In-Vitro Activity of Silybin and Related Flavonolignans against Leishmania infantum and L. donovani

. 2018 Jun 27 ; 23 (7) : . [epub] 20180627

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29954145

Flavonolignans from the seeds of the milk thistle (Silybum marianum) have been extensively used in folk medicine for centuries. Confirmation of their properties as hepatoprotective, antioxidant and anticancer has been obtained using standardized extracts and purified flavonolignans. Information on their potential effect on Leishmania is very scarce. We have investigated the effect of silymarin, silybin and related flavonolignans on the multiplication of promastigotes in vitro and ex vivo on intracellular amastigotes of L. infantum (Li) and L. donovani (Ld), causative agents of human and canine visceral leishmaniasis (VL). In addition, the potential synergistic effect of the most active molecule and well-established antileishmanial drugs against promastigotes was explored. Dehydroisosilybin A elicited the highest inhibition against Ld and Li promastigotes with an approximate IC50 of 90.23 µM. This molecule showed a moderate synergism with amphotericin B (AmB) but not with SbIII or paromomycin, although it was ineffective against amastigotes. Antileishmanial activity on intracellular amastigotes of the two diastereoisomers of dehydrosilybin (10 µM) was comparable to that elicited by 0.1 µM AmB. Antiproliferative activity and safety of flavonolignans suggest the interest of exploring their potential value in combination therapy against VL.

Zobrazit více v PubMed

DNDi. [(accessed on 4 April 2018)]; Available online: https://www.dndi.org/diseases-projects/leishmaniasis/

Savoia D. Recent updates and perspectives on leishmaniasis. J. Infect. Dev. Ctries. 2015;9:588–596. doi: 10.3855/jidc.6833. PubMed DOI

World Health Organization (WHO) [(accessed on 4 April 2018)]; Available online: http://www.who.int/mediacentre/factsheets/fs375/en/2015.

Pavli A., Maltezou H.C. Leishmaniasis, an emerging infection in travelers. Int. J. Infect. Dis. 2010;14:1032–1039. doi: 10.1016/j.ijid.2010.06.019. PubMed DOI

Pennisi M.G. Leishmaniosis of companion animals in Europe: An update. Vet. Parasitol. 2015;218:35–47. doi: 10.1016/j.vetpar.2014.12.023. PubMed DOI

Moreno J., Alvar J. Canine leishmaniasis: Epidemiological risk and the experimental model. Trends Parasitol. 2002;18:399–405. doi: 10.1016/S1471-4922(02)02347-4. PubMed DOI

Pace D. Leishmaniasis. J. Infect. 2014;69:10–18. doi: 10.1016/j.jinf.2014.07.016. PubMed DOI

Croft S.L., Sundar S., Fairlamb A.H. Drugs resistance in leishmaniasis. Clin. Microbiol. Rev. 2006:111–126. doi: 10.1128/CMR.19.1.111-126.2006. PubMed DOI PMC

Ready P.D. Epidemiology of visceral leishmaniasis. Clin. Epidem. 2014;6:147–154. doi: 10.2147/CLEP.S44267. PubMed DOI PMC

Lehane A.M., Saliba K.J. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res. Notes. 2008;1:6. doi: 10.1186/1756-0500-1-26. PubMed DOI PMC

Mittra B., Saha A., Chowdhury A.R., Pal C., Mandal S., Mukhopadhyay S., Bandyopadhyay S., Majumder H.K. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol. Med. 2000;6:527–541. PubMed PMC

Lewin G., Cojean S., Gupta S., Verma A., Puri S.K., Loiseau P.M. In vitro antileishmanial properties of new flavonoids against Leishmania donovani. Biomed. Prev. Nutr. 2011;1:168–171. doi: 10.1016/j.bionut.2011.06.012. DOI

Borsari C., Luciani R., Pozzi C., Poehner I., Henrich S., Trande M., Cordeiro-da-Silva A., Santarem N., Baptista C., Tait A., et al. Profiling of flavonol derivatives for the development of antitrypanosomatidic drugs. J. Med. Chem. 2016;59:7598–7616. doi: 10.1021/acs.jmedchem.6b00698. PubMed DOI

Vrba J., Papoušková B., Roubalová L.K., Zatloukalová M., Biedermann D., Křen V., Valentová K., Ulrichová J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI

Křen V., Walterová D. Silybin and silymarin-new effects and applications. Biomed. Pap. 2005;149:29–41. doi: 10.5507/bp.2005.002. PubMed DOI

Radko L., Cybulski W. Application of silymarin in human and animal medicine. J. Preclin. Clin. Res. 2007;1:22–26.

Lovelace E.S., Wagoner J., MacDonald J., Bammler T., Bruckner J., Brownell J., Beyer R., Zink E.M., Kim Y.-M., Kyle J.E., et al. Silymarin suppresses cellular inflammation by inducing reparative stress signaling. J. Nat. Prod. 2015;78:1990–2000. doi: 10.1021/acs.jnatprod.5b00288. PubMed DOI PMC

Polyak S.J., Morishima C., Lohmann V., Pal S., Lee D.Y.W., Liu Y., Graf T.N., Oberlies N.H. Identification of hepatoprotective flavonolignans from silymarin. Proc. Natl. Acad. Sci. USA. 2010;107:5995–5999. doi: 10.1073/pnas.0914009107. PubMed DOI PMC

Faridnia R., Kalani H., Fakhar M., Akhtari J. Investigating in vitro anti-leishmanial effects of silibinin and silymarin on Leishmania major. Ann. Parasitol. 2018;64:29–35. doi: 10.17420/ap6401.129. PubMed DOI

Jabini R., Jaafari M.R., Vahdati Hasani F., Ghazizadeh F., Khamesipour A., Karimi G. Effects of combined therapy with silymarin and glucantime on leishmaniasis induced by Leishmania major in BALB/c mice. Drug Res. 2015;65:119–124. doi: 10.1055/s-0034-1370914. PubMed DOI

Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition… and why does it matter??? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Chou T.C. Theoretical basis, experimental design and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI

Chou T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–446. doi: 10.1158/0008-5472.CAN-09-1947. PubMed DOI

Denny B.J., West P.W., Mathews T.C. Antagonistic interactions between the flavonoids hesperetin and naringenin and beta-lactam antibiotics against Staphylococcus aureus. Br. J. Biomed. Sci. 2008;65:145–147. doi: 10.1080/09674845.2008.11732819. PubMed DOI

Fumarola L., Spinelli R., Brandonisio O. In vitro assays for evaluation of drug activity against Leishmania spp. Res. Microbiol. 2004;155:224–230. doi: 10.1016/j.resmic.2004.01.001. PubMed DOI

Zulfiqar B., Shelper T.B., Avery V.M. Leishmaniasis drug discovery: Recent progress and challenges in assay development. Drug Discov. Today. 2017;22:1516–1531. doi: 10.1016/j.drudis.2017.06.004. PubMed DOI

Vermeersch M., Inocêncio da Luz R., Toté K., Timmermans J.-P., Cos P., Maes L. In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: Practical relevance of stage-specific differences. Antimicrob. Agents Chemother. 2009;53:3855–3859. doi: 10.1128/AAC.00548-09. PubMed DOI PMC

De Muylder G., Ang K.K.H., Chen S., Arkin M.R., Engel J.C., McKerrow J.H. A screen against Leishmania intracellular amastigotes: Comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Neglec. Trop. Dis. 2011;5:E1253. doi: 10.1371/journal.pntd.0001253. PubMed DOI PMC

Davis-Searles P.R., Nakanishi Y., Kim N.C., Graf T.N., Oberlies N.H., Wani M.C., Wall M.E., Argarwal R., Kroll D.J. Milk thistle and prostate cancer: Differential effects of pure flavolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Res. 2005;65:448–457. doi: 10.1158/0008-5472.CAN-04-4662. PubMed DOI

Pérez-Victoria J.M., Pérez-Victoria F.J., Conseil G., Maitrejean M., Comte G., Barron D., Di Pietro A., Castanys S., Gamarro F. High-affinity binding of silybin derivatives to the nucleotide-binding domain of a Leishmania tropica P-glycoprotein-like transporter and chemosensitization of a multidrug-resistant parasite to daunomycin. Antimicrob. Agents Chemother. 2001;45:439–446. doi: 10.1128/AAC.45.2.439-446.2001. PubMed DOI PMC

Herrmann F.C., Sivakumar N., Jose J., Costi M.P., Pozzi C., Schmidt T.J. In silico identification and in vitro evaluation of natural inhibitors of Leishmania major pteridine reductase I. Molecules. 2017;22:2166. doi: 10.3390/molecules22122166. PubMed DOI PMC

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popović-Bijelić A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Wen Z., Dumas T.E., Schrieber S.J., Hawke R.L., Fried M.W., Smith P.C. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 2008;36:65–72. doi: 10.1124/dmd.107.017566. PubMed DOI

Křenek K., Marhol P., Peikerová Z., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Monti D., Gažák R., Marhol P., Biedermann D., Purchartová K., Fedrigo M., Riva S., Křen V. Enzymatic kinetic resolution of silybin diastereoisomers. J. Nat. Prod. 2010;73:613–619. doi: 10.1021/np900758d. PubMed DOI

Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-SC-Ale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI

Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI

Maitrejean M., Comte G., Barron D., El Kirat K., Conseil G., Di Pietro A. The flavonolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg. Med. Chem. Lett. 2000;10:157–160. doi: 10.1016/S0960-894X(99)00636-8. PubMed DOI

Méndez S., Nell M., Alunda J.M. Leishmania infantum: Infection of macrophages in vitro with promastigotes. Int. J. Parasitol. 1996;26:619–622. doi: 10.1016/0020-7519(96)00037-9. PubMed DOI

Corral-Caridad M.J., Moreno I., Toraño A., Domínguez M., Alunda J.M. Effect of allicin on promastigotes and intracellular amastigotes of Leishmania donovani and L. infantum. Exp. Parasitol. 2012;132:475–482. doi: 10.1016/j.exppara.2012.08.016. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners

. 2021 Jul 23 ; 22 (15) : . [epub] 20210723

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...