In-Vitro Activity of Silybin and Related Flavonolignans against Leishmania infantum and L. donovani
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29954145
PubMed Central
PMC6100512
DOI
10.3390/molecules23071560
PII: molecules23071560
Knihovny.cz E-zdroje
- Klíčová slova
- L. donovani, Leishmania infantum, SbIII, amphotericin, dehydroisosilybin, dehydrosilybin, leishmaniasis, paromomycin, silybin,
- MeSH
- amfotericin B farmakologie MeSH
- antiprotozoální látky farmakologie MeSH
- Leishmania donovani účinky léků MeSH
- Leishmania infantum účinky léků MeSH
- leishmanióza viscerální metabolismus MeSH
- lidé MeSH
- psi MeSH
- silibinin MeSH
- silymarin farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amfotericin B MeSH
- antiprotozoální látky MeSH
- dehydrosilybin MeSH Prohlížeč
- silibinin MeSH
- silymarin MeSH
Flavonolignans from the seeds of the milk thistle (Silybum marianum) have been extensively used in folk medicine for centuries. Confirmation of their properties as hepatoprotective, antioxidant and anticancer has been obtained using standardized extracts and purified flavonolignans. Information on their potential effect on Leishmania is very scarce. We have investigated the effect of silymarin, silybin and related flavonolignans on the multiplication of promastigotes in vitro and ex vivo on intracellular amastigotes of L. infantum (Li) and L. donovani (Ld), causative agents of human and canine visceral leishmaniasis (VL). In addition, the potential synergistic effect of the most active molecule and well-established antileishmanial drugs against promastigotes was explored. Dehydroisosilybin A elicited the highest inhibition against Ld and Li promastigotes with an approximate IC50 of 90.23 µM. This molecule showed a moderate synergism with amphotericin B (AmB) but not with SbIII or paromomycin, although it was ineffective against amastigotes. Antileishmanial activity on intracellular amastigotes of the two diastereoisomers of dehydrosilybin (10 µM) was comparable to that elicited by 0.1 µM AmB. Antiproliferative activity and safety of flavonolignans suggest the interest of exploring their potential value in combination therapy against VL.
Zobrazit více v PubMed
DNDi. [(accessed on 4 April 2018)]; Available online: https://www.dndi.org/diseases-projects/leishmaniasis/
Savoia D. Recent updates and perspectives on leishmaniasis. J. Infect. Dev. Ctries. 2015;9:588–596. doi: 10.3855/jidc.6833. PubMed DOI
World Health Organization (WHO) [(accessed on 4 April 2018)]; Available online: http://www.who.int/mediacentre/factsheets/fs375/en/2015.
Pavli A., Maltezou H.C. Leishmaniasis, an emerging infection in travelers. Int. J. Infect. Dis. 2010;14:1032–1039. doi: 10.1016/j.ijid.2010.06.019. PubMed DOI
Pennisi M.G. Leishmaniosis of companion animals in Europe: An update. Vet. Parasitol. 2015;218:35–47. doi: 10.1016/j.vetpar.2014.12.023. PubMed DOI
Moreno J., Alvar J. Canine leishmaniasis: Epidemiological risk and the experimental model. Trends Parasitol. 2002;18:399–405. doi: 10.1016/S1471-4922(02)02347-4. PubMed DOI
Pace D. Leishmaniasis. J. Infect. 2014;69:10–18. doi: 10.1016/j.jinf.2014.07.016. PubMed DOI
Croft S.L., Sundar S., Fairlamb A.H. Drugs resistance in leishmaniasis. Clin. Microbiol. Rev. 2006:111–126. doi: 10.1128/CMR.19.1.111-126.2006. PubMed DOI PMC
Ready P.D. Epidemiology of visceral leishmaniasis. Clin. Epidem. 2014;6:147–154. doi: 10.2147/CLEP.S44267. PubMed DOI PMC
Lehane A.M., Saliba K.J. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res. Notes. 2008;1:6. doi: 10.1186/1756-0500-1-26. PubMed DOI PMC
Mittra B., Saha A., Chowdhury A.R., Pal C., Mandal S., Mukhopadhyay S., Bandyopadhyay S., Majumder H.K. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol. Med. 2000;6:527–541. PubMed PMC
Lewin G., Cojean S., Gupta S., Verma A., Puri S.K., Loiseau P.M. In vitro antileishmanial properties of new flavonoids against Leishmania donovani. Biomed. Prev. Nutr. 2011;1:168–171. doi: 10.1016/j.bionut.2011.06.012. DOI
Borsari C., Luciani R., Pozzi C., Poehner I., Henrich S., Trande M., Cordeiro-da-Silva A., Santarem N., Baptista C., Tait A., et al. Profiling of flavonol derivatives for the development of antitrypanosomatidic drugs. J. Med. Chem. 2016;59:7598–7616. doi: 10.1021/acs.jmedchem.6b00698. PubMed DOI
Vrba J., Papoušková B., Roubalová L.K., Zatloukalová M., Biedermann D., Křen V., Valentová K., Ulrichová J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI
Křen V., Walterová D. Silybin and silymarin-new effects and applications. Biomed. Pap. 2005;149:29–41. doi: 10.5507/bp.2005.002. PubMed DOI
Radko L., Cybulski W. Application of silymarin in human and animal medicine. J. Preclin. Clin. Res. 2007;1:22–26.
Lovelace E.S., Wagoner J., MacDonald J., Bammler T., Bruckner J., Brownell J., Beyer R., Zink E.M., Kim Y.-M., Kyle J.E., et al. Silymarin suppresses cellular inflammation by inducing reparative stress signaling. J. Nat. Prod. 2015;78:1990–2000. doi: 10.1021/acs.jnatprod.5b00288. PubMed DOI PMC
Polyak S.J., Morishima C., Lohmann V., Pal S., Lee D.Y.W., Liu Y., Graf T.N., Oberlies N.H. Identification of hepatoprotective flavonolignans from silymarin. Proc. Natl. Acad. Sci. USA. 2010;107:5995–5999. doi: 10.1073/pnas.0914009107. PubMed DOI PMC
Faridnia R., Kalani H., Fakhar M., Akhtari J. Investigating in vitro anti-leishmanial effects of silibinin and silymarin on Leishmania major. Ann. Parasitol. 2018;64:29–35. doi: 10.17420/ap6401.129. PubMed DOI
Jabini R., Jaafari M.R., Vahdati Hasani F., Ghazizadeh F., Khamesipour A., Karimi G. Effects of combined therapy with silymarin and glucantime on leishmaniasis induced by Leishmania major in BALB/c mice. Drug Res. 2015;65:119–124. doi: 10.1055/s-0034-1370914. PubMed DOI
Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition… and why does it matter??? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Chou T.C. Theoretical basis, experimental design and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI
Chou T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–446. doi: 10.1158/0008-5472.CAN-09-1947. PubMed DOI
Denny B.J., West P.W., Mathews T.C. Antagonistic interactions between the flavonoids hesperetin and naringenin and beta-lactam antibiotics against Staphylococcus aureus. Br. J. Biomed. Sci. 2008;65:145–147. doi: 10.1080/09674845.2008.11732819. PubMed DOI
Fumarola L., Spinelli R., Brandonisio O. In vitro assays for evaluation of drug activity against Leishmania spp. Res. Microbiol. 2004;155:224–230. doi: 10.1016/j.resmic.2004.01.001. PubMed DOI
Zulfiqar B., Shelper T.B., Avery V.M. Leishmaniasis drug discovery: Recent progress and challenges in assay development. Drug Discov. Today. 2017;22:1516–1531. doi: 10.1016/j.drudis.2017.06.004. PubMed DOI
Vermeersch M., Inocêncio da Luz R., Toté K., Timmermans J.-P., Cos P., Maes L. In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: Practical relevance of stage-specific differences. Antimicrob. Agents Chemother. 2009;53:3855–3859. doi: 10.1128/AAC.00548-09. PubMed DOI PMC
De Muylder G., Ang K.K.H., Chen S., Arkin M.R., Engel J.C., McKerrow J.H. A screen against Leishmania intracellular amastigotes: Comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Neglec. Trop. Dis. 2011;5:E1253. doi: 10.1371/journal.pntd.0001253. PubMed DOI PMC
Davis-Searles P.R., Nakanishi Y., Kim N.C., Graf T.N., Oberlies N.H., Wani M.C., Wall M.E., Argarwal R., Kroll D.J. Milk thistle and prostate cancer: Differential effects of pure flavolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Res. 2005;65:448–457. doi: 10.1158/0008-5472.CAN-04-4662. PubMed DOI
Pérez-Victoria J.M., Pérez-Victoria F.J., Conseil G., Maitrejean M., Comte G., Barron D., Di Pietro A., Castanys S., Gamarro F. High-affinity binding of silybin derivatives to the nucleotide-binding domain of a Leishmania tropica P-glycoprotein-like transporter and chemosensitization of a multidrug-resistant parasite to daunomycin. Antimicrob. Agents Chemother. 2001;45:439–446. doi: 10.1128/AAC.45.2.439-446.2001. PubMed DOI PMC
Herrmann F.C., Sivakumar N., Jose J., Costi M.P., Pozzi C., Schmidt T.J. In silico identification and in vitro evaluation of natural inhibitors of Leishmania major pteridine reductase I. Molecules. 2017;22:2166. doi: 10.3390/molecules22122166. PubMed DOI PMC
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popović-Bijelić A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI
Wen Z., Dumas T.E., Schrieber S.J., Hawke R.L., Fried M.W., Smith P.C. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 2008;36:65–72. doi: 10.1124/dmd.107.017566. PubMed DOI
Křenek K., Marhol P., Peikerová Z., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI
Monti D., Gažák R., Marhol P., Biedermann D., Purchartová K., Fedrigo M., Riva S., Křen V. Enzymatic kinetic resolution of silybin diastereoisomers. J. Nat. Prod. 2010;73:613–619. doi: 10.1021/np900758d. PubMed DOI
Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-SC-Ale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI
Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI
Maitrejean M., Comte G., Barron D., El Kirat K., Conseil G., Di Pietro A. The flavonolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg. Med. Chem. Lett. 2000;10:157–160. doi: 10.1016/S0960-894X(99)00636-8. PubMed DOI
Méndez S., Nell M., Alunda J.M. Leishmania infantum: Infection of macrophages in vitro with promastigotes. Int. J. Parasitol. 1996;26:619–622. doi: 10.1016/0020-7519(96)00037-9. PubMed DOI
Corral-Caridad M.J., Moreno I., Toraño A., Domínguez M., Alunda J.M. Effect of allicin on promastigotes and intracellular amastigotes of Leishmania donovani and L. infantum. Exp. Parasitol. 2012;132:475–482. doi: 10.1016/j.exppara.2012.08.016. PubMed DOI
Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners