Effect of Copolymer Properties on the Phase Behavior of Ibuprofen-PLA/PLGA Mixtures

. 2023 Feb 14 ; 15 (2) : . [epub] 20230214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36839967

Grantová podpora
22-07164S Czech Science Foundation

Odkazy

PubMed 36839967
PubMed Central PMC9965113
DOI 10.3390/pharmaceutics15020645
PII: pharmaceutics15020645
Knihovny.cz E-zdroje

Prediction of compatibility of the active pharmaceutical ingredient (API) with the polymeric carrier plays an essential role in designing drug delivery systems and estimating their long-term physical stability. A key element in deducing API-polymer compatibility is knowledge of a complete phase diagram, i.e., the solubility of crystalline API in polymer and mutual miscibility of API and polymer. In this work, the phase behavior of ibuprofen (IBU) with different grades of poly(D,L-lactide-co-glycolide) (PLGA) and polylactide (PLA), varying in composition of PLGA and molecular weight of PLGA and PLA, was investigated experimentally using calorimetry and computationally by the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EOS). The phase diagrams constructed based on a PC-SAFT EOS modeling optimized using the solubility data demonstrated low solubility at typical storage temperature (25 °C) and limited miscibility (i.e., presence of the amorphous-amorphous phase separation region) of IBU with all polymers studied. The ability of PC-SAFT EOS to capture the experimentally observed trends in the phase behavior of IBU-PLA/PLGA systems with respect to copolymer composition and molecular weight was thoroughly investigated and evaluated.

Zobrazit více v PubMed

Savjani K.T., Gajjar A.K., Savjani J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012;2012:195727. doi: 10.5402/2012/195727. PubMed DOI PMC

He Y., Ho C. Amorphous Solid Dispersions: Utilization and Challenges in Drug Discovery and Development. J. Pharm. Sci. 2015;104:3237–3258. doi: 10.1002/jps.24541. PubMed DOI

Khan K.U., Minhas M.U., Badshah S.F., Suhail M., Ahmad A., Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022;291:120301. doi: 10.1016/j.lfs.2022.120301. PubMed DOI

Makadia H.K., Siegel S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011;3:1377–1397. doi: 10.3390/polym3031377. PubMed DOI PMC

Wang Y., Qu W., Choi S.H. FDA’s Regulatory Science Program for Generic PLA/PLGA-Based Drug Products. [(accessed on 19 December 2022)];Am. Pharm. Rev. 2016 20 Available online: https://www.americanpharmaceuticalreview.com/Featured-Articles/188841-FDA-s-Regulatory-Science-Program-for-Generic-PLA-PLGA-Based-Drug-Products/

Erbetta C. Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Copolymer. J. Biomater. Nanobiotechnol. 2012;3:208–225. doi: 10.4236/jbnb.2012.32027. DOI

Nieto K., Mallery S., Schwendeman S. Microencapsulation of Amorphous Solid Dispersions of Fenretinide Enhances Drug Solubility and Release from PLGA in vitro and in vivo. Int. J. Pharm. 2020;586:119475. doi: 10.1016/j.ijpharm.2020.119475. PubMed DOI PMC

Bohr A., Kristensen J., Stride E., Dyas M., Edirisinghe M. Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying. Int. J. Pharm. 2011;412:59–67. doi: 10.1016/j.ijpharm.2011.04.005. PubMed DOI

Bala I., Hariharan S., Kumar M.N.V.R. PLGA Nanoparticles in Drug Delivery: The State of the Art. Crit. Rev. Ther. Drug Carr. Syst. 2004;21:387–422. doi: 10.1615/CritRevTherDrugCarrierSyst.v21.i5.20. PubMed DOI

Panyam J., Williams D., Dash A., Leslie-Pelecky D., Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J. Pharm. Sci. 2004;93:1804–1814. doi: 10.1002/jps.20094. PubMed DOI

Blasi P. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: An overview. J. Pharm. Investig. 2019;49:337–346. doi: 10.1007/s40005-019-00453-z. DOI

Zumaya A.L.V., Ulbrich P., Vilčáková J., Dendisová M., Fulem M., Šoóš M., Hassouna F. Comparison between two multicomponent drug delivery systems based on PEGylated-poly (l-lactide-co-glycolide) and superparamagnetic nanoparticles: Nanoparticulate versus nanocluster systems. J. Drug Deliv. Sci. Technol. 2021;64:102643. doi: 10.1016/j.jddst.2021.102643. DOI

Zumaya A.L.V., Martynek D., Bautkinová T., Šoóš M., Ulbrich P., Raquez J.-M., Dendisová M., Merna J., Vilčáková J., Kopecký D., et al. Self-assembly of poly(L-lactide-co-glycolide) and magnetic nanoparticles into nanoclusters for controlled drug delivery. Eur. Polym. J. 2020;133:109795. doi: 10.1016/j.eurpolymj.2020.109795. DOI

Iemtsev A., Hassouna F., Klajmon M., Mathers A., Fulem M. Compatibility of selected active pharmaceutical ingredients with poly(D, L-lactide-co-glycolide): Computational and experimental study. Eur. J. Pharm. Biopharm. 2022;179:232–245. doi: 10.1016/j.ejpb.2022.09.013. DOI

Mahieu A., Willart J.-F., Dudognon E., Danède F., Descamps M. A New Protocol To Determine the Solubility of Drugs into Polymer Matrixes. Mol. Pharm. 2013;10:560–566. doi: 10.1021/mp3002254. PubMed DOI

Marsac P.J., Shamblin S.L., Taylor L.S. Theoretical and Practical Approaches for Prediction of Drug–Polymer Miscibility and Solubility. Pharm. Res. 2006;23:2417. doi: 10.1007/s11095-006-9063-9. PubMed DOI

Sun Y., Tao J., Zhang G.G.Z., Yu L. Solubilities of Crystalline Drugs in Polymers: An Improved Analytical Method and Comparison of Solubilities of Indomethacin and Nifedipine in PVP, PVP/VA, and PVAc. J. Pharm. Sci. 2010;99:4023–4031. doi: 10.1002/jps.22251. PubMed DOI

Gill P., Moghadam T.T., Ranjbar B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J. Biomol. Tech. 2010;21:167–193. PubMed PMC

Mathers A., Hassouna F., Klajmon M., Fulem M. Comparative Study of DSC-Based Protocols for API–Polymer Solubility Determination. Mol. Pharm. 2021;18:1742–1757. doi: 10.1021/acs.molpharmaceut.0c01232. PubMed DOI

Höhne G.W.H., Hemminger W., Flammersheim H.-J. Differential Scanning Calorimetry. Volume 2 Springer; Berlin/Heidelberg, Germany: 2003.

Kwei T.K. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J. Polym. Sci. Polym. Lett. Ed. 1984;22:307–313. doi: 10.1002/pol.1984.130220603. DOI

Simha R., Boyer R.F. On a General Relation Involving the Glass Temperature and Coefficients of Expansion of Polymers. J. Chem. Phys. 1962;37:1003–1007. doi: 10.1063/1.1733201. DOI

Iemtsev A., Hassouna F., Mathers A., Klajmon M., Dendisová M., Malinová L., Školáková T., Fulem M. Physical stability of hydroxypropyl methylcellulose-based amorphous solid dispersions: Experimental and computational study. Int. J. Pharm. 2020;589:119845. doi: 10.1016/j.ijpharm.2020.119845. PubMed DOI

Von Solms N., Kouskoumvekaki I.A., Lindvig T., Michelsen M.L., Kontogeorgis G.M. A novel approach to liquid-liquid equilibrium in polymer systems with application to simplified PC-SAFT. Fluid Phase Equilib. 2004;222:87–93. doi: 10.1016/j.fluid.2004.06.031. DOI

Gross J., Sadowski G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001;40:1244–1260. doi: 10.1021/ie0003887. DOI

Gross J., Sadowski G. Application of the Perturbed-Chain SAFT Equation of State to Associating Systems. Ind. Eng. Chem. Res. 2002;41:5510–5515. doi: 10.1021/ie010954d. DOI

Gross J., Spuhl O., Tumakaka F., Sadowski G. Modeling copolymer systems using the perturbed-chain SAFT equation of state. Ind. Eng. Chem. Res. 2003;42:1266–1274. doi: 10.1021/ie020509y. DOI

Klajmon M. Investigating Various Parametrization Strategies for Pharmaceuticals within the PC-SAFT Equation of State. J. Chem. Eng. Data. 2020;65:5753–5767. doi: 10.1021/acs.jced.0c00707. DOI

Prudic A., Lesniak A.K., Ji Y.H., Sadowski G. Thermodynamic phase behaviour of indomethacin/PLGA formulations. Eur. J. Pharm. Biopharm. 2015;93:88–94. doi: 10.1016/j.ejpb.2015.01.029. PubMed DOI

Cocchi G., Angelis M.G.D., Sadowski G., Doghieri F. Modelling polylactide/water/dioxane systems for TIPS scaffold fabrication. Fluid Phase Equilib. 2014;374:1–8. doi: 10.1016/j.fluid.2014.04.007. DOI

Štejfa V., Pokorný V., Mathers A., Růžička K., Fulem M. Heat capacities of selected active pharmaceutical ingredients. J. Chem. Thermodyn. 2021;163:106585. doi: 10.1016/j.jct.2021.106585. DOI

In Pyo Park P., Jonnalagadda S. Predictors of glass transition in the biodegradable poly-lactide and poly-lactide-co-glycolide polymers. J. Appl. Polym. Sci. 2006;100:1983–1987. doi: 10.1002/app.22135. DOI

Lee J., Chae G., Khang G., Kim M., Cho S., Lee H. The effect of gamma irradiation on PLGA and release behavior of BCNU from PLGA wafer. Macromol. Res. 2003;11:352–356. doi: 10.1007/BF03218376. DOI

Luebbert C., Huxoll F., Sadowski G. Amorphous-Amorphous Phase Separation in API/Polymer Formulations. Molecules. 2017;22:296. doi: 10.3390/molecules22020296. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...