Nutraceuticals silybin B, resveratrol, and epigallocatechin-3 gallate-bind to cardiac muscle troponin to restore the loss of lusitropy caused by cardiomyopathy mutations in vitro, in vivo, and in silico

. 2024 ; 15 () : 1489439. [epub] 20241213

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39735723

INTRODUCTION: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca2+ associated with a higher rate of Ca2+ dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy). Cardiomyopathy-linked mutations primarily affect Ca2+ regulation or the PKA-dependent modulatory system, such that Ca2+-sensitivity becomes independent of phosphorylation level (uncoupling) and this could be sufficient to induce cardiomyopathy. A drug that could restore the phosphorylation-dependent modulation of Ca2+-sensitivity could have potential for treatment of these pathologies. We have found that a number of small molecules, including silybin B, resveratrol and EGCG, can restore coupling in single filament assays. METHODS: We did molecular dynamics simulations (5x1500ns for each condition) of the unphosphorylated and phosphorylated cardiac troponin core with the G159D DCM mutation in the presence of the 5 ligands and analysed the effects on several dynamic parameters. We also studied the effect of the ligands on the contractility of cardiac muscle myocytes with ACTC E99K and TNNT2 R92Q mutations in response to dobutamine. RESULTS: Silybin B, EGCG and resveratrol restored the phosphorylation-induced change in molecular dynamics to wild-type values, whilst silybin A, an inactive isomer of silybin B, and Epicatechin gallate, an EGCG analogue that does not recouple, did not. We analysed the atomic-level changes induced by ligand binding to explain recoupling. Mutations ACTC E99K and TNNT2 R92Q blunt the increased relaxation speed response to β1 adrenergic stimulation of cardiac myocytes and we found that resveratrol, EGCG and silybin B could restore the β1 adrenergic response, whereas silybin A did not. DISCUSSION: The uncoupling phenomenon caused by cardiomyopathy-related mutations and the ability of small molecules to restore coupling in vitro and lusitropy in myocytes is observed at the cellular, molecular and atomistic levels therefore, restoring lusitropy is a suitable target for treatment. Further research on compounds that restore lusitropy is thus indicated as treatments for genetic cardiomyopathies. Further molecular dynamics simulations could define the specific properties needed for recoupling and allow for the prediction and design of potential new drugs.

Zobrazit více v PubMed

Baell J., Walters M. A. (2014). Chemistry: Chemical con artists foil drug discovery. Nature 513 (7519), 481–483. 10.1038/513481a PubMed DOI

Baryshnikova O. K., Li M. X., Sykes B. D. (2008). Modulation of cardiac troponin C function by the cardiac-specific N-terminus of troponin I: influence of PKA phosphorylation and involvement in cardiomyopathies. J. Mol. Biol. 375 (3), 735–751. 10.1016/j.jmb.2007.10.062 PubMed DOI

Bayly C. I., Cieplak P., Cornell W., Kollman P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97 (40), 10269–10280. 10.1021/j100142a004 DOI

Becke A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (7), 5648–5652. 10.1063/1.464913 DOI

Biesiadecki B. J., Kobayashi T., Walker J. S., John Solaro R., de Tombe P. P. (2007). The troponin C G159D mutation blunts myofilament desensitization induced by troponin I Ser23/24 phosphorylation. Circ. Res. 100 (10), 1486–1493. 10.1161/01.RES.0000267744.92677.7f PubMed DOI

Deng Y., Schmidtmann A., Kruse S., Filatov V., Heilmeyer L. M., Jr., Jaquet K., et al. (2003). Phosphorylation of human cardiac troponin I G203S and K206Q linked to familial hypertrophic cardiomyopathy affects actomyosin interaction in different ways. J. Mol. Cell Cardiol. 35 (11), 1365–1374. 10.1016/j.yjmcc.2003.08.003 PubMed DOI

