Effect of Copolymer Properties on the Phase Behavior of Ibuprofen-PLA/PLGA Mixtures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-07164S
Czech Science Foundation
PubMed
36839967
PubMed Central
PMC9965113
DOI
10.3390/pharmaceutics15020645
PII: pharmaceutics15020645
Knihovny.cz E-zdroje
- Klíčová slova
- API–polymer compatibility, PC-SAFT, PLA, PLGA, amorphous solid dispersion, biodegradable polymers, phase diagrams,
- Publikační typ
- časopisecké články MeSH
Prediction of compatibility of the active pharmaceutical ingredient (API) with the polymeric carrier plays an essential role in designing drug delivery systems and estimating their long-term physical stability. A key element in deducing API-polymer compatibility is knowledge of a complete phase diagram, i.e., the solubility of crystalline API in polymer and mutual miscibility of API and polymer. In this work, the phase behavior of ibuprofen (IBU) with different grades of poly(D,L-lactide-co-glycolide) (PLGA) and polylactide (PLA), varying in composition of PLGA and molecular weight of PLGA and PLA, was investigated experimentally using calorimetry and computationally by the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EOS). The phase diagrams constructed based on a PC-SAFT EOS modeling optimized using the solubility data demonstrated low solubility at typical storage temperature (25 °C) and limited miscibility (i.e., presence of the amorphous-amorphous phase separation region) of IBU with all polymers studied. The ability of PC-SAFT EOS to capture the experimentally observed trends in the phase behavior of IBU-PLA/PLGA systems with respect to copolymer composition and molecular weight was thoroughly investigated and evaluated.
Zobrazit více v PubMed
Savjani K.T., Gajjar A.K., Savjani J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012;2012:195727. doi: 10.5402/2012/195727. PubMed DOI PMC
He Y., Ho C. Amorphous Solid Dispersions: Utilization and Challenges in Drug Discovery and Development. J. Pharm. Sci. 2015;104:3237–3258. doi: 10.1002/jps.24541. PubMed DOI
Khan K.U., Minhas M.U., Badshah S.F., Suhail M., Ahmad A., Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022;291:120301. doi: 10.1016/j.lfs.2022.120301. PubMed DOI
Makadia H.K., Siegel S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011;3:1377–1397. doi: 10.3390/polym3031377. PubMed DOI PMC
Wang Y., Qu W., Choi S.H. FDA’s Regulatory Science Program for Generic PLA/PLGA-Based Drug Products. [(accessed on 19 December 2022)];Am. Pharm. Rev. 2016 20 Available online: https://www.americanpharmaceuticalreview.com/Featured-Articles/188841-FDA-s-Regulatory-Science-Program-for-Generic-PLA-PLGA-Based-Drug-Products/
Erbetta C. Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Copolymer. J. Biomater. Nanobiotechnol. 2012;3:208–225. doi: 10.4236/jbnb.2012.32027. DOI
Nieto K., Mallery S., Schwendeman S. Microencapsulation of Amorphous Solid Dispersions of Fenretinide Enhances Drug Solubility and Release from PLGA in vitro and in vivo. Int. J. Pharm. 2020;586:119475. doi: 10.1016/j.ijpharm.2020.119475. PubMed DOI PMC
Bohr A., Kristensen J., Stride E., Dyas M., Edirisinghe M. Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying. Int. J. Pharm. 2011;412:59–67. doi: 10.1016/j.ijpharm.2011.04.005. PubMed DOI
Bala I., Hariharan S., Kumar M.N.V.R. PLGA Nanoparticles in Drug Delivery: The State of the Art. Crit. Rev. Ther. Drug Carr. Syst. 2004;21:387–422. doi: 10.1615/CritRevTherDrugCarrierSyst.v21.i5.20. PubMed DOI
Panyam J., Williams D., Dash A., Leslie-Pelecky D., Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J. Pharm. Sci. 2004;93:1804–1814. doi: 10.1002/jps.20094. PubMed DOI
Blasi P. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: An overview. J. Pharm. Investig. 2019;49:337–346. doi: 10.1007/s40005-019-00453-z. DOI
Zumaya A.L.V., Ulbrich P., Vilčáková J., Dendisová M., Fulem M., Šoóš M., Hassouna F. Comparison between two multicomponent drug delivery systems based on PEGylated-poly (l-lactide-co-glycolide) and superparamagnetic nanoparticles: Nanoparticulate versus nanocluster systems. J. Drug Deliv. Sci. Technol. 2021;64:102643. doi: 10.1016/j.jddst.2021.102643. DOI
Zumaya A.L.V., Martynek D., Bautkinová T., Šoóš M., Ulbrich P., Raquez J.-M., Dendisová M., Merna J., Vilčáková J., Kopecký D., et al. Self-assembly of poly(L-lactide-co-glycolide) and magnetic nanoparticles into nanoclusters for controlled drug delivery. Eur. Polym. J. 2020;133:109795. doi: 10.1016/j.eurpolymj.2020.109795. DOI
Iemtsev A., Hassouna F., Klajmon M., Mathers A., Fulem M. Compatibility of selected active pharmaceutical ingredients with poly(D, L-lactide-co-glycolide): Computational and experimental study. Eur. J. Pharm. Biopharm. 2022;179:232–245. doi: 10.1016/j.ejpb.2022.09.013. DOI
Mahieu A., Willart J.-F., Dudognon E., Danède F., Descamps M. A New Protocol To Determine the Solubility of Drugs into Polymer Matrixes. Mol. Pharm. 2013;10:560–566. doi: 10.1021/mp3002254. PubMed DOI
Marsac P.J., Shamblin S.L., Taylor L.S. Theoretical and Practical Approaches for Prediction of Drug–Polymer Miscibility and Solubility. Pharm. Res. 2006;23:2417. doi: 10.1007/s11095-006-9063-9. PubMed DOI
Sun Y., Tao J., Zhang G.G.Z., Yu L. Solubilities of Crystalline Drugs in Polymers: An Improved Analytical Method and Comparison of Solubilities of Indomethacin and Nifedipine in PVP, PVP/VA, and PVAc. J. Pharm. Sci. 2010;99:4023–4031. doi: 10.1002/jps.22251. PubMed DOI
Gill P., Moghadam T.T., Ranjbar B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J. Biomol. Tech. 2010;21:167–193. PubMed PMC
Mathers A., Hassouna F., Klajmon M., Fulem M. Comparative Study of DSC-Based Protocols for API–Polymer Solubility Determination. Mol. Pharm. 2021;18:1742–1757. doi: 10.1021/acs.molpharmaceut.0c01232. PubMed DOI
Höhne G.W.H., Hemminger W., Flammersheim H.-J. Differential Scanning Calorimetry. Volume 2 Springer; Berlin/Heidelberg, Germany: 2003.
Kwei T.K. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J. Polym. Sci. Polym. Lett. Ed. 1984;22:307–313. doi: 10.1002/pol.1984.130220603. DOI
Simha R., Boyer R.F. On a General Relation Involving the Glass Temperature and Coefficients of Expansion of Polymers. J. Chem. Phys. 1962;37:1003–1007. doi: 10.1063/1.1733201. DOI
Iemtsev A., Hassouna F., Mathers A., Klajmon M., Dendisová M., Malinová L., Školáková T., Fulem M. Physical stability of hydroxypropyl methylcellulose-based amorphous solid dispersions: Experimental and computational study. Int. J. Pharm. 2020;589:119845. doi: 10.1016/j.ijpharm.2020.119845. PubMed DOI
Von Solms N., Kouskoumvekaki I.A., Lindvig T., Michelsen M.L., Kontogeorgis G.M. A novel approach to liquid-liquid equilibrium in polymer systems with application to simplified PC-SAFT. Fluid Phase Equilib. 2004;222:87–93. doi: 10.1016/j.fluid.2004.06.031. DOI
Gross J., Sadowski G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001;40:1244–1260. doi: 10.1021/ie0003887. DOI
Gross J., Sadowski G. Application of the Perturbed-Chain SAFT Equation of State to Associating Systems. Ind. Eng. Chem. Res. 2002;41:5510–5515. doi: 10.1021/ie010954d. DOI
Gross J., Spuhl O., Tumakaka F., Sadowski G. Modeling copolymer systems using the perturbed-chain SAFT equation of state. Ind. Eng. Chem. Res. 2003;42:1266–1274. doi: 10.1021/ie020509y. DOI
Klajmon M. Investigating Various Parametrization Strategies for Pharmaceuticals within the PC-SAFT Equation of State. J. Chem. Eng. Data. 2020;65:5753–5767. doi: 10.1021/acs.jced.0c00707. DOI
Prudic A., Lesniak A.K., Ji Y.H., Sadowski G. Thermodynamic phase behaviour of indomethacin/PLGA formulations. Eur. J. Pharm. Biopharm. 2015;93:88–94. doi: 10.1016/j.ejpb.2015.01.029. PubMed DOI
Cocchi G., Angelis M.G.D., Sadowski G., Doghieri F. Modelling polylactide/water/dioxane systems for TIPS scaffold fabrication. Fluid Phase Equilib. 2014;374:1–8. doi: 10.1016/j.fluid.2014.04.007. DOI
Štejfa V., Pokorný V., Mathers A., Růžička K., Fulem M. Heat capacities of selected active pharmaceutical ingredients. J. Chem. Thermodyn. 2021;163:106585. doi: 10.1016/j.jct.2021.106585. DOI
In Pyo Park P., Jonnalagadda S. Predictors of glass transition in the biodegradable poly-lactide and poly-lactide-co-glycolide polymers. J. Appl. Polym. Sci. 2006;100:1983–1987. doi: 10.1002/app.22135. DOI
Lee J., Chae G., Khang G., Kim M., Cho S., Lee H. The effect of gamma irradiation on PLGA and release behavior of BCNU from PLGA wafer. Macromol. Res. 2003;11:352–356. doi: 10.1007/BF03218376. DOI
Luebbert C., Huxoll F., Sadowski G. Amorphous-Amorphous Phase Separation in API/Polymer Formulations. Molecules. 2017;22:296. doi: 10.3390/molecules22020296. PubMed DOI PMC
COSMOPharm: Drug-Polymer Compatibility of Pharmaceutical Amorphous Solid Dispersions from COSMO-SAC