Molecular Defects in Cardiac Myofilament Ca2+-Regulation Due to Cardiomyopathy-Linked Mutations Can Be Reversed by Small Molecules Binding to Troponin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
FS/12/24/29568
British Heart Foundation - United Kingdom
RE/13/4/30184
British Heart Foundation - United Kingdom
RG/11/20/29266
British Heart Foundation - United Kingdom
PubMed
29636697
PubMed Central
PMC5881522
DOI
10.3389/fphys.2018.00243
Knihovny.cz E-zdroje
- Klíčová slova
- Ca2+ regulation, EGCG, PKA, cardiomyopathy, sarcomeric protein mutations, silybin, small molecule pharmacology, troponin I phosphorylation,
- Publikační typ
- časopisecké články MeSH
The inherited cardiomyopathies, hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are relatively common, potentially life-threatening and currently untreatable. Mutations are often in the contractile proteins of cardiac muscle and cause abnormal Ca2+ regulation via troponin. HCM is usually linked to higher myofilament Ca2+-sensitivity whilst in both HCM and DCM mutant tissue there is often an uncoupling of the relationship between troponin I (TnI) phosphorylation by PKA and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline. The adrenergic response is blunted, and this may predispose the heart to failure under stress. At present there are no compounds or interventions that can prevent or treat sarcomere cardiomyopathies. There is a need for novel therapies that act at a more fundamental level to affect the disease process. We demonstrated that epigallocatechin-3 gallate (EGCG) was found to be capable of restoring the coupled relationship between Ca2+-sensitivity and TnI phosphorylation in mutant thin filaments to normal in vitro, independent of the mutation (15 mutations tested). We have labeled this property "re-coupling." The action of EGCG in vitro to reverse the abnormality caused by myopathic mutations would appear to be an ideal pharmaceutical profile for treatment of inherited HCM and DCM but EGCG is known to be promiscuous in vivo and is thus unsuitable as a therapeutic drug. We therefore investigated whether other structurally related compounds can re-couple myofilaments without these off-target effects. We used the quantitative in vitro motility assay to screen 40 compounds, related to C-terminal Hsp90 inhibitors, and found 23 that can re-couple mutant myofilaments. There is no correlation between re-couplers and Hsp90 inhibitors. The Ca2+-sensitivity shift due to TnI phosphorylation was restored to 2.2 ± 0.01-fold (n = 19) compared to 2.0 ± 0.24-fold (n = 7) in wild-type thin filaments. Many of these compounds were either pure re-couplers or pure desensitizers, indicating these properties are independent; moreover, re-coupling ability could be lost with small changes of compound structure, indicating the possibility of specificity. Small molecules that can re-couple may have therapeutic potential. HIGHLIGHTS - Inherited cardiomyopathies are common diseases that are currently untreatable at a fundamental level and therefore finding a small molecule treatment is highly desirable.- We have identified a molecular level dysfunction common to nearly all mutations: uncoupling of the relationship between troponin I phosphorylation and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline.- We have identified a new class of drugs that are capable of both reducing Ca2+-sensitivity and/or recouping the relationship between troponin I phosphorylation and Ca2+-sensitivity.- The re-coupling phenomenon can be explained on the basis of a single mechanism that is testable.- Measurements with a wide range of small molecules of varying structures can indicate the critical molecular features required for recoupling and allows the prediction of other potential re-couplers.
Zobrazit více v PubMed
Akkari P. A., Song Y., Hitchcock-DeGregori S., Blechynden L., Laing N. (2002). Expression and biological activity of Baculovirus generated wild-type human slow alpha tropomyosin and the Met9Arg mutant responsible for a dominant form of nemaline myopathy. Biochem. Biophys. Res. Commun. 296, 300–304. 10.1016/S0006-291X(02)00852-5 PubMed DOI
Baell J., Walters M. A. (2014). Chemistry: chemical con artists foil drug discovery. Nature 513, 481–483. 10.1038/513481a PubMed DOI
Bayliss C. R., Jacques A. M., Leung M.-C., Ward D. G., Redwood C. S., Gallon C. E., et al. (2012). Myofibrillar Ca2+-sensitivity is uncoupled from troponin i phosphorylation in hypertrophic obstructive cardiomyopathy due to abnormal troponin T. Cardiovasc. Res. 97, 500–508. 10.1093/cvr/cvs322 PubMed DOI
Biedermann D., Vavrikova E., Cvak L., Kren V. (2014). Chemistry of silybin. Nat. Prod. Rep. 31, 1138–1157. 10.1039/C3NP70122K PubMed DOI
Botten D., Fugallo G., Fraternali F., Molteni C. (2013). A computational exploration of the interactions of the green tea polyphenol (−)-epigallocatechin 3-gallate with cardiac muscle troponin C. PLoS ONE 8:e70556. 10.1371/annotation/23964dab-0e50-4644-b3b1-7c9e4ee09958 PubMed DOI PMC
Colson B. A., Gruber S. J., Thomas D. D. (2012). Structural dynamics of muscle protein phosphorylation. J. Muscle Res. Cell Motil. 33, 419–429. 10.1007/s10974-012-9317-6 PubMed DOI PMC
Dvornikov A. V., Smolin N., Zhang M., Martin J. L., Robia S. L., de Tombe P. P. (2016). Restrictive cardiomyopathy Troponin-I R145W mutation does not perturb myofilament length dependent activation in human cardiac sarcomeres. J Biol. Chem. 291, 21817–21828. 10.1074/jbc.M116.746172 PubMed DOI PMC
Dyer E., Jacques A., Hoskins A., Ward D., Gallon C., Messer A., et al. . (2009). Functional analysis of a unique troponin C mutation, Gly159Asp that causes familial dilated cardiomyopathy, studied in explanted heart muscle. Circ. Heart Fail. 2, 456–464. 10.1161/CIRCHEARTFAILURE.108.818237 PubMed DOI
Feng W., Hwang H. S., Kryshtal D. O., Yang T., Padilla I. T., Tiwary A. K., et al. . (2012). Coordinated regulation of murine cardiomyocyte contractility by Nanomolar (−)-Epigallocatechin-3-Gallate, the Major Green Tea Catechin. Mol. Pharmacol. 82, 993–1000. 10.1124/mol.112.079707 PubMed DOI PMC
Fraser I. D. C., Marston S. B. (1995). In vitro motility analysis of actin-tropomyosin regulation by troponin and Ca2+: the thin filament is switched as a single cooperative unit. J. Biol. Chem. 270, 7836–7841. 10.1074/jbc.270.14.7836 PubMed DOI
Friedrich F. W., Flenner F., Nasib M., Eschenhagen T., Carrier L. (2016). Epigallocatechin-3-Gallate Accelerates Relaxation and Ca2+ transient decay and desensitizes myofilaments in healthy and Mybpc3-targeted knock-in cardiomyopathic mice. Front. Physiol. 7:607. 10.3389/fphys.2016.00607 PubMed DOI PMC
Gažák R., Valentová K., Fuksová K., Marhol P., Kuzma M., Medina M. Á., et al. . (2011). Synthesis and antiangiogenic activity of new silybin galloyl esters. J. Med. Chem. 54, 7397–7407. 10.1021/jm201034h PubMed DOI
Gordon A. M., Homsher E., Regnier M. (2000). Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–924. 10.1152/physrev.2000.80.2.853 PubMed DOI
Hall J. A., Forsberg L. K., Blagg B. S. (2014). Alternative approaches to Hsp90 modulation for the treatment of cancer. Future Med. Chem. 6, 1587–1605. 10.4155/fmc.14.89 PubMed DOI PMC
Hao H., Naomoto Y., Bao X., Watanabe N., Sakurama K., Noma K., et al. (2010). HSP90 and its inhibitors (Review). Oncol. Rep. 23, 1483–1492. 10.1158/1541-7786.MCR-15-0234 PubMed DOI
Hershberger R. E., Hedges D. J., Morales A. (2013). Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10, 531–547. 10.1038/nrcardio.2013.105 PubMed DOI
Hwang P. M., Cai F., Pineda-Sanabria S. E., Corson D. C., Sykes B. D. (2014). The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C. Proc. Natl. Acad. Sci. U.S.A. 111, 14412–14417. 10.1073/pnas.1410775111 PubMed DOI PMC
Hwang P. M., Sykes B. D. (2015). Targeting the sarcomere to correct muscle function. Nat. Rev. Drug Discov. 14, 313–328. 10.1038/nrd4554 PubMed DOI
Ingólfsson H. I., Thakur P., Herold K. F., Hobart E. A., Ramsey N. B., Periole X., et al. . (2014). Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem. Biol. 9, 1788–1798. 10.1021/cb500086e PubMed DOI PMC
Kentish J. C., McCloskey D. T., Layland J., Palmer S., Leiden J. M., Martin A. F., et al. . (2001). Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ. Res. 88, 1059–1065. 10.1161/hh1001.091640 PubMed DOI
Khandelwal A., Hall J. A., Blagg B. S. J. (2013). Synthesis and Structure–Activity Relationships of EGCG Analogues, a Recently Identified Hsp90 Inhibitor. J. Org. Chem. 78, 7859–7884. 10.1021/jo401027r PubMed DOI PMC
Kren V., Walterová D. (2005). Silybin and silymarin–new effects and applications. Biomed. Pap. Med. Fac. Univ. Palacký Olomouc Czech Repub. 149, 29–41. 10.5507/bp.2005.002 PubMed DOI
Krenek K., Marhol P., Peikerov,á Ž., V K., Biedermann D. (2014). Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 65, 115–120. 10.1016/j.foodres.2014.02.001 DOI
Lal S., Li A., Allen D., Allen P. D., Bannon P., Cartmill T., et al. . (2015). Best practice biobanking of human heart tissue. Biophys. Rev. 7, 399–406. 10.1007/s12551-015-0182-6 PubMed DOI PMC
Layland J., Solaro R. J., Shah A. M. (2005). Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc. Res. 66, 12–21. 10.1016/j.cardiores.2004.12.022 PubMed DOI
Lopes L. R., Elliott P. M. (2014). A straightforward guide to the sarcomeric basis of cardiomyopathies. Heart 100, 1916–1923. 10.1136/heartjnl-2014-305645 PubMed DOI
MacLeod K. T., Marston S. B., Poole-Wilson P. A., Severs N. J., Sugden P. H. (2010). Cardiac myocytes and the cardiac action potential, in Oxford Textbook of Medicine 5th edn, eds Warrel D. A., Cox T. M., Firth J. D. (Oxford: Oxford University Press; ), 2603-2617.
Marston S. (2016). Why is there a limit to the changes in myofilament Ca2+-sensitivity associated with myopathy causing mutations? Front. Physiol. 7:415. 10.3389/fphys.2016.00415 PubMed DOI PMC
Marston S. B., Fraser I. D. C., Wu B., Roper G. (1996). A simple method for automatic tracking of actin filaments in the motility assay. J. Musc. Res. Cell Motil. 17, 497–506. 10.1007/BF00123365 PubMed DOI
Marston S. B., Messer A. E., Eiros-Zamora J., Gould I., Papadaki M., Choudry A., et al. (2018). The molecular defects in Ca2+ regulation due to mutations that cause hypertrophic cardiomyopathy can be reversed by small molecules that bind to Troponin. Biophys. J. 114:37a 10.1016/j.bpj.2017.11.253 DOI
Marston S., Memo M., Messer A., Papadaki M., Nowak K., McNamara E., et al. . (2013). Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients. Hum. Mol. Genet. 22, 4978–4987. 10.1093/hmg/ddt345 PubMed DOI PMC
Memo M., Leung M.-C., Ward D. G., dos Remedios C., Morimoto S., Zhang L., et al. (2013). Mutations in thin filament proteins that cause familial dilated cardiomyopathy uncouple Troponin I phosphorylation from changes in Myofibrillar Ca2+-sensitivity. Cardiovasc. Res. 99, 65–73. 10.1093/cvr/cvt071 PubMed DOI
Messer A., Bayliss C., El-Mezgueldi M., Redwood C., Ward D. G., Leung M.-C., et al. (2016). Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca2+-sensitivity and suppress the modulation of Ca2+-sensitivity by troponin I phosphorylation. Arch. Biochem. Biophys. 601, 113–120. 10.1016/j.abb.2016.03.027 PubMed DOI PMC
Messer A. E., Chan J., Daley A., Copeland O., Marston S. B., Connolly D. J. (2017). Investigations into the sarcomeric protein and Ca2+-regulation abnormalities underlying hypertrophic cardiomyopathy in cats (Felix catus). Front. Physiol. 8:348. 10.3389/fphys.2017.00348 PubMed DOI PMC
Messer A. E., Jacques A. M., Marston S. B. (2007). Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure. J. Mol. Cell. Cardiol. 42, 247–259. 10.1016/j.yjmcc.2006.08.017 PubMed DOI
Messer A., Gallon C., McKenna W., Elliott P., Dos Remedios C., Marston S. (2009). The use of phosphate-affinity SDS-PAGE to measure the troponin I phosphorylation site distribution in human heart muscle. Proteomics Clin. Appl. 3, 1371–1382. 10.1002/prca.200900071 PubMed DOI
