Flavonolignans As a Novel Class of Sodium Pump Inhibitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27065883
PubMed Central
PMC4812144
DOI
10.3389/fphys.2016.00115
Knihovny.cz E-zdroje
- Klíčová slova
- Na+/K+-ATPase, binding sites, flavonolignans, inhibition, sodium pump,
- Publikační typ
- časopisecké články MeSH
We examined the inhibitory effects of three flavonolignans and their dehydro- derivatives, taxifolin and quercetin on the activity of the Na(+)/K(+)-ATPase (NKA). The flavonolignans silychristin, dehydrosilychristin and dehydrosilydianin inhibited NKA with IC50 of 110 ± 40 μM, 38 ± 8 μM, and 36 ± 14 μM, respectively. Using the methods of molecular modeling, we identified several possible binding sites for these species on NKA and proposed the possible mechanisms of inhibition. The binding to the extracellular- or cytoplasmic C-terminal sites can block the transport of cations through the plasma membrane, while the binding on the interface of cytoplasmic domains can inhibit the enzyme allosterically. Fluorescence spectroscopy experiments confirmed the interaction of these three species with the large cytoplasmic segment connecting transmembrane helices 4 and 5 (C45). The flavonolignans are distinct from the cardiac glycosides that are currently used in NKA treatment. Because their binding sites are different, the mechanism of inhibition is different as well as the range of active concentrations, one can expect that these new NKA inhibitors would exhibit also a different biomedical actions than cardiac glycosides.
Zobrazit více v PubMed
Agarwal R., Agarwal C., Ichikawa H., Singh R. P., Aggarwal B. B. (2006). Anticancer potential of silymarin: from bench to bed side. Anticancer Res. 26, 4457–4498. PubMed
Biedermann D., Vavříková E., Cvak L., Křen V. (2014). Chemistry of silybin. Nat. Prod. Rep. 31, 1138–1157. 10.1039/C3NP70122K PubMed DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. PubMed
Brewer H. (2004). Historical perspectives on health: early Arabic medicine. J. R. Soc. Promot. Health. 124, 184–187. 10.1177/146642400412400412 PubMed DOI
Džubák P., Hajdúch M., Gažák R., Svobodová A., Psotová J., Walterová D., et al. . (2006). New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg. Med. Chem. 14, 3793–3810. 10.1016/j.bmc.2006.01.035 PubMed DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., et al. (2009). Gaussian 09, version A02. Wallingford, CT: Gaussian. Inc.
Gheorghiade M., Adams K. F., Jr., Colucci W. S. (2004). Digoxin in the management of cardiovascular disorders. Circulation 109, 2959–2964. 10.1161/01.CIR.0000132482.95686.87 PubMed DOI
Grycova L., Sklenovsky P., Lansky Z., Janovska M., Otyepka M., Amler E., et al. (2009). ATP and magnesium drive conformational changes of the Na+/K+-ATPase cytoplasmic headpiece. Biochim. Biophys. Acta 1788, 1081–1091. 10.1016/j.bbamem.2009.02.004 PubMed DOI
Havlíková M., Huličiak M., Bazgier V., Berka K., Kubala M. (2013). Fluorone dyes have binding sites on both cytoplasmic and extracellular domains of Na,K-ATPase. Biochim. Biophys. Acta 1828, 568–576. 10.1016/j.bbamem.2012.10.029 PubMed DOI
Huličiak M., Vacek J., Šebela M., Orolinová E., Znaleziona J., Havlíková M., et al. (2012). Covalent binding of cisplatin impairs the function of Na+/K+-ATPase by binding to its cytoplasmic part. Biochem. Pharmacol. 83, 1507–1513. 10.1016/j.bcp.2012.02.015 PubMed DOI
Jørgensen P. L. (1988). Biomembranes Part P: ATP-driven pumps and related transport: the Na,K-Pump. Methods Enzymol. 156, 29–43. PubMed
Jorgensen P. L., Håkansson K. O., Karlish S. J. D. (2003). Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu. Rev. Physiol. 65, 817–849. 10.1146/annurev.physiol.65.092101.142558 PubMed DOI
Kaplan J. H. (2002). Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 71, 511–535. 10.1146/annurev.biochem.71.102201.141218 PubMed DOI
Klodos I., Esmann M., Post R. L. (2002). Large-scale preparation of sodium-potassium ATPase from kidney outer medulla. Kidney Int. 62, 2097–2100. 10.1046/j.1523-1755.2002.00654.x PubMed DOI
Koshland D. E. (1995). the key–lock theory and the induced fit theory. Angew. Chemie Int. Ed English. 33, 2375–2378. 10.1002/anie.199423751 DOI
Křenek K., Marhol P., Peikerová Z., Křen V., Biedermann D. (2014). Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 65, 115–120. 10.1016/j.foodres.2014.02.001 DOI
Kubala M. (2006). ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments. Proteins 64, 1–12. 10.1002/prot.20969 PubMed DOI
Kubala M., Geleticova J., Huliciak M., Zatloukalova M., Vacek J., Sebela M. (2014). Na+/K+-ATPase inhibition by cisplatin and consequences for cisplatin nephrotoxicity. Biomed. Pap. 158, 194–200. 10.5507/bp.2014.018 PubMed DOI
Kubala M., Grycova L., Lansky Z., Sklenovsky P., Janovska M., Otyepka M., et al. . (2009). Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding. Biophys. J. 97, 1756–1764. 10.1016/j.bpj.2009.07.002 PubMed DOI PMC
Kubala M., Plášek J., Amler E. (2003b). Limitations in linearized analyses of binding equilibria: binding of TNP-ATP to the H4-H5 loop of Na/K-ATPase. Eur. Biophys. J. 32, 363–369. 10.1007/s00249-003-0278-y PubMed DOI
Kubala M., Plášek J., Amler E. (2004). Fluorescence competition assay for the assessment of ATP binding to an isolated domain of Na+,K+-ATPase. Physiol. Res. 53, 109–113. 10.1021/bi010270 PubMed DOI
Kubala M., Teisinger J., Ettrich R., Hofbauerová K., Kopecký V., Baumruk V., et al. . (2003a). Eight amino acids form the ATP recognition site of Na+/K+-ATPase. Biochemistry 42, 6446–6452. 10.1021/bi034162u PubMed DOI
Loguercio C., Festi D. (2011). Silybin and the liver: from basic research to clinical practice. World J. Gastroenterol. 17:2288. 10.3748/wjg.v17.i18.2288 PubMed DOI PMC
Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., et al. . (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791. 10.1002/jcc.21256 PubMed DOI PMC
Morth J. P., Pedersen B. P., Toustrup-Jensen M. S., Sørensen T. L.-M., Petersen J., Andersen J. P., et al. . (2007). Crystal structure of the sodium–potassium pump. Nature 450, 1043–1049. 10.1038/nature06419 PubMed DOI
Müller-Ehmsen J., Juvvadi P., Thompson C. B., Tumyan L., Croyle M., Lingrel J. B., et al. (2001). Ouabain and substrate affinities of human Na+ -K+ -ATPase α1β1, α2β1, and α3β1 when expressed separately in yeast cells. Am. J. Physiol. Cell Physiol. 281, 1355–1364. PubMed
Newman R. A., Yang P., Pawlus A. D., Block K. I. (2008). Cardiac glycosides as novel cancer therapeutic agents. Mol. Interv. 8, 36–49. 10.1124/mi.8.1.8 PubMed DOI
Nyblom M., Poulsen H., Gourdon P., Andersson M., Lindahl E., Fedosova N. (2013). Crystal structure of Na+, K+-ATPase in the Na+-bound state. Science 342, 123–127. 10.1126/science.1243352 PubMed DOI
Ogawa H., Shinoda T., Cornelius F., Toyoshima C. (2009). Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc. Natl. Acad. Sci. U.S.A. 106, 13742–13747. 10.1073/pnas.0907054106 PubMed DOI PMC
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., et al. . (2015). Flavonolignan 2,3-dehydroderivatives: preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 90, 114–125. 10.1016/j.freeradbiomed.2015.11.014 PubMed DOI
Schack V. R., Morth J. P., Toustrup-Jensen M. S., Anthonisen A. N., Nissen P., Andersen J. P., et al. . (2008). Identification and function of a cytoplasmic K+ site of the Na+,K+-ATPase. J. Biol. Chem. 283, 27982–27990. 10.1074/jbc.M803506200 PubMed DOI
Toustrup-Jensen M. S., Holm R., Einholm A. P., Schack V. R., Morth J. P., Nissen P., et al. . (2009). The C terminus of Na+,K+-ATPase controls Na+ affinity on both sides of the membrane through Arg935. J. Biol. Chem. 284, 18715–18725. 10.1074/jbc.M109.015099 PubMed DOI PMC
Trott O., Olson A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461. 10.1002/jcc.21334 PubMed DOI PMC
Trouillas P., Marsal P., Siri D., Lazzaroni R., Duroux J.-L. (2006). A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chem. 97, 679–688. 10.1016/j.foodchem.2005.05.042 DOI
Trouillas P., Marsal P., Svobodová A., Vostálová J., Gazák R., Hrbác J., et al. . (2008). Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: a joint experimental and theoretical study. J. Phys. Chem. A. 112, 1054–1063. 10.1021/jp075814h PubMed DOI
Vacek J., Zatloukalová M., Desmier T., Nezhodová V., Hrbáč J., Kubala M., et al. . (2013). Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin. Chem. Biol. Interact. 205, 173–180. 10.1016/j.cbi.2013.07.006 PubMed DOI
Wang J., Zhao L., Sun G., Liang Y., Wu F., Chen Z., et al. (2011). A comparison of acidic and enzymatic hydrolysis of rutin. J. Biotechnol. 10, 1460–1466. 10.5897/AJB10.2077 DOI
Watabe M., Masuda Y., Nakajo S., Yoshida T., Kuroiwa Y., Nakaya K. (1996). The Cooperative interaction of two different signaling pathways in response to bufalin induces apoptosis in human leukemia U937 cells. J. Biol. Chem. 271, 14067–14073. 10.1074/jbc.271.24.14067 PubMed DOI
Procyanidin C1 from Viola odorata L. inhibits Na+,K+-ATPase
Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners
Identification of cisplatin-binding sites on the large cytoplasmic loop of the Na+/K+-ATPase