Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19751681
PubMed Central
PMC2741587
DOI
10.1016/j.bpj.2009.07.002
PII: S0006-3495(09)01209-0
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus farmakologie MeSH
- akrylamid metabolismus farmakologie MeSH
- cytoplazma metabolismus MeSH
- fluorescence MeSH
- hořčík metabolismus farmakologie MeSH
- jodidy metabolismus farmakologie MeSH
- konformace proteinů účinky léků MeSH
- ligandy MeSH
- molekulární modely MeSH
- mutace MeSH
- myši MeSH
- povrchové vlastnosti MeSH
- sodíko-draslíková ATPasa chemie genetika metabolismus MeSH
- statická elektřina * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- akrylamid MeSH
- hořčík MeSH
- jodidy MeSH
- ligandy MeSH
- sodíko-draslíková ATPasa MeSH
A set of single-tryptophan mutants of the Na(+)/K(+)-ATPase isolated, large cytoplasmic loop connecting transmembrane helices M4 and M5 (C45) was prepared to monitor effects of the natural cytoplasmic ligands (i.e., Mg(2+) and/or ATP) binding. We introduced a novel method for the monitoring of the changes in the electrostatic surface potential (ESP) induced by ligand binding, using the quenching of the intrinsic tryptophan fluorescence by acrylamide or iodide. This approach opens a new way to understanding the interactions within the proteins. Our experiments revealed that the C45 conformation in the presence of the ATP (without magnesium) substantially differed from the conformation in the presence of Mg(2+) or MgATP or in the absence of any ligand not only in the sense of geometry but also in the sense of the ESP. Notably, the set of ESP-sensitive residues was different from the set of geometry-sensitive residues. Moreover, our data indicate that the effect of the ligand binding is not restricted only to the close environment of the binding site and that the information is in fact transmitted also to the distal parts of the molecule. This property could be important for the communication between the cytoplasmic headpiece and the cation binding sites located within the transmembrane domain.
Zobrazit více v PubMed
Benkovic S.J., Hammes-Schiffer S. A perspective on enzyme catalysis. Science. 2003;301:1196–1202. PubMed
Kantarci-Carsibasi N., Haliloglu T., Doruker P. Conformational transition pathways explored by Monte Carlo simulation integrated with collective modes. Biophys. J. 2008;95:5862–5873. PubMed PMC
Wen P.C., Tajkhorshid E. Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis. Biophys. J. 2008;95:5100–5110. PubMed PMC
Jorgensen P.L., Hakansson K.O., Karlish S.J.D. Structure and mechanism of Na,K-ATPase: Functional sites and their interactions. Annu. Rev. Physiol. 2003;65:817–849. PubMed
Therien A.G., Deber C.M. Oligomerization of a peptide derived from the transmembrane region of the sodium pump gamma subunit: effect of the pathological mutation G41R. J. Mol. Biol. 2002;322:583–590. PubMed
Yatime L., Buch-Pedersen M.J., Musgaard M., Morth J.P., Winther A.M.L. P-type ATPases as drug targets: tools for medicine and science. Biochim. Biophys. Acta. 2009;1787:207–220. PubMed
Moller J.V., Juul B., leMaire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim. Biophys. Acta. 1996;1286:1–51. PubMed
Skou J.C. Further investigations on a Mg++ + Na+-activated adenosinetriphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane. Biochim. Biophys. Acta. 1960;42:6–23.
Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 angstrom resolution. Nature. 2000;405:647–655. PubMed
Toyoshima C., Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature. 2002;418:605–611. PubMed
Toyoshima C., Nomura H., Tsuda T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature. 2004;432:361–368. PubMed
Toyoshima C., Mizutani T. Crystal structure of the calcium pump with a bound ATP analogue. Nature. 2004;430:529–535. PubMed
Sorensen T.L.M., Moller J.V., Nissen P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science. 2004;304:1672–1675. PubMed
Sorensen T.L.M., Olesen C., Jensen A.M.L., Moller J.V., Nissen P. Crystals of sarcoplasmic reticulum Ca2+-ATPase. J. Biotechnol. 2006;124:704–716. PubMed
Olesen C., Sorensen T.L.M., Nielsen R.C., Moller J.V., Nissen P. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science. 2004;306:2251–2255. PubMed
Jensen A.M.L., Sorensen T.L.M., Olesen C., Moller J.V., Nissen P. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 2006;25:2305–2314. PubMed PMC
Morth J.P., Pedersen B.P., Toustrup-Jensen M.S., Sorensen T.L.M., Petersen J. Crystal structure of the sodium-potassium pump. Nature. 2007;450:1043–1046. PubMed
Lupfert C., Grell E., Pintschovius V., Apell H.J., Cornelius F. Rate limitation of the Na+,K+-ATPase pump cycle. Biophys. J. 2001;81:2069–2081. PubMed PMC
Capieaux E., Rapin C., Thines D., Dupont Y., Goffeau A. Overexpression in Escherichia coli and purification of an ATP-binding peptide from the yeast plasma-membrane H+-ATPase. J. Biol. Chem. 1993;268:21895–21900. PubMed
Gatto C., Wang A.X., Kaplan J.H. The M4M5 cytoplasmic loop of the Na,K-ATPase, overexpressed in Escherichia coli, binds nucleoside triphosphates with the same selectivity as the intact native protein. J. Biol. Chem. 1998;273:10578–10585. PubMed
Kubala M., Hofbauerova K., Ettrich R., Kopecky V., Krumscheid R. Phe(475) and Glu(446) but not Ser(445) participate in ATP-binding to the alpha-subunit of Na+/K+-ATPase. Biochem. Biophys. Res. Commun. 2002;297:154–159. PubMed
Kubala M., Plasek J., Amler E. Limitations in linearized analyses of binding equilibria: binding of TNP-ATP to the H-4-H-5 loop of Na/K-ATPase. Eur. Biophys. J. Biophys. Lett. 2003;32:363–369. PubMed
Kubala M., Plasek J., Amler E. Fluorescence competition assay for the assessment of ATP binding to an isolated domain of Na+,K+-ATPase. Physiol. Res. 2004;53:109–113. PubMed
Kubala M., Teisinger J., Ettrich R., Hofbauerova K., Kopecky V. Eight amino acids form the ATP recognition site of Na+/K+-ATPase. Biochemistry. 2003;42:6446–6452. PubMed
Lansky Z., Kubala M., Ettrich R., Kuty M., Plasek J. The hydrogen bonds between Arg(423) and Glu(472) and other key residues, Asp(443), Ser(477), and Pro(489), are responsible for the formation and a different positioning of TNP-ATP and ATP within the nucleotide-binding site of Na+/K+-ATPase. Biochemistry. 2004;43:8303–8311. PubMed
Grycova L., Sklenovsky P., Lansky Z., Janovska M., Otyepka M. ATP and magnesium drive conformational changes of the Na+/K+-ATPase cytoplasmic headpiece. Biochim. Biophys. Acta. 2009;1788:1081–1091. PubMed
Garciamoreno B., Chen L.X., March K.L., Gurd R.S., Gurd F.R.N. Electrostatic interactions in sperm whale myoglobin—site specificity, roles in structural elements, and external electrostatic potential distributions. J. Biol. Chem. 1985;260:4070–4082. PubMed
Warshel A., Sharma P.K., Kato M., Parson W.W. Modeling electrostatic effects in proteins. Biochem. Biophys. Acta. 2006;1764:1647–1676. PubMed
Lakowicz J.R. Kluwer/Plenum; New York: 1999. Principles of Fluorescence Spectroscopy.
Albani J.R. Elsevier; Amsterdam, The Netherlands: 2004. Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies.
Arras, K. O. 1998. An introduction to error propagation: derivation, meaning and examples of equation Cy=FxCxFxT. In Technical Report of the Autonomous Systems Lab. Swiss Federal Institute of Technology Lausanne, EPFL-ASL-TR-98–01 R3.
Baker N.A., Sept D., Joseph S., Holst M.J., McCammon J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA. 2001;98:10037–10041. PubMed PMC
Sanner M.F. Python: a programming language for software integration and development. J. Mol. Graph. 1999;17:57–61. PubMed
Kubala M. ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments. Proteins. 2006;64:1–12. PubMed
Pratap P.R., Dediu O., Nienhaus G.U. FTIR study of ATP-induced changes in Na+/K+-ATPase from duck supraorbital glands. Biophys. J. 2003;85:3707–3717. PubMed PMC
Picard M., Toyoshima C., Champeil P. The average conformation at micromolar [Ca2+] of Ca2+-ATPase with bound nucleotide differs from that adopted with the transition state analog ADP center dot AlFx or with AMPPCP under crystallization conditions at millimolar. J. Biol. Chem. 2005;280:18745–18754. PubMed
Mead-Savery F.C., Wang R., Tanna-Topan B., Chen S.R.W., Welch W. Changes in negative charge at the luminal mouth of the pore alter ion handling and gating in the cardiac ryanodine-receptor. Biophys. J. 2009;96:1374–1387. PubMed PMC
Ledvina P.S., Yao N.H., Choudhary A., Quiocho F.A. Negative electrostatic surface potential of protein sites specific for anionic ligands. Proc. Natl. Acad. Sci. USA. 1996;93:6786–6791. PubMed PMC
Clausen J.D., Andersen J.P. Functional consequences of alterations to Thr(247), Pro(248), Glu(340), Asp(813), Arg(819), and Arg(822) at the interfaces between domain P, M3, and L6–7 of sarcoplasmic reticulum Ca2+-ATPase—roles in Ca2+ interaction and phosphoenzyme processing. J. Biol. Chem. 2004;279:54426–54437. PubMed
Xu G.Y., Kane D.J., Faller L.D., Farley R.A. The role of loop 6/7 in folding and functional performance of Na,K-ATPase. J. Biol. Chem. 2004;279:45594–45602. PubMed
Zhang Z.S., Lewis D., Sumbilla C., Inesi G., Toyoshima C. The role of the M6–M7 loop (L67) in stabilization of the phosphorylation and Ca2+ binding domains of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) J. Biol. Chem. 2001;276:15232–15239. PubMed
Lenoir G., Picard M., Moller J.V., le Maire M., Champeil P. Involvement of the L6–7 loop in SERCA1a Ca2+-ATPase activation by Ca2+ (or Sr2+) and ATP. J. Biol. Chem. 2004;279:32125–32133. PubMed
Corre F., Jaxel C., Fuentes J., Menguy T., Falson P. Involvement of the cytoplasmic loop L6–7 in the entry mechanism for transport of Ca2+ through the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 2002;277:13016–13028. PubMed