Deng Y., Schmidtmann A., Redlich A., Westerdorf B., Jaquet K., Thieleczek R. (2001). Effects of phosphorylation and mutation R145G on human cardiac troponin I function. Biochemistry 40 (48), 14593–14602. 10.1021/bi0115232 PubMed DOI

Ditchfield R., Hehre W. J., Pople J. A. (1971). Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 54 (2), 724–728. 10.1063/1.1674902 DOI

Dong W., Xing J., Ouyang Y., An J., Cheung H. C. (2008). Structural kinetics of Cardiac troponin C mutants linked to familial hypertrophic and dilated cardiomyopathy in troponin complexes. J. Biol. Chem. 283 (6), 3424–3432. 10.1074/jbc.M703822200 PubMed DOI

Dong W. J., Jayasundar J. J., An J., Xing J., Cheung H. C. (2007). Effects of PKA phosphorylation of cardiac troponin I and strong crossbridge on conformational transitions of the N-domain of cardiac troponin C in regulated thin filaments. Biochemistry 46, 9752–9761. 10.1021/bi700574n PubMed DOI PMC

Dunning T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90 (2), 1007–1023. 10.1063/1.456153 DOI

Dyer E., Jacques A., Hoskins A., Ward D., Gallon C., Messer A., et al. (2009). Functional analysis of a unique troponin C mutation, Gly159Asp that causes familial dilated cardiomyopathy, studied in explanted heart muscle. Circ. Heart Fail 2, 456–464. 10.1161/CIRCHEARTFAILURE.108.818237 PubMed DOI

Friedrich F. W., Flenner F., Nasib M., Eschenhagen T., Carrier L. (2016). Epigallocatechin-3-Gallate accelerates relaxation and Ca2+ transient decay and desensitizes myofilaments in healthy and mybpc3-targeted knock-in cardiomyopathic mice. Front. Physiol. 7, 607–212. 10.3389/fphys.2016.00607 PubMed DOI PMC

Frisch M. J. (2016). Gaussian˜16 revision C.01.

Grimme S. (2012). Supramolecular binding thermodynamics by dispersion‐corrected density functional theory. Chem. Eur. J. 18 (32), 9955–9964. 10.1002/chem.201200497 PubMed DOI

Hai N., Dr R., J S., Case D. A. (2016). PYTRAJ v1.0.0.dev1: interactive data analysis for molecular dynamics simulations. Zenodo. 10.5281/zenodo.44612 DOI

Ingólfsson H. I., Thakur P., Herold K. F., Hobart E. A., Ramsey N. B., Periole X., et al. (2014). Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem. Biol. 9 (8), 1788–1798. 10.1021/cb500086e PubMed DOI PMC

Kentish J. C., McCloskey D. T., Layland J., Palmer S., Leiden J. M., Martin A. F., et al. (2001). Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ. Res. 88 (10), 1059–1065. 10.1161/hh1001.091640 PubMed DOI

Křen V., Valentová K. (2022). Silybin and its congeners: from traditional medicine to molecular effects. Nat. Prod. Rep. 39 (6), 1264–1281. 10.1039/d2np00013j PubMed DOI

Layland J., Solaro R. J., Shah A. M. (2005). Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res. 66 (1), 12–21. 10.1016/j.cardiores.2004.12.022 PubMed DOI

Lee C., Yang W., Parr R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37 (2), 785–789. 10.1103/physrevb.37.785 PubMed DOI

Li Y.-P., Gomes J., Sharada S. M., Bell A. T., Head-Gordon M. (2015). Improved force-field parameters for QM/MM simulations of the energies of adsorption for molecules in zeolites and a free rotor correction to the rigid rotor harmonic oscillator model for adsorption enthalpies. J. Phys. Chem. C 119 (4), 1840–1850. 10.1021/jp509921r DOI

Little S. C., Biesiadecki B. J., Kilic A., Higgins R. S. D., Janssen P. M. L., Davis J. P. (2012). The rates of Ca2+ dissociation and cross-bridge detachment from ventricular myofibrils as reported by a fluorescent cardiac Troponin C. J. Biol. Chem. 287, 27930–27940. 10.1074/jbc.M111.337295 PubMed DOI PMC

Luchini G., Alegre-Requena J. V., Funes-Ardoiz I., Paton R. S. (2020). GoodVibes: automated thermochemistry for heterogeneous computational chemistry data. F1000Research 9 (Chem Inf Sci), 291. 10.12688/f1000research.22758.1 DOI

Marston S., Pinto J. R. (2023). Suppression of lusitropy as a disease mechanism in cardiomyopathies. Front. Cardiovasc Med. 9, 1080965. 10.3389/fcvm.2022.1080965 PubMed DOI PMC

Marston S., Zamora J. E. (2020). Troponin structure and function: a view of recent progress. J. Muscle Res. Cell Motil. 41 (1), 71–89. 10.1007/s10974-019-09513-1 PubMed DOI PMC

Messer A., Marston S. (2014). Investigating the role of uncoupling of Troponin I phosphorylation from changes in myofibrillar Ca2+-sensitivity in the pathogenesis of Cardiomyopathy. Front. Physiol. 5, 315. 10.3389/fphys.2014.00315 PubMed DOI PMC

Messer A. E., Bayliss C. R., El-Mezgueldi M., Redwood C. S., Ward D. G., Papadaki M., et al. (2016). Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca2+-sensitivity and suppress the modulation of Ca2+-sensitivity by troponin I phosphorylation. Arch. Biochem. Biophys. 601, 113–120. 10.1016/j.abb.2016.03.027 PubMed DOI PMC

Miertuš S., Scrocco E., Tomasi J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55 (1), 117–129. 10.1016/0301-0104(81)85090-2 DOI

Monti D., Gažák R., Marhol P., Biedermann D., Purchartová K. i., Fedrigo M., et al. (2010). Enzymatic kinetic resolution of silybin diastereoisomers. J. Nat. Prod. 73 (4), 613–619. 10.1021/np900758d PubMed DOI

Papadaki M. (2015). The importance of uncoupling of troponin I phosphorylation from Ca2+ sensitivity in the pathogenesis of cardiomyopathy. PhD, Imp. Coll. Lond. 10.25560/29755 DOI

Papadaki M., Vikhorev P. G., Marston S. B., Messer A. E. (2015). Uncoupling of myofilament Ca2+ sensitivity from troponin I phosphorylation by mutations can be reversed by epigallocatechin-3-gallate. Cardiovasc Res. 108 (1), 99–110. 10.1093/cvr/cvv181 PubMed DOI PMC

Quan J., Jia Z., Lv T., Zhang L., Liu L., Pan B., et al. (2019). Green tea extract catechin improves cardiac function in pediatric cardiomyopathy patients with diastolic dysfunction. J. Biomed. Sci. 26 (1), 32. 10.1186/s12929-019-0528-7 PubMed DOI PMC

Riniker S., Landrum G. A. (2015). Better informed distance geometry: using what we know to improve conformation generation. JCTC 55 (12), 2562–2574. 10.1021/acs.jcim.5b00654 PubMed DOI

Risi C. M., Belknap B., Atherton J., Coscarella I. L., White H. D., Chase P. B., et al. (2024). Troponin structural dynamics in the native cardiac thin filament revealed by cryo electron microscopy. J. Mol. Biol. 436 (6), 168498. 10.1016/j.jmb.2024.168498 PubMed DOI PMC

Robertson S. P., Johnson J. D., Holroyde M. J., Kranias E. G., Potter J. D., Solaro R. J. (1982). The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J. Biol. Chem. 257, 260–263. 10.1016/s0021-9258(19)68355-9 PubMed DOI

Robinson P., Liu X., Sparrow A., Patel S., Zhang Y. H., Casadei B., et al. (2018). Hypertrophic cardiomyopathy mutations increase myofilament Ca2+ buffering, alter intracellular Ca2+ handling, and stimulate Ca2+-dependent signaling. J. Biol. Chem. 293 (27), 10487–10499. 10.1074/jbc.RA118.002081 PubMed DOI PMC

Roe D. R., Cheatham T. E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9 (7), 3084–3095. 10.1021/ct400341p PubMed DOI

Rowlands C., Owen T., Lawal S., Cao S., Pandey S., Yang H. Y., et al. (2017). Age and strain related aberrant Ca(2+) release is associated with sudden cardiac death in the ACTC E99K mouse model of hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 313, H1213-H1226–H1226. 10.1152/ajpheart.00244.2017 PubMed DOI PMC

Sheehan A., Messer A. E., Papadaki M., Choudhry A., Kren V., Biedermann D., et al. (2018). Molecular defects in cardiac myofilament Ca2+-regulation due to cardiomyopathy-linked mutations can Be reversed by small molecules binding to troponin. Front. Physiol. 9 (243), 243–312. 10.3389/fphys.2018.00243 PubMed DOI PMC

Sheehan A. M. (2019). Modulation of cardiac muscle contractility by phosphorylation, HCM and DCM causing mutations and small molecules. PhD, Imp. Coll. Lond. 10.25560/79512 DOI

Song W., Dyer E., Stuckey D., Copeland O., Leung M., Bayliss C., et al. (2011). Molecular mechanism of the E99K mutation in cardiac actin (ACTC Gene) that causes apical hypertrophy in man and mouse. J. Biol. Chem. 286 (31), 27582–27593. 10.1074/jbc.M111.252320 PubMed DOI PMC

Tadano N., Du C., Yumoto F., Morimoto S., Ohta M., Xie M., et al. (2010). Biological actions of green tea catechins on cardiac troponin C. Brit J. Pharmacol. 161 (5), 1034–1043. 10.1111/j.1476-5381.2010.00942.x PubMed DOI PMC

Waddingham P. H., Bhattacharyya S., Zalen J. V., Lloyd G. (2018). Contractile reserve as a predictor of prognosis in patients with non-ischaemic systolic heart failure and dilated cardiomyopathy: a systematic review and meta-analysis. Echo Res. Pract. 5 (1), 1–9. 10.1530/ERP-17-0054 PubMed DOI PMC

Wang J., Wolf R., Caldwell J., Kollman P., Case D. A. (2004). Development and testing of a general amber force field. J. Comput. Chem. 25 (9), 1157–1174. 10.1002/jcc.20035 PubMed DOI

Wilkinson R., Song W., Smoktunowicz N., Marston S. (2015). A dilated cardiomyopathy mutation blunts adrenergic response and induces contractile dysfunction under chronic angiotensin II stress. Am. J. Physiol. H&C 309 (11), H1936–H1946. 10.1152/ajpheart.00327.2015 PubMed DOI PMC

Wright P. T., Tsui S. F., Francis A. J., MacLeod K. T., Marston S. B. (2020). Approaches to high-throughput analysis of cardiomyocyte contractility. Front. Physiol. 11, 612. 10.3389/fphys.2020.00612 PubMed DOI PMC

Yamada Y., Namba K., Fujii T. (2020). Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat. Comm. 11 (1), 153. 10.1038/s41467-019-14008-1 PubMed DOI PMC

Yang Z., Marston S. B., Gould I. R. (2023). Modulation of structure and dynamics of cardiac troponin by phosphorylation and mutations revealed by molecular dynamics simulations. J. Phys. Chem. B 127 (41), 8736–8748. 10.1021/acs.jpcb.3c02337 PubMed DOI PMC

Zamora J. E. (2019). Investigating cardiomyopathies with atomistic simulations of cardiac Troponin. Imperial College London. PhD. 10.25560/78681 DOI

Zamora J. E., Papadaki M., Messer A. E., Marston S. B., Gould I. R. (2016). Troponin structure: its modulation by Ca(2+) and phosphorylation studied by molecular dynamics simulations. Phys. Chem. Chem. Phys. 18 (30), 20691–20707. 10.1039/c6cp02610a PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...