COSMOPharm: Drug-Polymer Compatibility of Pharmaceutical Amorphous Solid Dispersions from COSMO-SAC

. 2024 Sep 02 ; 21 (9) : 4395-4415. [epub] 20240730

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39078049

The quantum mechanics-aided COSMO-SAC activity coefficient model is applied and systematically examined for predicting the thermodynamic compatibility of drugs and polymers. The drug-polymer compatibility is a key aspect in the rational selection of optimal polymeric carriers for pharmaceutical amorphous solid dispersions (ASD) that enhance drug bioavailability. The drug-polymer compatibility is evaluated in terms of both solubility and miscibility, calculated using standard thermodynamic equilibrium relations based on the activity coefficients predicted by COSMO-SAC. As inherent to COSMO-SAC, our approach relies only on quantum-mechanically derived σ-profiles of the considered molecular species and involves no parameter fitting to experimental data. All σ-profiles used were determined in this work, with those of the polymers being derived from their shorter oligomers by replicating the properties of their central monomer unit(s). Quantitatively, COSMO-SAC achieved an overall average absolute deviation of 13% in weight fraction drug solubility predictions compared to experimental data. Qualitatively, COSMO-SAC correctly categorized different polymer types in terms of their compatibility with drugs and provided meaningful estimations of the amorphous-amorphous phase separation. Furthermore, we analyzed the sensitivity of the COSMO-SAC results for ASD to different model configurations and σ-profiles of polymers. In general, while the free volume and dispersion terms exerted a limited effect on predictions, the structures of oligomers used to produce σ-profiles of polymers appeared to be more important, especially in the case of strongly interacting polymers. Explanations for these observations are provided. COSMO-SAC proved to be an efficient method for compatibility prediction and polymer screening in ASD, particularly in terms of its performance-cost ratio, as it relies only on first-principles calculations for the considered molecular species. The open-source nature of both COSMO-SAC and the Python-based tool COSMOPharm, developed in this work for predicting the API-polymer thermodynamic compatibility, invites interested readers to explore and utilize this method for further research or assistance in the design of pharmaceutical formulations.

Zobrazit více v PubMed

Davis D. A.; Thakkar R.; Maniruzzaman M.; Miller D. A.; Williams R. O. In Formulating Poorly Water Soluble Drugs; Williams R. O., Davis D. A., Miller D. A., Eds.; Springer: Cham, 2022.

Van den Mooter G. The Use of Amorphous Solid Dispersions: A Formulation Strategy to Overcome Poor Solubility and Dissolution Rate. Drug. Discovery Today Technol. 2012, 9, 79–85. 10.1016/j.ddtec.2011.10.002. PubMed DOI

Hancock B. C.; Zografi G. Characteristics and Significance of the Amorphous State in Pharmaceutical Systems. J. Pharm. Sci. 1997, 86, 1–12. 10.1021/js9601896. PubMed DOI

Alonzo D. E.; Zhang G. G. Z.; Zhou D. L.; Gao Y.; Taylor L. S. Understanding the Behavior of Amorphous Pharmaceutical Systems during Dissolution. Pharm. Res. 2010, 27, 608–618. 10.1007/s11095-009-0021-1. PubMed DOI

Zografi G.; Newman A. Interrelationships Between Structure and the Properties of Amorphous Solids of Pharmaceutical Interest. J. Pharm. Sci. 2017, 106, 5–27. 10.1016/j.xphs.2016.05.001. PubMed DOI

Qian F.; Huang J.; Hussain M. A. Drug-Polymer Solubility and Miscibility: Stability Consideration and Practical Challenges in Amorphous Solid Dispersion Development. J. Pharm. Sci. 2010, 99, 2941–2947. 10.1002/jps.22074. PubMed DOI

Thakore S. D.; Akhtar J.; Jain R.; Paudel A.; Bansal A. K. Analytical and Computational Methods for the Determination of Drug-Polymer Solubility and Miscibility. Mol. Pharmaceutics 2021, 18, 2835–2866. 10.1021/acs.molpharmaceut.1c00141. PubMed DOI

Anderson B. D. Predicting Solubility/Miscibility in Amorphous Dispersions: It Is Time to Move Beyond Regular Solution Theories. J. Pharm. Sci. 2018, 107, 24–33. 10.1016/j.xphs.2017.09.030. PubMed DOI

Maniruzzaman M.; Pang J. Y.; Morgan D. J.; Douroumis D. Molecular Modeling as a Predictive Tool for the Development of Solid Dispersions. Mol. Pharmaceutics 2015, 12, 1040–1049. 10.1021/mp500510m. PubMed DOI

Ge K.; Huang Y.; Ji Y. Machine Learning with API/Polymer Interaction Mechanism: Prediction for Complex Phase Behaviors of Pharmaceuticals and Formulations. Chin. J. Chem. Eng. 2024, 66, 263–272. 10.1016/j.cjche.2023.09.006. DOI

Cavasotto C. N.; Adler N. S.; Aucar M. G. Quantum Chemical Approaches in Structure-Based Virtual Screening and Lead Optimization. Front. Chem. 2018, 6, 188.10.3389/fchem.2018.00188. PubMed DOI PMC

Kříž K.; Řezáč J. Benchmarking of Semiempirical Quantum-Mechanical Methods on Systems Relevant to Computer-Aided Drug Design. J. Chem. Inf. Model. 2020, 60, 1453–1460. 10.1021/acs.jcim.9b01171. PubMed DOI

Kumar A.; Nanda A. In-Silico Methods of Cocrystal Screening: A Review on Tools for Rational Design of Pharmaceutical Cocrystals. J. Drug. Delivery Sci. Technol. 2021, 63, 102527.10.1016/j.jddst.2021.102527. DOI

Xiang T. X.; Anderson B. D. Molecular Dynamics Simulation of Amorphous Indomethacin. Mol. Pharmaceutics 2013, 10, 102–114. 10.1021/mp3000698. PubMed DOI

Bunker A.; Rog T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front. Mol. Biosci. 2020, 7, 604770.10.3389/fmolb.2020.604770. PubMed DOI PMC

Červinka C.; Fulem M. Structure and Glass Transition Temperature of Amorphous Dispersions of Model Pharmaceuticals with Nucleobases from Molecular Dynamics. Pharmaceutics 2021, 13, 1253.10.3390/pharmaceutics13081253. PubMed DOI PMC

Klajmon M. Purely Predicting the Pharmaceutical Solubility: What to Expect from PC-SAFT and COSMO-RS?. Mol. Pharmaceutics 2022, 19, 4212–4232. 10.1021/acs.molpharmaceut.2c00573. PubMed DOI

Xiang T. X.; Anderson B. D. Water Uptake, Distribution, and Mobility in Amorphous Poly(D,L-Lactide) by Molecular Dynamics Simulation. J. Pharm. Sci. 2014, 103, 2759–2771. 10.1002/jps.23855. PubMed DOI

Klajmon M.; Aulich V.; Ludík J.; Červinka C. Glass Transition and Structure of Organic Polymers from All-Atom Molecular Simulations. Ind. Eng. Chem. Res. 2023, 62, 21437–21448. 10.1021/acs.iecr.3c03038. DOI

Subashini M.; Devarajan P. V.; Sonavane G. S.; Doble M. Molecular Dynamics Simulation of Drug Uptake by Polymer. J. Mol. Model. 2011, 17, 1141–1147. 10.1007/s00894-010-0811-8. PubMed DOI

Turpin E. R.; Taresco V.; Al-Hachami W. A.; Booth J.; Treacher K.; Tomasi S.; Alexander C.; Burley J.; Laughton C. A.; Garnett M. C. In Silico Screening for Solid Dispersions: The Trouble with Solubility Parameters and χFH. Mol. Pharmaceutics 2018, 15, 4654–4667. 10.1021/acs.molpharmaceut.8b00637. PubMed DOI

Xiang T. X.; Anderson B. D. Effects of Molecular Interactions on Miscibility and Mobility of Ibuprofen in Amorphous Solid Dispersions With Various Polymers. J. Pharm. Sci. 2019, 108, 178–186. 10.1016/j.xphs.2018.10.052. PubMed DOI

Hossain S.; Kabedev A.; Parrow A.; Bergstrom C. A. S.; Larsson P. Molecular Simulation as a Computational Pharmaceutics Tool to Predict Drug Solubility, Solubilization Processes and Partitioning. Eur. J. Pharm. Biopharm. 2019, 137, 46–55. 10.1016/j.ejpb.2019.02.007. PubMed DOI PMC

Ramakrishnan R.; Dral P. O.; Rupp M.; von Lilienfeld O. A. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach. J. Chem. Theory Comput. 2015, 11, 2087–2096. 10.1021/acs.jctc.5b00099. PubMed DOI

Jinnouchi R.; Karsai F.; Verdi C.; Asahi R.; Kresse G. Descriptors Representing Two- and Three-Body Atomic Distributions and Their Effects on the Accuracy of Machine-Learned Inter-Atomic Potentials. J. Chem. Phys. 2020, 152, 234102.10.1063/5.0009491. PubMed DOI

Unke O. T.; Chmiela S.; Sauceda H. E.; Gastegger M.; Poltavsky I.; Schütt K. T.; Tkatchenko A.; Müller K. R. Machine Learning Force Fields. Chem. Rev. 2021, 121, 10142–10186. 10.1021/acs.chemrev.0c01111. PubMed DOI PMC

Unke O. T.; Stoehr M.; Ganscha S.; Unterthiner T.; Maennel H.; Kashubin S.; Ahlin D.; Gastegger M.; Sandonas L. M.; Berryman J. T.; Tkatchenko A.; Mueller K. R. Biomolecular Dynamics with Machine-Learned Quantum-Mechanical Force Fields Trained on Diverse Chemical Fragments. Sci. Adv. 2024, 10, 1.10.1126/sciadv.adn4397. PubMed DOI PMC

Flory P. J.Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.

Huggins M. L.Physical Chemistry of High Polymers; Wiley: New York, NY, 1958.

Marsac P. J.; Shamblin S. L.; Taylor L. S. Theoretical and Practical Approaches for Prediction of Drug-Polymer Miscibility and Solubility. Pharm. Res. 2006, 23, 2417–2426. 10.1007/s11095-006-9063-9. PubMed DOI

Bansal K.; Baghel U. S.; Thakral S. Construction and Validation of Binary Phase Diagram for Amorphous Solid Dispersion Using Flory-Huggins Theory. AAPS PharmSciTech 2016, 17, 318–327. 10.1208/s12249-015-0343-8. PubMed DOI PMC

Lehmkemper K.; Kyeremateng S. O.; Heinzerling O.; Degenhardt M.; Sadowski G. Long-Term Physical Stability of PVP-and PVPVA-Amorphous Solid Dispersions. Mol. Pharmaceutics 2017, 14, 157–171. 10.1021/acs.molpharmaceut.6b00763. PubMed DOI

Larsen B. L.; Rasmussen P.; Fredenslund A. A Modified UNIFAC Group-Contribution Model for Prediction of Phase-Equilibria and Heats of Mixing. Ind. Eng. Chem. Res. 1987, 26, 2274–2286. 10.1021/ie00071a018. DOI

Klamt A. Conductor-Like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. 10.1021/j100007a062. DOI

Abbott S. Solubility, Similarity, and Compatibility: A General-Purpose Theory for the Formulator. Curr. Opin. Colloid Interface Sci. 2020, 48, 65–76. 10.1016/j.cocis.2020.03.007. DOI

Gross J.; Sadowski G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40, 1244–1260. 10.1021/ie0003887. DOI

Gross J.; Spuhl O.; Tumakaka F.; Sadowski G. Modeling Copolymer Systems Using the Perturbed-Chain SAFT Equation of State. Ind. Eng. Chem. Res. 2003, 42, 1266–1274. 10.1021/ie020509y. DOI

Prudic A.; Ji Y. H.; Sadowski G. Thermodynamic Phase Behavior of API/Polymer Solid Dispersions. Mol. Pharmaceutics 2014, 11, 2294–2304. 10.1021/mp400729x. PubMed DOI

Klajmon M. Investigating Various Parametrization Strategies for Pharmaceuticals within the PC-SAFT Equation of State. J. Chem. Eng. Data 2020, 65, 5753–5767. 10.1021/acs.jced.0c00707. DOI

Iemtsev A.; Hassouna F.; Klajmon M.; Mathers A.; Fulem M. Compatibility of Selected Active Pharmaceutical Ingredients with Poly(D, L-Lactide-Co-Glycolide): Computational and Experimental Study. Eur. J. Pharm. Biopharm. 2022, 179, 232–245. 10.1016/j.ejpb.2022.09.013. DOI

Pavliš J.; Mathers A.; Fulem M.; Klajmon M. Can Pure Predictions of Activity Coefficients from PC-SAFT Assist Drug–Polymer Compatibility Screening?. Mol. Pharmaceutics 2023, 20, 3960–3974. 10.1021/acs.molpharmaceut.3c00124. PubMed DOI PMC

Diedrichs A.; Gmehling J. Solubility Calculation of Active Pharmaceutical Ingredients in Alkanes, Alcohols, Water and their Mixtures Using Various Activity Coefficient Models. Ind. Eng. Chem. Res. 2011, 50, 1757–1769. 10.1021/ie101373k. DOI

Papaioannou V.; Lafitte T.; Avendano C.; Adjiman C. S.; Jackson G.; Muller E. A.; Galindo A. Group Contribution Methodology Based on the Statistical Associating Fluid Theory for Heteronuclear Molecules Formed from Mie Segments. J. Chem. Phys. 2014, 140, 054107.10.1063/1.4851455. PubMed DOI

Kontogeorgis G. M.; Dohrn R.; Economou I. G.; de Hemptinne J. C.; ten Kate A.; Kuitunen S.; Mooijer M.; Zilnik L. F.; Vesovic V. Industrial Requirements for Thermodynamic and Transport Properties: 2020. Ind. Eng. Chem. Res. 2021, 60, 4987–5013. 10.1021/acs.iecr.0c05356. PubMed DOI PMC

Gracin S.; Brinck T.; Rasmuson A. C. Prediction of Solubility of Solid Organic Compounds in Solvents by UNIFAC. Ind. Eng. Chem. Res. 2002, 41, 5114–5124. 10.1021/ie011014w. DOI

Jirasek F.; Hayer N.; Abbas R.; Schmid B.; Hasse H. Prediction of Parameters of Group Contribution Models of Mixtures by Matrix Completion. Phys. Chem. Chem. Phys. 2023, 25, 1054–1062. 10.1039/D2CP04478A. PubMed DOI

Han R.; Xiong H.; Ye Z. Y. F.; Yang Y. L.; Huang T. H.; Jing Q. F.; Lu J. H.; Pan H.; Ren F. Z.; Ouyang D. F. Predicting Physical Stability of Solid Dispersions by Machine Learning Techniques. J. Controlled Release 2019, 311, 16–25. 10.1016/j.jconrel.2019.08.030. PubMed DOI

Gao H. L.; Wang W.; Dong J.; Ye Z. Y. F.; Ouyang D. F. An Integrated Computational Methodology with Data-Driven Machine Learning, Molecular Modeling and PBPK Modeling to Accelerate Solid Dispersion Formulation Design. Eur. J. Pharm. Biopharm. 2021, 158, 336–346. 10.1016/j.ejpb.2020.12.001. PubMed DOI

Lin S. T.; Sandler S. I. A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Ind. Eng. Chem. Res. 2002, 41, 899–913. 10.1021/ie001047w. DOI

Bell I. H.; Mickoleit E.; Hsieh C. M.; Lin S. T.; Vrabec J.; Breitkopf C.; Jager A. A. Benchmark Open-Source Implementation of COSMO-SAC. J. Chem. Theory Comput. 2020, 16, 2635–2646. 10.1021/acs.jctc.9b01016. PubMed DOI PMC

Pozarska A.; da Costa Mathews C.; Wong M.; Pencheva K. Application of COSMO-RS as an Excipient Ranking Tool in Early Formulation Development. Eur. J. Pharm. Sci. 2013, 49, 505–511. 10.1016/j.ejps.2013.04.021. PubMed DOI

Klamt A.; Loschen C. In Computational Pharmaceutical Solid State Chemistry; Abramov Y. A., Ed.; John Wiley and Sons: Hoboken, NJ, 2016.

Klamt A. The COSMO and COSMO-RS Solvation Models. Wires Comput. Mol. Sci. 2018, 8, e133810.1002/wcms.1338. DOI

Alsenz J.; Kuentz M. From Quantum Chemistry to Prediction of Drug Solubility in Glycerides. Mol. Pharmaceutics 2019, 16, 4661–4669. 10.1021/acs.molpharmaceut.9b00801. PubMed DOI

Klamt A.; Eckert F.; Hornig M.; Beck M. E.; Burger T. Prediction of Aqueous Solubility of Drugs and Pesticides with COSMO-RS. J. Comput. Chem. 2002, 23, 275–281. 10.1002/jcc.1168. PubMed DOI

Mullins E.; Liu Y. A.; Ghaderi A.; Fast S. D. Sigma Profile Database for Predicting Solid Solubility in Pure and Mixed Solvent Mixtures for Organic Pharmacological Compounds with COSMO-Based Thermodynamic Methods. Ind. Eng. Chem. Res. 2008, 47, 1707–1725. 10.1021/ie0711022. DOI

Lovette M. A.; Albrecht J.; Ananthula R. S.; Ricci F.; Sangodkar R.; Shah M. S.; Tomasi S. Evaluation of Predictive Solubility Models in Pharmaceutical Process Development–an Enabling Technologies Consortium Collaboration. Cryst. Growth Des. 2022, 22, 5239–5263. 10.1021/acs.cgd.2c00368. DOI

Yang L.; Xu X. C.; Peng C. J.; Liu H. L.; Hu Y. Prediction of Vapor-Liquid Equilibrium for Polymer Solutions Based on the COSMO-SAC Model. AIChE J. 2010, 56, 2687–2698. 10.1002/aic.12178. DOI

Goss K. U. Predicting Equilibrium Sorption of Neutral Organic Chemicals into Various Polymeric Sorbents with COSMO-RS. Anal. Chem. 2011, 83, 5304–5308. 10.1021/ac200733v. PubMed DOI

Kuo Y. C.; Hsu C. C.; Lin S. T. Prediction of Phase Behaviors of Polymer-Solvent Mixtures from the COSMO-SAC Activity Coefficient Model. Ind. Eng. Chem. Res. 2013, 52, 13505–13515. 10.1021/ie402175k. DOI

Loschen C.; Klamt A. Prediction of Solubilities and Partition Coefficients in Polymers Using COSMO-RS. Ind. Eng. Chem. Res. 2014, 53, 11478–11487. 10.1021/ie501669z. DOI

Staudt P. B.; Simoes R. L.; Jacques L.; Cardozo N. S. M.; Soares R. D. Predicting Phase Equilibrium for Polymer Solutions Using COSMO-SAC. Fluid Phase Equilib. 2018, 472, 75–84. 10.1016/j.fluid.2018.05.003. DOI

Zhu R. S.; Lei Z. G. COSMO-Based Models for Predicting the Gas Solubility in Polymers. Green Energy Environ 2021, 6, 311–313. 10.1016/j.gee.2021.03.009. DOI

Mohan M.; Simmons B. A.; Sale K. L.; Singh S. Multiscale Molecular Simulations for the Solvation of Lignin in Ionic Liquids. Sci. Rep. 2023, 13, 271.10.1038/s41598-022-25372-2. PubMed DOI PMC

Mathers A.; Hassouna F.; Malinová L.; Merna J.; Růžička K.; Fulem M. Impact of Hot-Melt Extrusion Processing Conditions on Physicochemical Properties of Amorphous Solid Dispersions Containing Thermally Labile Acrylic Copolymer. J. Pharm. Sci. 2020, 109, 1008–1019. 10.1016/j.xphs.2019.10.005. PubMed DOI

Mathers A.; Pechar M.; Hassouna F.; Fulem M. API Solubility in Semi-Crystalline Polymer: Kinetic and Thermodynamic Phase Behavior of PVA-Based Solid Dispersions. Int. J. Pharm. 2022, 623, 121855.10.1016/j.ijpharm.2022.121855. PubMed DOI

Mathers A.; Pechar M.; Hassouna F.; Fulem M. The Step-Wise Dissolution Method: An Efficient DSC-Based Protocol for Verification of Predicted API–Polymer Compatibility. Int. J. Pharm. 2023, 648, 123604.10.1016/j.ijpharm.2023.123604. PubMed DOI

Prausnitz J. M.; Lichtenthaler R. N.; de Azevedo E. G.. Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, 1999.

Zhang Y.; Maginn E. J. Toward Fully in Silico Melting Point Prediction Using Molecular Simulations. J. Chem. Theory Comput. 2013, 9, 1592–1599. 10.1021/ct301095j. PubMed DOI

Yalkowsky S. H.; Alantary D. Estimation of Melting Points of Organics. J. Pharm. Sci. 2018, 107, 1211–1227. 10.1016/j.xphs.2017.12.013. PubMed DOI

Wyttenbach N.; Niederquell A.; Kuentz M. Machine Estimation of Drug Melting Properties and Influence on Solubility Prediction. Mol. Pharmaceutics 2020, 17, 2660–2671. 10.1021/acs.molpharmaceut.0c00355. PubMed DOI

Klajmon M.; Červinka C. Does Explicit Polarizability Improve Simulations of Phase Behavior of Ionic Liquids?. J. Chem. Theory Comput. 2021, 17, 6225–6239. 10.1021/acs.jctc.1c00518. PubMed DOI

Paus R.; Prudic A.; Ji Y. Influence of Excipients on Solubility and Dissolution of Pharmaceuticals. Int. J. Pharm. 2015, 485, 277–287. 10.1016/j.ijpharm.2015.03.004. PubMed DOI

Štejfa V.; Pokorný V.; Mathers A.; Růžička K.; Fulem M. Heat Capacities of Selected Active Pharmaceutical Ingredients. J. Chem. Thermodyn. 2021, 163, 106585.10.1016/j.jct.2021.106585. DOI

Luebbert C.; Sadowski G. In-Situ Determination of Crystallization Kinetics in ASDs via Water Sorption Experiments. Eur. J. Pharm. Biopharm. 2018, 127, 183–193. 10.1016/j.ejpb.2018.02.028. PubMed DOI

Dinh M.Experimental Screening of Anticancer Drug-Biodegradable Polymer Compatibility; Bachelor thesis, University of Chemistry and Technology, Prague, 2022.

Neau S. H.; Bhandarkar S. V.; Hellmuth E. W. Differential Molar Heat Capacities to Test Ideal Solubility Estimations. Pharm. Res. 1997, 14, 601–605. 10.1023/A:1012148910975. PubMed DOI

Simoes R. G.; Bernardes C. E. S.; Diogo H. P.; Agapito F.; da Piedade M. E. M. Energetics and Structure of Simvastatin. Mol. Pharmaceutics 2013, 10, 2713–2722. 10.1021/mp400132r. PubMed DOI

von Solms N.; Kouskoumvekaki I. A.; Lindvig T.; Michelsen M. L.; Kontogeorgis G. M. A Novel Approach to Liquid-Liquid Equilibrium in Polymer Systems with Application to Simplified PC-SAFT. Fluid Phase Equilib. 2004, 222, 87–93. 10.1016/j.fluid.2004.06.031. DOI

Klamt A.; Schüürmann G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 1993, 2, 799–805. 10.1039/P29930000799. DOI

Hsieh C.-M.; Lin S.-T.; Vrabec J. Considering the Dispersive Interactions in the COSMO-SAC Model for More Accurate Predictions of Fluid Phase Behavior. Fluid Phase Equilib. 2014, 367, 109–116. 10.1016/j.fluid.2014.01.032. DOI

Hsieh C. M.; Sandler S. I.; Lin S. T. Improvements of COSMO-SAC for Vapor-Liquid and Liquid-Liquid Equilibrium Predictions. Fluid Phase Equilib. 2010, 297, 90–97. 10.1016/j.fluid.2010.06.011. DOI

Klamt A.; Jonas V.; Bürger T.; Lohrenz J. C. W. Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074–5085. 10.1021/jp980017s. DOI

Xiong R. C.; Sandler S. I.; Burnett R. I. An Improvement to COSMO-SAC for Predicting Thermodynamic Properties. Ind. Eng. Chem. Res. 2014, 53, 8265–8278. 10.1021/ie404410v. DOI

Mullins E.; Oldland R.; Liu Y. A.; Wang S.; Sandler S. I.; Chen C. C.; Zwolak M.; Seavey K. C. Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods. Ind. Eng. Chem. Res. 2006, 45, 4389–4415. 10.1021/ie060370h. DOI

Lee B. S.; Lin S. T. Prediction of Phase Behaviors of Ionic Liquids over a Wide Range of Conditions. Fluid Phase Equilib. 2013, 356, 309–320. 10.1016/j.fluid.2013.07.046. DOI

Fingerhut R.; Chen W. L.; Schedemann A.; Cordes W.; Rarey J.; Hsieh C. M.; Vrabec J.; Lin S. T. Comprehensive Assessment of COSMO-SAC Models for Predictions of Fluid-Phase Equilibria. Ind. Eng. Chem. Res. 2017, 56, 9868–9884. 10.1021/acs.iecr.7b01360. DOI

Patterson D. Free Volume and Polymer Solubility. A Qualitative View. Macromolecules 1969, 2, 672–677. 10.1021/ma60012a021. DOI

Elbro H. S.; Fredenslund A.; Rasmussen P. A New Simple Equation for the Prediction of Solvent Activities in Polymer-Solutions. Macromolecules 1990, 23, 4707–4714. 10.1021/ma00223a031. DOI

Kouskoumvekaki I. A.; Michelsen M. L.; Kontogeorgis G. M. An Improved Entropic Expression for Polymer Solutions. Fluid Phase Equilib. 2002, 202, 325–335. 10.1016/S0378-3812(02)00124-3. DOI

Bondi A. A.Physical Properties of Molecular Crystals, Liquids, and Glasses; Wiley: New York, NY, 1968.

Zhao Y. H.; Abraham M. H.; Zissimos A. M. Fast Calculation of van der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds. J. Org. Chem. 2003, 68, 7368–7373. 10.1021/jo034808o. PubMed DOI

Ihmels E. C.; Gmehling J. Extension and Revision of the Group Contribution Method GCVOL for the Prediction of Pure Compound Liquid Densities. Ind. Eng. Chem. Res. 2003, 42, 408–412. 10.1021/ie020492j. DOI

Miccio L. A.; Schwartz G. A. From Chemical Structure to Quantitative Polymer Properties Prediction Through Convolutional Neural Networks. Polymer 2020, 193, 122341.10.1016/j.polymer.2020.122341. DOI

Frisch M. J.et al.Gaussian 16, Revision C.01. Gaussian Inc.: Wallingford, CT, 2016.

Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669–681. 10.1002/jcc.10189. PubMed DOI

Software for Chemistry and Materials (SCM). Polymers with COSMO-RS(-SAC). https://www.scm.com/doc/COSMO-RS/Polymers_With_COSMO-RS.html, accessed 2023. –10–22.

Dennington R.; Keith T. A.; Millam J. M.. GaussView, Version 6. Semichem Inc.: Shawnee Mission, KS, 2019.

Inkscape Project, Version 1.2. https://inkscape.org, accessed 2024. –06–13.

Amiya S.; Tsuchiya S.; Qian R.; Nakajima A. The Study of Microstructures of Poly(Vinyl Alcohol) by NMR. Pure Appl. Chem. 1990, 62, 2139–2146. 10.1351/pac199062112139. DOI

Li H. B.; Zhang W. K.; Xu W. Q.; Zhang X. Hydrogen Bonding Governs the Elastic Properties of Poly(Vinyl Alcohol) in Water: Single-Molecule Force Spectroscopic Studies of PVA by AFM. Macromolecules 2000, 33, 465–469. 10.1021/ma990878e. DOI

RDKit: Open-Source Cheminformatics. http://www.rdkit.org, accessed 2022. –07–21.

Amsterdam Modeling Suite (AMS) 2022.101, Software for Chemistry and Materials (SCM), Theoretical Chemistry, Vrije Universiteit. http://www.scm.com, accessed 2022. –07–21.

Mathers A.; Hassouna F.; Klajmon M.; Fulem M. Comparative Study of DSC-Based Protocols for API-Polymer Solubility Determination. Mol. Pharmaceutics 2021, 18, 1742–1757. 10.1021/acs.molpharmaceut.0c01232. PubMed DOI

Iemtsev A.; Zemánková A.; Hassouna F.; Mathers A.; Klajmon M.; Slámová M.; Malinová L.; Fulem M. Ball Milling and Hot-Melt Extrusion of Indomethacin-L-Arginine-Vinylpyrrolidone-Vinyl Acetate Copolymer: Solid-State Properties and Dissolution Performance. Int. J. Pharm. 2022, 613, 121424.10.1016/j.ijpharm.2021.121424. PubMed DOI

Mathers A.Various API–Polymer Solubility Datasets Determined via Differential Scanning Calorimetry; Unpublished raw data, University of Chemistry and Technology: Prague, 2022.

Mathers A.Prediction of Drug Solubility in Polymer: Combined Experimental and Computational Study; Doctoral dissertation, University of Chemistry and Technology: Prague, 2022.

Luebbert C.; Huxoll F.; Sadowski G. Amorphous-Amorphous Phase Separation in API/Polymer Formulations. Molecules 2017, 22, 296.10.3390/molecules22020296. PubMed DOI PMC

Purohit H. S.; Taylor L. S. Miscibility of Itraconazole-Hydroxypropyl Methylcellulose Blends: Insights with High Resolution Analytical Methodologies. Mol. Pharmaceutics 2015, 12, 4542–4553. 10.1021/acs.molpharmaceut.5b00761. PubMed DOI

Yang F. Y.; Su Y. C.; Zhang J. T.; DiNunzio J.; Leone A.; Huang C. B.; Brown C. D. Rheology Guided Rational Selection of Processing Temperature To Prepare Copovidone-Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME). Mol. Pharmaceutics 2016, 13, 3494–3505. 10.1021/acs.molpharmaceut.6b00516. PubMed DOI

Duan P.; Lamm M. S.; Yang F. Y.; Xu W.; Skomski D.; Su Y. C.; Schmidt-Rohr K. Quantifying Molecular Mixing and Heterogeneity in Pharmaceutical Dispersions at Sub-100 nm Resolution by Spin Diffusion NMR. Mol. Pharmaceutics 2020, 17, 3567–3580. 10.1021/acs.molpharmaceut.0c00592. PubMed DOI

Iemtsev A.; Klajmon M.; Hassouna F.; Fulem M. Effect of Copolymer Properties on the Phase Behavior of Ibuprofen-PLA/PLGA Mixtures. Pharmaceutics 2023, 15, 645.10.3390/pharmaceutics15020645. PubMed DOI PMC

Bao Y.; Huang X. B.; Xu J.; Cui S. X. Effect of Intramolecular Hydrogen Bonds on the Single-Chain Elasticity of Poly(Vinyl Alcohol): Evidencing the Synergistic Enhancement Effect at the Single-Molecule Level. Macromolecules 2021, 54, 7314–7320. 10.1021/acs.macromol.1c01251. DOI

Byun H.-S.; Lee B.-S. Liquid-Liquid Equilibrium of Hydrogen Bonding Polymer Solutions. Polymer 2017, 121, 1–8. 10.1016/j.polymer.2017.06.012. DOI

Tesei G.; Paradossi G.; Chiessi E. Poly(Vinyl Alcohol) Oligomer in Dilute Aqueous Solution: A Comparative Molecular Dynamics Simulation Study. J. Phys. Chem. B 2012, 116, 10008–10019. 10.1021/jp305296p. PubMed DOI

Hanada M.; Jermain S. V.; Lu X. Y.; Su Y. C.; Williams R. O. Predicting Physical Stability of Ternary Amorphous Solid Dispersions Using Specific Mechanical Energy in a Hot Melt Extrusion Process. Int. J. Pharm. 2018, 548, 571–585. 10.1016/j.ijpharm.2018.07.029. PubMed DOI

Ma X. Y.; Huang S. Y.; Lowinger M. B.; Liu X.; Lu X. Y.; Su Y. C.; Williams R. O. Influence of Mechanical and Thermal Energy on Nifedipine Amorphous Solid Dispersions Prepared by Hot Melt Extrusion: Preparation and Physical Stability. Int. J. Pharm. 2019, 561, 324–334. 10.1016/j.ijpharm.2019.03.014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...