Nutraceuticals silybin B, resveratrol, and epigallocatechin-3 gallate-bind to cardiac muscle troponin to restore the loss of lusitropy caused by cardiomyopathy mutations in vitro, in vivo, and in silico
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39735723
PubMed Central
PMC11672104
DOI
10.3389/fphys.2024.1489439
PII: 1489439
Knihovny.cz E-zdroje
- Klíčová slova
- EGCG, PKA phosphorylation, cardiomyopathy, lusitropy, molecular dynamics simulation, myocyte contraction, silybin, troponin (cTnI),
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca2+ associated with a higher rate of Ca2+ dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy). Cardiomyopathy-linked mutations primarily affect Ca2+ regulation or the PKA-dependent modulatory system, such that Ca2+-sensitivity becomes independent of phosphorylation level (uncoupling) and this could be sufficient to induce cardiomyopathy. A drug that could restore the phosphorylation-dependent modulation of Ca2+-sensitivity could have potential for treatment of these pathologies. We have found that a number of small molecules, including silybin B, resveratrol and EGCG, can restore coupling in single filament assays. METHODS: We did molecular dynamics simulations (5x1500ns for each condition) of the unphosphorylated and phosphorylated cardiac troponin core with the G159D DCM mutation in the presence of the 5 ligands and analysed the effects on several dynamic parameters. We also studied the effect of the ligands on the contractility of cardiac muscle myocytes with ACTC E99K and TNNT2 R92Q mutations in response to dobutamine. RESULTS: Silybin B, EGCG and resveratrol restored the phosphorylation-induced change in molecular dynamics to wild-type values, whilst silybin A, an inactive isomer of silybin B, and Epicatechin gallate, an EGCG analogue that does not recouple, did not. We analysed the atomic-level changes induced by ligand binding to explain recoupling. Mutations ACTC E99K and TNNT2 R92Q blunt the increased relaxation speed response to β1 adrenergic stimulation of cardiac myocytes and we found that resveratrol, EGCG and silybin B could restore the β1 adrenergic response, whereas silybin A did not. DISCUSSION: The uncoupling phenomenon caused by cardiomyopathy-related mutations and the ability of small molecules to restore coupling in vitro and lusitropy in myocytes is observed at the cellular, molecular and atomistic levels therefore, restoring lusitropy is a suitable target for treatment. Further research on compounds that restore lusitropy is thus indicated as treatments for genetic cardiomyopathies. Further molecular dynamics simulations could define the specific properties needed for recoupling and allow for the prediction and design of potential new drugs.
British Heart Foundation Centre of Research Excellence University of Oxford Oxford United Kingdom
National Heart and Lung Institute Imperial College London London United Kingdom
Zobrazit více v PubMed
Baell J., Walters M. A. (2014). Chemistry: Chemical con artists foil drug discovery. Nature 513 (7519), 481–483. 10.1038/513481a PubMed DOI
Baryshnikova O. K., Li M. X., Sykes B. D. (2008). Modulation of cardiac troponin C function by the cardiac-specific N-terminus of troponin I: influence of PKA phosphorylation and involvement in cardiomyopathies. J. Mol. Biol. 375 (3), 735–751. 10.1016/j.jmb.2007.10.062 PubMed DOI
Bayly C. I., Cieplak P., Cornell W., Kollman P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97 (40), 10269–10280. 10.1021/j100142a004 DOI
Becke A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (7), 5648–5652. 10.1063/1.464913 DOI
Biesiadecki B. J., Kobayashi T., Walker J. S., John Solaro R., de Tombe P. P. (2007). The troponin C G159D mutation blunts myofilament desensitization induced by troponin I Ser23/24 phosphorylation. Circ. Res. 100 (10), 1486–1493. 10.1161/01.RES.0000267744.92677.7f PubMed DOI
Deng Y., Schmidtmann A., Kruse S., Filatov V., Heilmeyer L. M., Jr., Jaquet K., et al. (2003). Phosphorylation of human cardiac troponin I G203S and K206Q linked to familial hypertrophic cardiomyopathy affects actomyosin interaction in different ways. J. Mol. Cell Cardiol. 35 (11), 1365–1374. 10.1016/j.yjmcc.2003.08.003 PubMed DOI
Deng Y., Schmidtmann A., Redlich A., Westerdorf B., Jaquet K., Thieleczek R. (2001). Effects of phosphorylation and mutation R145G on human cardiac troponin I function. Biochemistry 40 (48), 14593–14602. 10.1021/bi0115232 PubMed DOI
Ditchfield R., Hehre W. J., Pople J. A. (1971). Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 54 (2), 724–728. 10.1063/1.1674902 DOI
Dong W., Xing J., Ouyang Y., An J., Cheung H. C. (2008). Structural kinetics of Cardiac troponin C mutants linked to familial hypertrophic and dilated cardiomyopathy in troponin complexes. J. Biol. Chem. 283 (6), 3424–3432. 10.1074/jbc.M703822200 PubMed DOI
Dong W. J., Jayasundar J. J., An J., Xing J., Cheung H. C. (2007). Effects of PKA phosphorylation of cardiac troponin I and strong crossbridge on conformational transitions of the N-domain of cardiac troponin C in regulated thin filaments. Biochemistry 46, 9752–9761. 10.1021/bi700574n PubMed DOI PMC
Dunning T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90 (2), 1007–1023. 10.1063/1.456153 DOI
Dyer E., Jacques A., Hoskins A., Ward D., Gallon C., Messer A., et al. (2009). Functional analysis of a unique troponin C mutation, Gly159Asp that causes familial dilated cardiomyopathy, studied in explanted heart muscle. Circ. Heart Fail 2, 456–464. 10.1161/CIRCHEARTFAILURE.108.818237 PubMed DOI
Friedrich F. W., Flenner F., Nasib M., Eschenhagen T., Carrier L. (2016). Epigallocatechin-3-Gallate accelerates relaxation and Ca2+ transient decay and desensitizes myofilaments in healthy and mybpc3-targeted knock-in cardiomyopathic mice. Front. Physiol. 7, 607–212. 10.3389/fphys.2016.00607 PubMed DOI PMC
Frisch M. J. (2016). Gaussian˜16 revision C.01.
Grimme S. (2012). Supramolecular binding thermodynamics by dispersion‐corrected density functional theory. Chem. Eur. J. 18 (32), 9955–9964. 10.1002/chem.201200497 PubMed DOI
Hai N., Dr R., J S., Case D. A. (2016). PYTRAJ v1.0.0.dev1: interactive data analysis for molecular dynamics simulations. Zenodo. 10.5281/zenodo.44612 DOI
Ingólfsson H. I., Thakur P., Herold K. F., Hobart E. A., Ramsey N. B., Periole X., et al. (2014). Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem. Biol. 9 (8), 1788–1798. 10.1021/cb500086e PubMed DOI PMC
Kentish J. C., McCloskey D. T., Layland J., Palmer S., Leiden J. M., Martin A. F., et al. (2001). Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ. Res. 88 (10), 1059–1065. 10.1161/hh1001.091640 PubMed DOI
Křen V., Valentová K. (2022). Silybin and its congeners: from traditional medicine to molecular effects. Nat. Prod. Rep. 39 (6), 1264–1281. 10.1039/d2np00013j PubMed DOI
Layland J., Solaro R. J., Shah A. M. (2005). Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res. 66 (1), 12–21. 10.1016/j.cardiores.2004.12.022 PubMed DOI
Lee C., Yang W., Parr R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37 (2), 785–789. 10.1103/physrevb.37.785 PubMed DOI
Li Y.-P., Gomes J., Sharada S. M., Bell A. T., Head-Gordon M. (2015). Improved force-field parameters for QM/MM simulations of the energies of adsorption for molecules in zeolites and a free rotor correction to the rigid rotor harmonic oscillator model for adsorption enthalpies. J. Phys. Chem. C 119 (4), 1840–1850. 10.1021/jp509921r DOI
Little S. C., Biesiadecki B. J., Kilic A., Higgins R. S. D., Janssen P. M. L., Davis J. P. (2012). The rates of Ca2+ dissociation and cross-bridge detachment from ventricular myofibrils as reported by a fluorescent cardiac Troponin C. J. Biol. Chem. 287, 27930–27940. 10.1074/jbc.M111.337295 PubMed DOI PMC
Luchini G., Alegre-Requena J. V., Funes-Ardoiz I., Paton R. S. (2020). GoodVibes: automated thermochemistry for heterogeneous computational chemistry data. F1000Research 9 (Chem Inf Sci), 291. 10.12688/f1000research.22758.1 DOI
Marston S., Pinto J. R. (2023). Suppression of lusitropy as a disease mechanism in cardiomyopathies. Front. Cardiovasc Med. 9, 1080965. 10.3389/fcvm.2022.1080965 PubMed DOI PMC
Marston S., Zamora J. E. (2020). Troponin structure and function: a view of recent progress. J. Muscle Res. Cell Motil. 41 (1), 71–89. 10.1007/s10974-019-09513-1 PubMed DOI PMC
Messer A., Marston S. (2014). Investigating the role of uncoupling of Troponin I phosphorylation from changes in myofibrillar Ca2+-sensitivity in the pathogenesis of Cardiomyopathy. Front. Physiol. 5, 315. 10.3389/fphys.2014.00315 PubMed DOI PMC
Messer A. E., Bayliss C. R., El-Mezgueldi M., Redwood C. S., Ward D. G., Papadaki M., et al. (2016). Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca2+-sensitivity and suppress the modulation of Ca2+-sensitivity by troponin I phosphorylation. Arch. Biochem. Biophys. 601, 113–120. 10.1016/j.abb.2016.03.027 PubMed DOI PMC
Miertuš S., Scrocco E., Tomasi J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55 (1), 117–129. 10.1016/0301-0104(81)85090-2 DOI
Monti D., Gažák R., Marhol P., Biedermann D., Purchartová K. i., Fedrigo M., et al. (2010). Enzymatic kinetic resolution of silybin diastereoisomers. J. Nat. Prod. 73 (4), 613–619. 10.1021/np900758d PubMed DOI
Papadaki M. (2015). The importance of uncoupling of troponin I phosphorylation from Ca2+ sensitivity in the pathogenesis of cardiomyopathy. PhD, Imp. Coll. Lond. 10.25560/29755 DOI
Papadaki M., Vikhorev P. G., Marston S. B., Messer A. E. (2015). Uncoupling of myofilament Ca2+ sensitivity from troponin I phosphorylation by mutations can be reversed by epigallocatechin-3-gallate. Cardiovasc Res. 108 (1), 99–110. 10.1093/cvr/cvv181 PubMed DOI PMC
Quan J., Jia Z., Lv T., Zhang L., Liu L., Pan B., et al. (2019). Green tea extract catechin improves cardiac function in pediatric cardiomyopathy patients with diastolic dysfunction. J. Biomed. Sci. 26 (1), 32. 10.1186/s12929-019-0528-7 PubMed DOI PMC
Riniker S., Landrum G. A. (2015). Better informed distance geometry: using what we know to improve conformation generation. JCTC 55 (12), 2562–2574. 10.1021/acs.jcim.5b00654 PubMed DOI
Risi C. M., Belknap B., Atherton J., Coscarella I. L., White H. D., Chase P. B., et al. (2024). Troponin structural dynamics in the native cardiac thin filament revealed by cryo electron microscopy. J. Mol. Biol. 436 (6), 168498. 10.1016/j.jmb.2024.168498 PubMed DOI PMC
Robertson S. P., Johnson J. D., Holroyde M. J., Kranias E. G., Potter J. D., Solaro R. J. (1982). The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J. Biol. Chem. 257, 260–263. 10.1016/s0021-9258(19)68355-9 PubMed DOI
Robinson P., Liu X., Sparrow A., Patel S., Zhang Y. H., Casadei B., et al. (2018). Hypertrophic cardiomyopathy mutations increase myofilament Ca2+ buffering, alter intracellular Ca2+ handling, and stimulate Ca2+-dependent signaling. J. Biol. Chem. 293 (27), 10487–10499. 10.1074/jbc.RA118.002081 PubMed DOI PMC
Roe D. R., Cheatham T. E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9 (7), 3084–3095. 10.1021/ct400341p PubMed DOI
Rowlands C., Owen T., Lawal S., Cao S., Pandey S., Yang H. Y., et al. (2017). Age and strain related aberrant Ca(2+) release is associated with sudden cardiac death in the ACTC E99K mouse model of hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 313, H1213-H1226–H1226. 10.1152/ajpheart.00244.2017 PubMed DOI PMC
Sheehan A., Messer A. E., Papadaki M., Choudhry A., Kren V., Biedermann D., et al. (2018). Molecular defects in cardiac myofilament Ca2+-regulation due to cardiomyopathy-linked mutations can Be reversed by small molecules binding to troponin. Front. Physiol. 9 (243), 243–312. 10.3389/fphys.2018.00243 PubMed DOI PMC
Sheehan A. M. (2019). Modulation of cardiac muscle contractility by phosphorylation, HCM and DCM causing mutations and small molecules. PhD, Imp. Coll. Lond. 10.25560/79512 DOI
Song W., Dyer E., Stuckey D., Copeland O., Leung M., Bayliss C., et al. (2011). Molecular mechanism of the E99K mutation in cardiac actin (ACTC Gene) that causes apical hypertrophy in man and mouse. J. Biol. Chem. 286 (31), 27582–27593. 10.1074/jbc.M111.252320 PubMed DOI PMC
Tadano N., Du C., Yumoto F., Morimoto S., Ohta M., Xie M., et al. (2010). Biological actions of green tea catechins on cardiac troponin C. Brit J. Pharmacol. 161 (5), 1034–1043. 10.1111/j.1476-5381.2010.00942.x PubMed DOI PMC
Waddingham P. H., Bhattacharyya S., Zalen J. V., Lloyd G. (2018). Contractile reserve as a predictor of prognosis in patients with non-ischaemic systolic heart failure and dilated cardiomyopathy: a systematic review and meta-analysis. Echo Res. Pract. 5 (1), 1–9. 10.1530/ERP-17-0054 PubMed DOI PMC
Wang J., Wolf R., Caldwell J., Kollman P., Case D. A. (2004). Development and testing of a general amber force field. J. Comput. Chem. 25 (9), 1157–1174. 10.1002/jcc.20035 PubMed DOI
Wilkinson R., Song W., Smoktunowicz N., Marston S. (2015). A dilated cardiomyopathy mutation blunts adrenergic response and induces contractile dysfunction under chronic angiotensin II stress. Am. J. Physiol. H&C 309 (11), H1936–H1946. 10.1152/ajpheart.00327.2015 PubMed DOI PMC
Wright P. T., Tsui S. F., Francis A. J., MacLeod K. T., Marston S. B. (2020). Approaches to high-throughput analysis of cardiomyocyte contractility. Front. Physiol. 11, 612. 10.3389/fphys.2020.00612 PubMed DOI PMC
Yamada Y., Namba K., Fujii T. (2020). Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat. Comm. 11 (1), 153. 10.1038/s41467-019-14008-1 PubMed DOI PMC
Yang Z., Marston S. B., Gould I. R. (2023). Modulation of structure and dynamics of cardiac troponin by phosphorylation and mutations revealed by molecular dynamics simulations. J. Phys. Chem. B 127 (41), 8736–8748. 10.1021/acs.jpcb.3c02337 PubMed DOI PMC
Zamora J. E. (2019). Investigating cardiomyopathies with atomistic simulations of cardiac Troponin. Imperial College London. PhD. 10.25560/78681 DOI
Zamora J. E., Papadaki M., Messer A. E., Marston S. B., Gould I. R. (2016). Troponin structure: its modulation by Ca(2+) and phosphorylation studied by molecular dynamics simulations. Phys. Chem. Chem. Phys. 18 (30), 20691–20707. 10.1039/c6cp02610a PubMed DOI