Messer A., Marston S. (2014). Investigating the role of uncoupling of Troponin I phosphorylation from changes in myofibrillar Ca2+-sensitivity in the pathogenesis of Cardiomyopathy. Front. Physiol. 5:315 10.3389/fphys.2014.00315 PubMed DOI PMC
Novotná M., Gažák R., Biedermann D., Di Meo F., Marhol P., Kuzma M., et al. (2014). cis– transIsomerization of silybins A and B. Beilstein J. Org. Chem. 10, 1047–1063. 10.3762/bjoc.10.105 PubMed DOI PMC
Papadaki M., Marston S. B. (2016). The importance of intrinsically disordered segments of cardiac troponin in modulating function by phosphorylation and disease-causing mutations. Front. Physiol. 7:735. 10.3389/fphys.2016.00508 PubMed DOI PMC
Papadaki M., Vikhorev P. G., Marston S. B., Messer A. E. (2015). Uncoupling of myofilament Ca2+ sensitivity from troponin I phosphorylation by mutations can be reversed by epigallocatechin-3-gallate. Cardiovasc. Res. 108, 99–110. 10.1093/cvr/cvv181 PubMed DOI PMC
Robertson I. M., Sun Y.-B., Li M. X., Sykes B. D. (2010). A structural and functional perspective into the mechanism of Ca2+-sensitizers that target the cardiac troponin complex. J. Mol. Cell. Cardiol. 49, 1031–1041. 10.1016/j.yjmcc.2010.08.019 PubMed DOI PMC
Robertson S. P., Johnson J. D., Holroyde M. J., Kranias E. G., Potter J. D., Solaro R. J. (1982). The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J. Biol. Chem. 257, 260–263. PubMed
Singh B. N., Shankar S., Srivastava R. K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 82, 1807–1821. 10.1016/j.bcp.2011.07.093 PubMed DOI PMC
Song W., Dyer E., Stuckey D., Copeland O., Leung M., Bayliss C., et al. . (2011). Molecular mechanism of the Glu99lys mutation in cardiac actin (ACTC gene) that causes apical hypertrophy in man and mouse. J. Biol. Chem. 286, 27582–27593. 10.1074/jbc.M111.252320 PubMed DOI PMC
Song W., Dyer E., Stuckey D., Leung M.-C., Memo M., Mansfield C., et al. . (2010). Investigation of a transgenic mouse model of familial dilated cardiomyopathy. J. Mol. Cell. Cardiol. 49, 380–389. 10.1016/j.yjmcc.2010.05.009 PubMed DOI
Song W., Vikhorev P. G., Kashyap M. N., Rowlands C., Ferenczi M. A., Woledge R. C., et al. . (2013). Mechanical and energetic properties of papillary muscle from ACTC E99K transgenic mouse models of hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 304, H1513–H1524. 10.1152/ajpheart.00951.2012 PubMed DOI PMC
Tadano N., Du C., Yumoto F., Morimoto S., Ohta M., Xie M., et al. . (2010). Biological actions of green tea catechins on cardiac troponin C. Br. J. Pharmacol. 161, 1034–1043. 10.1111/j.1476-5381.2010.00942.x PubMed DOI PMC
Takeda N., Yamashita A., Maeda K., Maeda Y. (2003). Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424, 35–41. 10.1038/nature01780 PubMed DOI
Tardiff J. C., Carrier L., Bers D. M., Poggesi C., Ferrantini C., Coppini R., et al. . (2015). Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc. Res. 105, 457–470. 10.1093/cvr/cvv023 PubMed DOI PMC
Walsh R., Thomson K. L., Ware J. S., Funke B. H., Woodley J., McGuire K. J., et al. . (2017). Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 19, 192–203. 10.1038/gim.2016.90 PubMed DOI PMC
Wilkinson R., Song W., Smoktunowicz N., Marston S. (2015). A dilated cardiomyopathy mutation blunts adrenergic response and induces contractile dysfunction under chronic angiotensin II stress. Am. J. Physiol. Heart Circ. Physiol. 309, H1936–H1946. 10.1152/ajpheart.00327.2015 PubMed DOI PMC
Zamora J. E., Hoben G., Sheehan A., Messer A., Chaudry A., Biedermann D., et al. (2017). EGCG and Silybin as treatment for inherited cardiomyopathies: binding simulations to cardiac troponin, in: 253rd, Conference: American Chemical Society National Meeting & Exposition.
Zamora J. E., Papadaki M., Messer A. E., Marston S. B., Gould I. R. (2016). Troponin structure: its modulation by Ca2+ and phosphorylation studied by molecular dynamics simulations. Phys. Chem. Chem. Phys. 18, 20691–20707. 10.1039/C6CP02610A PubMed DOI
Zhao H., Brandt G. E., Galam L., Matts R. L., Blagg B. S. J. (2011). Identification and initial SAR of silybin: an Hsp90 inhibitor. Bioorg. Med. Chem. Lett. 21, 2659–2664. 10.1016/j.bmcl.2010.12.088 PubMed DOI
Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners