Regioselective alcoholysis of silychristin acetates catalyzed by lipases
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26016503
PubMed Central
PMC4490424
DOI
10.3390/ijms160611983
PII: ijms160611983
Knihovny.cz E-zdroje
- Klíčová slova
- acetylation, alcoholysis, lipase, silychristin, silymarin,
- MeSH
- acetáty chemická syntéza MeSH
- acetylace MeSH
- bakteriální proteiny metabolismus MeSH
- biokatalýza MeSH
- Burkholderia cepacia enzymologie MeSH
- enzymy imobilizované metabolismus MeSH
- lipasa metabolismus MeSH
- molekulární struktura MeSH
- registrace MeSH
- silymarin chemie MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetáty MeSH
- bakteriální proteiny MeSH
- enzymy imobilizované MeSH
- lipasa MeSH
- silychristin MeSH Prohlížeč
- silymarin MeSH
A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22) of silychristin was accomplished by lipase PS (Pseudomonas cepacia) immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/ n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule.
Zobrazit více v PubMed
Gažák R., Walterová D., Křen V. Silybin and silymarin—New and emerging applications in medicine. Curr. Med. Chem. 2007;14:315–338. PubMed
Biedermann D., Vavříková E., Cvak L., Křen V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. doi: 10.1039/C3NP70122K. PubMed DOI
Křenek K., Marhol P., Peikerová Z., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI
Wagner H., Seligmann O., Seitz M., Abraham D., Sonnenbichler J. Silydianin and silychristin, two isomeric silymarins from Silybum marianum L. Gaertn. (milk thistle) Z. Naturforsch B. 1976;31:876–884. doi: 10.1515/znb-1976-0630. (In German) DOI
Pelter A., Hansel R., Kaloga M. The structure of silychristin. Tetrahedron Lett. 1977:4547–4548. doi: 10.1016/S0040-4039(01)83563-2. DOI
Smith W.A., Lauren D.R., Burgess E.J., Perry N.B., Martin R.J. A silychristin isomer and variation of flavonolignan levels in milk thistle (Silybum marianum) fruits. Planta Med. 2005;71:877–880. doi: 10.1055/s-2005-864187. PubMed DOI
Šeršeň F., Vencel T., Annus J. Silymarin and its components scavenge phenylglyoxylic ketyl radicals. Fitoterapia. 2006;77:525–529. doi: 10.1016/j.fitote.2006.06.005. PubMed DOI
Cai X.L., Li D.N., Qiao J.Q., Lian H.Z., Wang S.K. Determination of silymarin flavonoids by HPLC and LC-MS and investigation of extraction rate of silymarin in Silybum marianum fruits by boiling water. Asian J. Chem. 2009;21:63–74.
Chebil L., Humeau C., Falcimaigne A., Engasser J.M., Ghoul M. Enzymatic acylation of flavonoids. Process Biochem. 2006;41:2237–2251. doi: 10.1016/j.procbio.2006.05.027. DOI
Gavezzotti P., Vavříková E., Valentová K., Fronza G., Kudanga T., Kuzma M., Riva S., Biedermann D., Křen V. Enzymatic oxidative dimerization of silymarin flavonolignans. J. Mol. Catal. B. 2014;109:24–30. doi: 10.1016/j.molcatb.2014.07.012. DOI
Vavříková E., Vacek J., Valentová K., Marhol P., Ulrichová J., Kuzma M., Křen V. Chemo-enzymatic synthesis of silybin and 2,3-dehydrosilybin dimers. Molecules. 2014;19:4115–4134. doi: 10.3390/molecules19044115. PubMed DOI PMC
Monti D., Gažák R., Marhol P., Biedermann D., Purchartová K., Fedrigo M., Riva S., Křen V. Enzymatic kinetic resolution of silybin diastereoisomers. J. Nat. Prod. 2010;73:613–619. doi: 10.1021/np900758d. PubMed DOI
Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI
Purchartová K., Marhol P., Gažák R., Monti D., Riva S., Kuzma M., Křen V. Regioselective alcoholysis of silybin A and B acetates with lipases. J. Mol. Catal. B. 2011;71:119–123. doi: 10.1016/j.molcatb.2011.04.007. DOI
Lambusta D., Nicolosi G., Patti A., Sanfilippo C. Application of lipase catalysis in organic solvents for selective protection-deprotection of bioactive compounds. J. Mol. Catal. B. 2003;22:271–277. doi: 10.1016/S1381-1177(03)00042-0. DOI
D’Antona N., Lambusta D., Nicolosi G., Bovicelli P. Preparation of regioprotected morins by lipase-catalysed transesterification. J. Mol. Catal. B. 2008;52:78–81. doi: 10.1016/j.molcatb.2007.10.007. DOI
Natoli M., Nicolosi G., Piattelli M. Regioselective alcoholysis of flavonoid acetates with lipase in an organic solvent. J. Org. Chem. 1992;57:5776–5778. doi: 10.1021/jo00047a040. DOI
Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners