 2021;25:74. doi: 10.1186/s13054-021-03499-4. PubMed DOI PMC
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62–75. doi: 10.1016/j.cytogfr.2020.06.001. PubMed DOI PMC
Pieretti JC, Rubilar O, Weller RB, Tortella GR, Seabra AB. Nitric oxide (NO) and nanoparticles – potential small tools for the war against COVID-19 and other human coronavirus infections. Virus Res. 2021;291:198202. doi: 10.1016/j.virusres.2020.198202. PubMed DOI PMC
Guimarães L, Rossini CVT, Lameu C. Implications of SARS-Cov-2 infection on ENOS and INOS activity: consequences for the respiratory and vascular systems. Nitric Oxide. 2021. 10.1016/j.niox.2021.04.003. PubMed PMC
Majnooni MB, Fakhri S, Shokoohinia Y, Kiyani N, Stage K, Mohammadi P, Gravandi MM, Farzaei MH, Echeverría J. Phytochemicals: potential therapeutic interventions against coronavirus-associated lung injury. Front Pharmacol. 2020;11:588467. doi: 10.3389/fphar.2020.588467. PubMed DOI PMC
Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW. An aberrant STAT pathway is central to COVID-19. Cell Death Differ. 2020;27:3209–3225. doi: 10.1038/s41418-020-00633-7. PubMed DOI PMC
Huang Q, Wu X, Zheng X, Luo S, Xu S, Weng J. Targeting inflammation and cytokine storm in COVID-19. Pharmacol Res. 2020;159:105051. doi: 10.1016/j.phrs.2020.105051. PubMed DOI PMC
Mendonca P, Soliman KFA. Flavonoids activation of the transcription factor Nrf2 as a hypothesis approach for the prevention and modulation of SARS-CoV-2 infection severity. Antioxidants. 2020;9. 10.3390/antiox9080659. PubMed PMC
Desterke C, Turhan AG, Bennaceur-Griscelli A, Griscelli F. PPARγ cistrome repression during activation of lung monocyte-macrophages in severe COVID-19. iScience. 2020;23:101611. doi: 10.1016/j.isci.2020.101611. PubMed DOI PMC
Shahidi F, Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: a review. Int J Mol Sci. 2018;19. 10.3390/ijms19061573. PubMed PMC
Kumar N, Goel N. Phenolic Acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst). 2019:24. 10.1016/j.btre.2019.e00370. PubMed PMC
Abu Khalaf R, Alhusban AA, Al-Shalabi E, Al-Sheikh I, Sabbah DA. Chapter 10 - Isolation and structure elucidation of bioactive polyphenols. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed. Bioactive Natural Products; Elsevier. 2019;63:267–337. doi: 10.1016/B978-0-12-817901-7.00010-1. DOI
Vuolo MM, Lima VS, Maróstica Junior MR. Chapter 2 - Phenolic compounds: structure, classification, and antioxidant power. In: Campos MRS, editor. In Bioactive Compounds. Woodhead Publishing; 2019. pp. 33–50.
Abotaleb M, Liskova A, Kubatka P, Büsselberg D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules. 2020;10. 10.3390/biom10020221. PubMed PMC
Liskova A, Koklesova L, Samec M, Smejkal K, Samuel SM, Varghese E, et al. Flavonoids in cancer metastasis. Cancers (Basel). 2020:12. 10.3390/cancers12061498. PubMed PMC
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Autophagy as a molecular target of quercetin underlying its protective effects in human diseases. Arch Physiol Biochem. 2019:1–9. 10.1080/13813455.2019.1671458. PubMed
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res. 2020;34:911–923. doi: 10.1002/ptr.6577. PubMed DOI
Reinisalo M, Kårlund A, Koskela A, Kaarniranta K, Karjalainen RO. Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxidative Med Cell Longev. 2015;2015. 10.1155/2015/340520. PubMed PMC
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Phenolic compounds cannabidiol, curcumin and quercetin cause mitochondrial dysfunction and suppress acute lymphoblastic leukemia cells. Int J Mol Sci. 2020;22. 10.3390/ijms22010204. PubMed PMC
Hewlings SJ, Kalman DS. Curcumin: a review of its’ effects on human health. Foods. 2017;6. 10.3390/foods6100092. PubMed PMC
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231. PubMed DOI PMC
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Afshar EG, Farkhondeh T, Samarghandian S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: a review. Phytother Res. 2020, 1745;34:–1760. 10.1002/ptr.6642. PubMed
Kapinova A, Stefanicka P, Kubatka P, Zubor P, Uramova S, Kello M, Mojzis J, Blahutova D, Qaradakhi T, Zulli A, et al. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed Pharmacother. 2017;96:1465–1477. doi: 10.1016/j.biopha.2017.11.134. PubMed DOI
Liskova A, Kubatka P, Samec M, Zubor P, Mlyncek M, Bielik T, et al. Dietary phytochemicals targeting cancer stem cells. Molecules. 2019;24. 10.3390/molecules24050899. PubMed PMC
Niu W-H, Wu F, Cao W-Y, Wu Z-G, Chao Y-C, Liang C. Network pharmacology for the identification of phytochemicals in traditional Chinese medicine for COVID-19 that may regulate interleukin-6. Biosci Rep. 2021;41. 10.1042/BSR20202583. PubMed PMC
Placha D, Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13. 10.3390/pharmaceutics13010064. PubMed PMC
Saber-Moghaddam N, Salari S, Hejazi S, Amini M, Taherzadeh Z, Eslami S, et al. Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: an open label nonrandomized clinical trial. Phytother Res. 2021. 10.1002/ptr.7004. PubMed
Aiello P, Consalvi S, Poce G, Raguzzini A, Toti E, Palmery M, et al. Dietary flavonoids: nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol. 2019. 10.1016/j.semcancer.2019.08.029. PubMed
Peñalva R, Morales J, González-Navarro CJ, Larrañeta E, Quincoces G, Peñuelas I, et al. Increased oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. Int J Mol Sci. 2018;19. 10.3390/ijms19092816. PubMed PMC
Chimento A, De Amicis F, Sirianni R, Sinicropi MS, Puoci F, Casaburi I, et al. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int J Mol Sci. 2019;20. 10.3390/ijms20061381. PubMed PMC
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10. 10.3390/nu10111618. PubMed PMC
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Ghasemipour Afshar E. Tangeretin: a mechanistic review of its pharmacological and therapeutic effects. J Basic Clin Physiol Pharmacol. 2020;31. 10.1515/jbcpp-2019-0191. PubMed
Liskova A, Koklesova L, Samec M, Varghese E, Abotaleb M, Samuel SM, et al. Implications of flavonoids as potential modulators of cancer neovascularity. J Cancer Res Clin Oncol. 2020. 10.1007/s00432-020-03383-8. PubMed PMC
Kapinova A, Kubatka P, Liskova A, Baranenko D, Kruzliak P, Matta M, Büsselberg D, Malicherova B, Zulli A, Kwon TK, et al. Controlling metastatic cancer: the role of phytochemicals in cell signaling. J Cancer Res Clin Oncol. 2019;145:1087–1109. doi: 10.1007/s00432-019-02892-5. PubMed DOI PMC
He Y-Q, Zhou C-C, Yu L-Y, Wang L, Deng J, Tao Y-L, Zhang F, Chen W-S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res. 2021;163:105224. doi: 10.1016/j.phrs.2020.105224. PubMed DOI PMC
BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M. Anti-inflammatory potential of ellagic acid, gallic acid and Punicalagin A&B isolated from Punica granatum. BMC Complement Altern Med. 2017;17. 10.1186/s12906-017-1555-0. PubMed PMC
Chu Q, Yu X, Jia R, Wang Y, Zhang Y, Zhang S, et al. Flavonoids from Apios americana Medikus leaves protect RAW264.7 cells against Inflammation via Inhibition of MAPKs, Akt-MTOR pathways, and Nfr2 activation. Oxidative Med Cell Longev. 2019:1563024. 10.1155/2019/1563024. PubMed PMC
Huang L, Hou L, Xue H, Wang C. Gallic acid inhibits inflammatory response of RAW264.7 macrophages by blocking the activation of TLR4/NF-κB induced by LPS. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2016;32:1610–1614. PubMed
Singla E, Dharwal V, Naura AS. Gallic acid protects against the COPD-linked lung inflammation and emphysema in mice. Inflamm Res. 2020;69:423–434. doi: 10.1007/s00011-020-01333-1. PubMed DOI
Chen L, Jin Y, Chen H, Sun C, Fu W, Zheng L, Lu M, Chen P, Chen G, Zhang Y, et al. Discovery of caffeic acid phenethyl ester derivatives as novel myeloid differentiation protein 2 inhibitors for treatment of acute lung injury. Eur J Med Chem. 2018;143:361–375. doi: 10.1016/j.ejmech.2017.11.066. PubMed DOI
Zhang X, Li C, Li J, Xu Y, Guan S, Zhao M. Protective effects of protocatechuic acid on acute lung injury induced by lipopolysaccharide in mice via P38MAPK and NF-ΚB signal pathways. Int Immunopharmacol. 2015;26:229–236. doi: 10.1016/j.intimp.2015.03.031. PubMed DOI
Umar HI, Siraj B, Ajayi A, Jimoh TO, Chukwuemeka PO. Molecular docking studies of some selected gallic acid derivatives against five non-structural proteins of novel coronavirus. J Genet Eng Biotechnol. 2021;19. 10.1186/s43141-021-00120-7. PubMed PMC
Alrasheid AA, Babiker MY, Awad TA. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In Silico Pharmacol. 2021;9:10. doi: 10.1007/s40203-020-00073-8. PubMed DOI PMC
Ngwa W, Kumar R, Thompson D, Lyerly W, Moore R, Reid T-E, et al. Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules. 2020;25. 10.3390/molecules25112707. PubMed PMC
Adem Ş, Eyupoglu V, Sarfraz I, Rasul A, Zahoor AF, Ali M, Abdalla M, Ibrahim IM, Elfiky AA. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine. 2021;85:153310. doi: 10.1016/j.phymed.2020.153310. PubMed DOI PMC
Tito A, Colantuono A, Pirone L, Pedone E, Intartaglia D, Giamundo G, et al. A Pomegranate peel extract as inhibitor of SARS-CoV-2 spike binding to human ACE2 (in vitro): a promising source of novel antiviral drugs. bioRxiv. 2020:406116. 10.1101/2020.12.01.406116. PubMed PMC
Fei J, Liang B, Jiang C, Ni H, Wang L. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed Pharmacother. 2019;109:1586–1592. doi: 10.1016/j.biopha.2018.09.161. PubMed DOI
Guo H, Li M, Xu L-J. Apigetrin treatment attenuates LPS-induced acute otitis media though suppressing inflammation and oxidative stress. Biomed Pharmacother. 2019;109:1978–1987. doi: 10.1016/j.biopha.2018.07.022. PubMed DOI
Salaverry LS, Parrado AC, Mangone FM, Dobrecky CB, Flor SA, Lombardo T, Sotelo AD, Saccodossi N, Rugna AZ, Blanco G, et al. In vitro anti-inflammatory properties of Smilax campestris aqueous extract in human macrophages, and characterization of its flavonoid profile. J Ethnopharmacol. 2020;247:112282. doi: 10.1016/j.jep.2019.112282. PubMed DOI
Jung UJ, Cho Y-Y, Choi M-S. Apigenin ameliorates dyslipidemia, hepatic steatosis and insulin resistance by modulating metabolic and transcriptional profiles in the liver of high-fat diet-induced obese mice. Nutrients. 2016;8. 10.3390/nu8050305. PubMed PMC
Sassi A, Mokdad Bzéouich I, Mustapha N, Maatouk M, Ghedira K, Chekir-Ghedira L. Immunomodulatory potential of hesperetin and chrysin through the cellular and humoral response. Eur J Pharmacol. 2017;812:91–96. doi: 10.1016/j.ejphar.2017.07.017. PubMed DOI
Zaragozá C, Villaescusa L, Monserrat J, Zaragozá F, Álvarez-Mon M. Potential Therapeutic anti-inflammatory and immunomodulatory effects of dihydroflavones, flavones, and flavonols. Molecules. 2020;25:1017. doi: 10.3390/molecules25041017. PubMed DOI PMC
Lai C-C, Huang P-H, Yang A-H, Chiang S-C, Tang C-Y, Tseng K-W, Huang C-H. Baicalein attenuates lung injury induced by myocardial ischemia and reperfusion. Am J Chin Med. 2017;45:791–811. doi: 10.1142/S0192415X17500422. PubMed DOI
Rungsung S, Singh TU, Rabha DJ, Kumar T, Cholenahalli Lingaraju M, Parida S, Paul A, Sahoo M, Kumar D. Luteolin attenuates acute lung injury in experimental mouse model of sepsis. Cytokine. 2018;110:333–343. doi: 10.1016/j.cyto.2018.03.042. PubMed DOI
Liu B, Yu H, Baiyun R, Lu J, Li S, Bing Q, Zhang X, Zhang Z. Protective effects of dietary luteolin against mercuric chloride-induced lung injury in mice: involvement of AKT/Nrf2 and NF-ΚB pathways. Food Chem Toxicol. 2018;113:296–302. doi: 10.1016/j.fct.2018.02.003. PubMed DOI
Ding Z, Sun G, Zhu Z. Hesperidin attenuates influenza A virus (H1N1) induced lung injury in rats through its anti-inflammatory effect. Antivir Ther. 2018;23:611–615. doi: 10.3851/IMP3235. PubMed DOI
Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: new light on the healthy function of citrus fruits. Antioxidants (Basel). 2020:9. 10.3390/antiox9080742. PubMed PMC
Al-Rikabi R, Al-Shmgani H, Dewir YH, El-Hendawy S. In vivo and in vitro evaluation of the protective effects of hesperidin in lipopolysaccharide-induced inflammation and cytotoxicity of cell. Molecules (Basel, Switzerland). 2020;25. 10.3390/molecules25030478. PubMed PMC
Song J, Zhang L, Xu Y, Yang D, Zhang L, Yang S, Zhang W, Wang J, Tian S, Yang S, et al. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem Pharmacol. 2021;183:114302. doi: 10.1016/j.bcp.2020.114302. PubMed DOI PMC
Zandi K, Musall K, Oo A, Cao D, Liang B, Hassandarvish P, et al. Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms. 2021;9. 10.3390/microorganisms9050893. PubMed PMC
Su H, Yao S, Zhao W, Li M, Liu J, Shang W, Xie H, Ke C, Hu H, Gao M, et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin. 2020;41:1167–1177. doi: 10.1038/s41401-020-0483-6. PubMed DOI PMC
Bai C, Li T, Sun Q, Xin Q, Xu T, Yu J, Wang Y, Wei L. Protective effect of baicalin against severe burn‑induced remote acute lung injury in rats. Mol Med Rep. 2018;17:2689–2694. doi: 10.3892/mmr.2017.8120. PubMed DOI
Liu T, Dai W, Li C, Liu F, Chen Y, Weng D, Chen J. Baicalin alleviates silica-induced lung inflammation and fibrosis by inhibiting the Th17 response in C57BL/6 mice. J Nat Prod. 2015;78:3049–3057. doi: 10.1021/acs.jnatprod.5b00868. PubMed DOI
Peng L-Y, Yuan M, Song K, Yu J-L, Li J-H, Huang J-N, Yi P-F, Fu B-D, Shen H-Q. Baicalin alleviated APEC-induced acute lung injury in chicken by inhibiting NF-ΚB pathway activation. Int Immunopharmacol. 2019;72:467–472. doi: 10.1016/j.intimp.2019.04.046. PubMed DOI
Meng X, Hu L, Li W. Baicalin ameliorates lipopolysaccharide-induced acute lung injury in mice by suppressing oxidative stress and inflammation via the activation of the Nrf2-mediated HO-1 signaling pathway. Naunyn Schmiedeberg's Arch Pharmacol. 2019;392:1421–1433. doi: 10.1007/s00210-019-01680-9. PubMed DOI
Li L, Bao H, Wu J, Duan X, Liu B, Sun J, Gong W, Lv Y, Zhang H, Luo Q, et al. Baicalin is anti-inflammatory in cigarette smoke-induced inflammatory models in vivo and in vitro: a possible role for HDAC2 activity. Int Immunopharmacol. 2012;13:15–22. doi: 10.1016/j.intimp.2012.03.001. PubMed DOI
Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol. 2021;114:11–24. doi: 10.1016/j.tifs.2021.05.023. PubMed DOI PMC
Eräsalo H, Hämäläinen M, Leppänen T, Mäki-Opas I, Laavola M, Haavikko R, Yli-Kauhaluoma J, Moilanen E. Natural stilbenoids have anti-inflammatory properties in vivo and down-regulate the production of inflammatory mediators NO, IL6, and MCP1 possibly in a PI3K/Akt-dependent manner. J Nat Prod. 2018;81:1131–1142. doi: 10.1021/acs.jnatprod.7b00384. PubMed DOI
Akinwumi BC, Bordun K-AM, Anderson HD. Biological activities of stilbenoids. Int J Mol Sci. 2018;19. 10.3390/ijms19030792. PubMed PMC
Dvorakova M, Landa P. Anti-inflammatory activity of natural stilbenoids: a review. Pharmacol Res. 2017;124:126–145. doi: 10.1016/j.phrs.2017.08.002. PubMed DOI
Chhabra G, Singh CK, Amiri D, Akula N, Ahmad N. Recent advancements on immunomodulatory mechanisms of resveratrol in tumor microenvironment. Molecules. 2021;26. 10.3390/molecules26051343. PubMed PMC
Mattio LM, Catinella G, Pinto A, Dallavalle S. Natural and nature-inspired stilbenoids as antiviral agents. Eur J Med Chem. 2020;202:112541. doi: 10.1016/j.ejmech.2020.112541. PubMed DOI PMC
Yang M, Wei J, Huang T, Lei L, Shen C, Lai J, et al. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in cultured vero cells. Phytother Res. 2020. 10.1002/ptr.6916. PubMed PMC
Li T, Zhang J, Feng J, Li Q, Wu L, Ye Q, Sun J, Lin Y, Zhang M, Huang R, et al. Resveratrol reduces acute lung injury in a LPS‑induced sepsis mouse model via activation of Sirt1. Mol Med Rep. 2013;7:1889–1895. doi: 10.3892/mmr.2013.1444. PubMed DOI
Ma L, Chen X, Wang R, Duan H, Wang L, Liang L, Nan Y, Liu X, Liu A, Jin F. 3,5,4’-Tri-O-acetylresveratrol decreases seawater inhalation-induced acute lung injury by interfering with the NF-ΚB and i-NOS pathways. Int J Mol Med. 2016;37:165–172. doi: 10.3892/ijmm.2015.2403. PubMed DOI
Alghetaa H, Mohammed A, Zhou J, Singh N, Nagarkatti M, Nagarkatti P. Resveratrol-mediated attenuation of superantigen-driven acute respiratory distress syndrome is mediated by microbiota in the lungs and gut. Pharmacol Res. 2021;167:105548. doi: 10.1016/j.phrs.2021.105548. PubMed DOI PMC
Alazmi M, Motwalli O. Molecular basis for drug repurposing to study the interface of the s protein in SARS-CoV-2 and human ACE2 through docking, characterization, and molecular dynamics for natural drug candidates. J Mol Model. 2020;26:338. doi: 10.1007/s00894-020-04599-8. PubMed DOI PMC
ter Ellen BM, Kumar ND, Bouma EM, Troost B, van de Pol DPI, van der Ende-Metselaar HH, et al. Resveratrol and pterostilbene potently inhibit SARS-CoV-2 replication in vitro. bioRxiv. 2021:285940. 10.1101/2020.09.24.285940.
Gangadevi S, Badavath VN, Thakur A, Yin N, De Jonghe S, Acevedo O, Jochmans D, Leyssen P, Wang K, Neyts J, et al. Kobophenol A inhibits binding of host ACE2 receptor with spike RBD domain of SARS-CoV-2, a lead compound for blocking COVID-19. J Phys Chem Lett. 1793;2021:12. doi: 10.1021/acs.jpclett.0c03119. PubMed DOI
Cho H, Park J-H, Ahn E-K, Oh JS. Kobophenol A isolated from roots of Caragana sinica (Buc’hoz) Rehder exhibits anti-inflammatory activity by regulating NF-ΚB nuclear translocation in J774A.1 cells. Toxicol Rep. 2018;5:647–653. doi: 10.1016/j.toxrep.2018.05.011. PubMed DOI PMC
Pereira TM, Franco DP, Vitorio F, Kummerle AE. Coumarin compounds in medicinal chemistry: some important examples from the last years. Curr Top Med Chem. 2018;18:124–148. doi: 10.2174/1568026618666180329115523. PubMed DOI
Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. Molecules. 2018;23. 10.3390/molecules23020250. PubMed PMC
Nayeli M-B, Maribel H-R, Enrique J-F, Rafael B-P, Margarita A-F, Macrina F-M, Ivan M-D, Manasés G-C. Anti-inflammatory activity of coumarins isolated from Tagetes lucida Cav. Nat Prod Res. 2020;34:3244–3248. doi: 10.1080/14786419.2018.1553172. PubMed DOI
Motai T, Daikonya A, Kitanaka S. Sesquiterpene coumarins from Ferula fukanensis and their pro-inflammatory cytokine gene expression inhibitory effects. Chem Pharm Bull (Tokyo) 2013;61:618–623. doi: 10.1248/cpb.c12-01028. PubMed DOI
Maurya AK, Mishra N. In silico validation of coumarin derivatives as potential inhibitors against main protease, NSP10/NSP16-methyltransferase, phosphatase and endoribonuclease of SARS CoV-2. J Biomol Struct Dyn. 2020:1–16. 10.1080/07391102.2020.1808075. PubMed PMC
Nejabat M, Ghodsi R, Hadizadeh F. Coumarins and quinolones as effective multiple targeted agents versus Covid-19: an in silico study. Med Chem. 2021. 10.2174/1573406417666210208223924. PubMed
Rivero-Segura NA, Gomez-Verjan JC. In silico screening of natural products isolated from Mexican herbal medicines against COVID-19. Biomolecules. 2021;11. 10.3390/biom11020216. PubMed PMC
Chidambaram S, El-Sheikh MA, Alfarhan AH, Radhakrishnan S, Akbar I. Synthesis of novel coumarin analogues: investigation of molecular docking interaction of SARS-CoV-2 Proteins with natural and synthetic coumarin analogues and their pharmacokinetics studies. Saudi J Biol Sci. 2021;28:1100–1108. doi: 10.1016/j.sjbs.2020.11.038. PubMed DOI PMC
Huang Y-F, Bai C, He F, Xie Y, Zhou H. Review on the potential action mechanisms of chinese medicines in treating coronavirus disease 2019 (COVID-19) Pharmacol Res. 2020;158:104939. doi: 10.1016/j.phrs.2020.104939. PubMed DOI PMC
Balkrishna A, Verma S, Sharma P, Tomer M, Srivastava J, Varshney A. Comprehensive and rapid quality evaluation method for the Ayurvedic medicine Divya-Swasari-Vati using two analytical techniques: UPLC/QToF MS and HPLC-DAD. Pharmaceuticals (Basel). 2021:14. 10.3390/ph14040297. PubMed PMC
Cui Y, Xin H, Tao Y, Mei L, Wang Z. Arenaria kansuensis attenuates pulmonary fibrosis in mice via the activation of Nrf2 pathway and the inhibition of NF-KB/TGF-Beta1/Smad2/3 pathway. Phytother Res. 2021;35:974–986. doi: 10.1002/ptr.6857. PubMed DOI
XIA L, SHI Y, Su J, Friedemann T, Tao Z, Lu Y, et al. Shufeng Jiedu, a promising herbal therapy for moderate COVID-19: antiviral and anti-inflammatory properties, pathways of bioactive compounds, and a clinical real-world pragmatic study. Phytomedicine. 2020. 10.1016/j.phymed.2020.153390. PubMed PMC
Zhi N, Mo Q, Yang S, Qin Y, Chen H, Wu Z, Lan C, Zhang J, Li Y. Treatment of pulmonary fibrosis in one convalescent patient with corona virus disease 2019 by oral traditional Chinese medicine decoction: a case report. J Integr Med. 2021;19:185–190. doi: 10.1016/j.joim.2020.11.005. PubMed DOI PMC
Balkrishna A, Verma S, Solleti SK, Khandrika L, Varshney A. Calcio-herbal medicine Divya-Swasari-Vati ameliorates SARS-CoV-2 spike protein-induced pathological features and inflammation in humanized zebrafish model by moderating IL-6 and TNF-α cytokines. J Inflamm Res. 2020;13:1219–1243. doi: 10.2147/JIR.S286199. PubMed DOI PMC
Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, Aggarwal BB. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174:1325–1348. doi: 10.1111/bph.13621. PubMed DOI PMC
Phumsuay R, Muangnoi C, Dasuni Wasana PW, Hasriadi H, Vajragupta O, Rojsitthisak P, Towiwat P. Molecular insight into the anti-inflammatory effects of the curcumin ester prodrug curcumin diglutaric acid in vitro and in vivo. IJMS. 2020;21:5700. doi: 10.3390/ijms21165700. PubMed DOI PMC
Shin SA, Joo BJ, Lee JS, Ryu G, Han M, Kim WY, et al. Phytochemicals as anti-inflammatory agents in animal models of prevalent inflammatory diseases. Molecules. 2020;25. 10.3390/molecules25245932. PubMed PMC
Chai Y-S, Chen Y-Q, Lin S-H, Xie K, Wang C-J, Yang Y-Z, Xu F. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother. 2020;125:109946. doi: 10.1016/j.biopha.2020.109946. PubMed DOI
Shaikh SB, Prabhu A, Bhandary YP. Curcumin Suppresses epithelial growth factor receptor (EGFR) and proliferative protein (Ki 67) in acute lung injury and lung fibrosis in vitro and in vivo. Endocr Metab Immune Disord Drug Targets. 2020;20:558–563. doi: 10.2174/1871530319666190823160230. PubMed DOI
Zhang B, Swamy S, Balijepalli S, Panicker S, Mooliyil J, Sherman MA, Parkkinen J, Raghavendran K, Suresh MV. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J. 2019;33:13294–13309. doi: 10.1096/fj.201901047RR. PubMed DOI PMC
Roshdy WH, Rashed HA, Kandeil A, Mostafa A, Moatasim Y, Kutkat O, Abo Shama NM, Gomaa MR, El-Sayed IH, El Guindy NM, et al. EGYVIR: an immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2. PLoS One. 2020;15:e0241739. doi: 10.1371/journal.pone.0241739. PubMed DOI PMC
Noor H, Ikram A, Rathinavel T, Kumarasamy S, Nasir Iqbal M, Bashir Z. Immunomodulatory and anti-cytokine therapeutic potential of curcumin and its derivatives for treating COVID-19 - a computational modeling. J Biomol Struct Dyn. 2021:1–16. 10.1080/07391102.2021.1873190. PubMed
Tahmasebi S, El-Esawi MA, Mahmoud ZH, Timoshin A, Valizadeh H, Roshangar L, Varshoch M, Vaez A, Aslani S, Navashenaq JG, et al. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J Cell Physiol. 2021;236:5325–5338. doi: 10.1002/jcp.30233. PubMed DOI
Miryan M, Bagherniya M, Sahebkar A, Soleimani D, Rouhani MH, Iraj B, Askari G. Effects of curcumin-piperine co-supplementation on clinical signs, duration, severity, and inflammatory factors in patients with COVID-19: a structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21:1027. doi: 10.1186/s13063-020-04924-9. PubMed DOI PMC
Bousquet J, Cristol J-P, Czarlewski W, Anto JM, Martineau A, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Fiocchi A, et al. Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies. Clin Transl Allergy. 2020;10:58. doi: 10.1186/s13601-020-00362-7. PubMed DOI PMC
Ahluwalia P, Ahluwalia M, Vaibhav K, Mondal A, Sahajpal N, Islam S, Fulzele S, Kota V, Dhandapani K, Baban B, Rojiani AM, Kolhe R. Infections of the lung: a predictive, preventive and personalized perspective through the lens of evolution, the emergence of SARS-CoV-2 and its pathogenesis. EPMA J. 2020;11(4):1–21. doi: 10.1007/s13167-020-00230-1. PubMed DOI PMC
Radanliev P, De Roure D, Walton R, Van Kleek M, Montalvo RM, Santos O, Maddox L, Cannady S. COVID-19 what have we learned? The rise of social machines and connected devices in pandemic management following the concepts of predictive, preventive and personalized medicine. EPMA J. 2020;11(3):311–332. doi: 10.1007/s13167-020-00218-x. PubMed DOI PMC
Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, Golubnitschaja O. Cell-free nucleic acid patterns in disease prediction and monitoring-hype or hope? EPMA J. 2020;11(4):1–25. doi: 10.1007/s13167-020-00226-x. PubMed DOI PMC
Godos J, Ferri R, Castellano S, Angelino D, Mena P, Del Rio D, et al. Specific dietary (poly)phenols are associated with sleep quality in a cohort of Italian adults. Nutrients. 2020;12. 10.3390/nu12051226. PubMed PMC
de Silva E, S. ME, Ono BHVS, Souza JC. Sleep and immunity in times of COVID-19. Rev Assoc Med Bras (1992) 2020;66(Suppl 2):143–147. doi: 10.1590/1806-9282.66.S2.143. PubMed DOI
Zick SM, Wright BD, Sen A, Arnedt JT. Preliminary examination of the efficacy and safety of a standardized chamomile extract for chronic primary insomnia: a randomized placebo-controlled pilot study. BMC Complement Altern Med. 2011;11:78. doi: 10.1186/1472-6882-11-78. PubMed DOI PMC
Afrasiabian F, Mirabzadeh Ardakani M, Rahmani K, Azadi NA, Alemohammad ZB, Bidaki R, Karimi M, Emtiazy M, Hashempur MH. Aloysia citriodora Palau (lemon verbena) for insomnia patients: a randomized, double-blind, placebo-controlled clinical trial of efficacy and safety. Phytother Res. 2019;33:350–359. doi: 10.1002/ptr.6228. PubMed DOI
Sparrow TV, Dodington DW, Yumol JL, Fritz PC, Ward WE. Higher intakes of flavonoids are associated with lower salivary IL‐1β and maintenance of periodontal health 3–4 years after scaling and root planing. J Clin Periodontol. 2020;47:461–469. doi: 10.1111/jcpe.13263. PubMed DOI PMC
Balci Yuce H, Toker H, Yildirim A, Tekin MB, Gevrek F, Altunbas N. The effect of luteolin in prevention of periodontal disease in Wistar rats. J Periodontol. 2019;90:1481–1489. doi: 10.1002/JPER.18-0584. PubMed DOI
Gutiérrez-Venegas G, Kawasaki-Cárdenas P, Arroyo-Cruz SR, Maldonado-Frías S. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. Eur J Pharmacol. 2006;541:95–105. doi: 10.1016/j.ejphar.2006.03.069. PubMed DOI
Gülsen A, Yigitbas BA, Uslu B, Drömann D, Kilinc O. The effect of smoking on COVID-19 symptom severity: systematic review and meta-analysis. Pulm Med. 2020;2020:7590207. doi: 10.1155/2020/7590207. PubMed DOI PMC
Patanavanich R, Glantz SA. Smoking Is associated with COVID-19 progression: a meta-analysis. Nicotine Tob Res. 2020;22:1653–1656. doi: 10.1093/ntr/ntaa082. PubMed DOI PMC
Kokkou E, Siasos G, Georgiopoulos G, Oikonomou E, Verveniotis A, Vavuranakis M, Zisimos K, Plastiras A, Kollia M-E, Stefanadis C, et al. The impact of dietary flavonoid supplementation on smoking-induced inflammatory process and fibrinolytic impairment. Atherosclerosis. 2016;251:266–272. doi: 10.1016/j.atherosclerosis.2016.06.054. PubMed DOI
Culpitt SV, Rogers DF, Fenwick PS, Shah P, Matos CD, Russell REK, Barnes PJ, Donnelly LE. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax. 2003;58:942–946. doi: 10.1136/thorax.58.11.942. PubMed DOI PMC
Shaheen SO, Sterne JA, Thompson RL, Songhurst CE, Margetts BM, Burney PG. Dietary antioxidants and asthma in adults: population-based case-control study. Am J Respir Crit Care Med. 2001;164:1823–1828. doi: 10.1164/ajrccm.164.10.2104061. PubMed DOI
Tanaka T, Takahashi R. Flavonoids and asthma. Nutrients. 2013;5:2128–2143. doi: 10.3390/nu5062128. PubMed DOI PMC
Mattioli V, Zanolin ME, Cazzoletti L, Bono R, Cerveri I, Ferrari M, Pirina P, Garcia-Larsen V. Dietary flavonoids and respiratory diseases: a population-based multi-case-control study in Italian adults. Public Health Nutr. 2020;23:2548–2556. doi: 10.1017/S1368980019003562. PubMed DOI PMC
Rizza S, Muniyappa R, Iantorno M, Kim J, Chen H, Pullikotil P, Senese N, Tesauro M, Lauro D, Cardillo C, et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab. 2011;96:E782–E792. doi: 10.1210/jc.2010-2879. PubMed DOI PMC
Boccellino M, D’Angelo S. Anti-obesity effects of polyphenol intake: current status and future possibilities. Int J Mol Sci. 2020;21. 10.3390/ijms21165642. PubMed PMC
Luque-Sierra A, Alvarez-Amor L, Kleemann R, Martín F, Varela LM. Extra-virgin olive oil with natural phenolic content exerts an anti-inflammatory effect in adipose tissue and attenuates the severity of atherosclerotic lesions in Ldlr-/-.Leiden mice. Mol Nutr Food Res. 2018;62:e1800295. doi: 10.1002/mnfr.201800295. PubMed DOI
Grassi D, Draijer R, Desideri G, Mulder T, Ferri C. Black tea lowers blood pressure and wave reflections in fasted and postprandial conditions in hypertensive patients: a randomised study. Nutrients. 2015;7:1037–1051. doi: 10.3390/nu7021037. PubMed DOI PMC
Jiang F, Dusting GJ. Natural Phenolic compounds as cardiovascular therapeutics: potential role of their antiinflammatory effects. Curr Vasc Pharmacol. 2003;1:135–156. doi: 10.2174/1570161033476736. PubMed DOI
Lutz M, Fuentes E, Ávila F, Alarcón M, Palomo I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules. 2019;24. 10.3390/molecules24020366. PubMed PMC
Vaishampayan U, Hussain M, Banerjee M, Seren S, Sarkar FH, Fontana J, Forman JD, Cher ML, Powell I, Pontes JE, et al. Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr Cancer. 2007;59:1–7. doi: 10.1080/01635580701413934. PubMed DOI
Ting H, Deep G, Kumar S, Jain AK, Agarwal C, Agarwal R. Beneficial effects of the naturally occurring flavonoid silibinin on the prostate cancer microenvironment: role of monocyte chemotactic protein-1 and immune cell recruitment. Carcinogenesis. 2016;37:589–599. doi: 10.1093/carcin/bgw039. PubMed DOI PMC
Ahn-Jarvis, J.H.; Parihar, A.; Doseff, A.I. Dietary flavonoids for immunoregulation and cancer: food design for targeting disease. Antioxidants (Basel) 2019, 8, doi:10.3390/antiox8070202. PubMed PMC
Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B, et al. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. 2021;12(2):1–22. 10.1007/s13167-021-00242-5. PubMed PMC
Samec M, Liskova A, Koklesova L, Samuel SM, Murin R, Zubor P, Bujnak J, Kwon TK, Büsselberg D, Prosecky R, et al. The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis. J Cancer Res Clin Oncol. 2020;146:3137–3154. doi: 10.1007/s00432-020-03424-2. PubMed DOI PMC
Caffo O, Gasparro D, Di Lorenzo G, Volta AD, Guglielmini P, Zucali P, Bortolus R, Cavo A, Ceresoli G, Chiari R, et al. Incidence and outcomes of severe acute respiratory syndrome coronavirus 2 infection in patients with metastatic castration-resistant prostate cancer. Eur J Cancer. 2020;140:140–146. doi: 10.1016/j.ejca.2020.09.018. PubMed DOI PMC
Xie J, Covassin N, Fan Z, Singh P, Gao W, Li G, Kara T, Somers VK. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin Proc. 2020;95:1138–1147. doi: 10.1016/j.mayocp.2020.04.006. PubMed DOI PMC
Fisher HK. Hypoxemia in COVID-19 patients: an hypothesis. Med Hypotheses. 2020;143:110022. doi: 10.1016/j.mehy.2020.110022. PubMed DOI PMC
Gao J, Chen G, He H, Liu C, Xiong X, Li J, et al. Therapeutic effects of breviscapine in cardiovascular diseases: a review. Front Pharmacol. 2017;8. 10.3389/fphar.2017.00289. PubMed PMC
Huang J-G, Xie M, Zhang X, He Q-Y, He G-Y. Hypoxemia induced the changing structure of the lung tissue in SD rat though changing blood clotting and the effects of breviscapine’s intervention. Sichuan Da Xue Xue Bao Yi Xue Ban. 2014;45:567–571. PubMed
Kseibati MO, Sharawy MH, Salem HA. Chrysin mitigates bleomycin-induced pulmonary fibrosis in rats through regulating inflammation, oxidative stress, and hypoxia. Int Immunopharmacol. 2020;89:107011. doi: 10.1016/j.intimp.2020.107011. PubMed DOI
Neukam K, Stahl W, Tronnier H, Sies H, Heinrich U. Consumption of flavanol-rich cocoa acutely increases microcirculation in human skin. Eur J Nutr. 2007;46:53–56. doi: 10.1007/s00394-006-0627-6. PubMed DOI