TUSC3: functional duality of a cancer gene
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
MUNI/A/1369/2016
Grant Agency of Masaryk University - International
CZ.1.07/2.3.00/20.0185
European Regional Development Fund - International
LQ1605
National Program of Sustainability II - International
PubMed
28929175
PubMed Central
PMC11105401
DOI
10.1007/s00018-017-2660-4
PII: 10.1007/s00018-017-2660-4
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer, Endoplasmic reticulum, Immunoediting, N-Glycosylation, Oncogene, TUSC3, Tumor suppressor,
- MeSH
- endoplazmatické retikulum metabolismus MeSH
- epigeneze genetická MeSH
- genetické lokusy MeSH
- glykosylace MeSH
- karcinogeneze genetika metabolismus patologie MeSH
- lidé MeSH
- lidské chromozomy, pár 8 MeSH
- membránové proteiny genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové supresorové proteiny genetika metabolismus MeSH
- nádory genetika metabolismus patologie MeSH
- orgánová specificita MeSH
- proliferace buněk MeSH
- regulace genové exprese u nádorů * MeSH
- signální dráha UPR MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- membránové proteiny MeSH
- nádorové supresorové proteiny MeSH
- TUSC3 protein, human MeSH Prohlížeč
Two decades ago, following a systematic screening of LOH regions on chromosome 8p22, TUSC3 has been identified as a candidate tumor suppressor gene in ovarian, prostate and pancreatic cancers. Since then, a growing body of evidence documented its clinical importance in various other types of cancers, and first initial insights into its molecular function and phenotypic effects have been gained, though the precise role of TUSC3 in different cancers remains unclear. As a part of the oligosaccharyltransferase complex, TUSC3 localizes to the endoplasmic reticulum and functions in final steps of N-glycosylation of proteins, while its loss evokes the unfolded protein response. We are still trying to figure out how this mechanistic function is reconcilable with its varied effects on cancer promotion. In this review, we focus on cancer-related effects of TUSC3 and envisage a possible role of TUSC3 beyond endoplasmic reticulum.
Zobrazit více v PubMed
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
He Q, He Q, Liu X, et al. Genome-wide prediction of cancer driver genes based on SNP and cancer SNV data. Am J Cancer Res. 2014;4(4):394–410. PubMed PMC
MacGrogan D, Levy A, Bova GS, Isaacs WB, Bookstein R. Structure and methylation-associated silencing of a gene within a homozygously deleted region of human chromosome band 8p22. Genomics. 1996;35:55–65. doi: 10.1006/geno.1996.0322. PubMed DOI
Khalid AM, Asano A, Hosaka YZ, Takeuchi T, Yamano Y. Tumor suppressor candidate TUSC3 expression during rat testis maturation. Biosci Biotechnol Biochem. 2013;77:2019–2024. doi: 10.1271/bbb.130327. PubMed DOI
Aken BL, Ayling S, Barrell D, et al. The Ensembl gene annotation system. Database (Oxford) 2016;2016:baw093. doi: 10.1093/database/baw093. PubMed DOI PMC
Kelleher DJ, Gilmore R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology. 2006;16:47–62. doi: 10.1093/glycob/cwj066. PubMed DOI
Mohorko E, Owen RL, Malojčić G, Brozzo MS, Aebi M, Glockshuber R. Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure. 2014;22:590–601. doi: 10.1016/j.str.2014.02.013. PubMed DOI
Shrimal S, Cherepanova NA, Gilmore R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol. 2015;41:71–78. doi: 10.1016/j.semcdb.2014.11.005. PubMed DOI PMC
Horak P, Tomasich E, Vaňhara P, et al. TUSC3 loss alters the ER stress response and accelerates prostate cancer growth in vivo. Sci Rep. 2014;4:3739. doi: 10.1038/srep03739. PubMed DOI PMC
Vaňhara P, Horak P, Pils D, et al. Loss of the oligosaccharyl transferase subunit TUSC3 promotes proliferation and migration of ovarian cancer cells. Int J Oncol. 2013;42:1383–1389. doi: 10.3892/ijo.2013.1824. PubMed DOI
Cherepanova N, Shrimal S, Gilmore R. N-Linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol. 2016;41:57–65. doi: 10.1016/j.ceb.2016.03.021. PubMed DOI PMC
Cherepanova NA, Shrimal S, Gilmore R. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. J Cell Biol. 2014;206:525–539. doi: 10.1083/jcb.201404083. PubMed DOI PMC
Schwarz M, Knauer R, Lehle L. Yeast oligosaccharyltransferase consists of two functionally distinct sub-complexes, specified by either the Ost3p or Ost6p subunit. FEBS Lett. 2005;579:6564–6568. doi: 10.1016/j.febslet.2005.10.063. PubMed DOI
Cherepanova NA, Gilmore R. Mammalian cells lacking either the cotranslational or posttranslocational oligosaccharyltransferase complex display substrate-dependent defects in asparagine linked glycosylation. Sci Rep. 2016;6:20946. doi: 10.1038/srep20946. PubMed DOI PMC
Molinari F, Foulquier F, Tarpey PS, et al. Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Gen. 2015;82:1150–1157. doi: 10.1016/j.ajhg.2008.03.021. PubMed DOI PMC
Contessa JN, Bhojani MS, Freeze HH, Ross BD, Rehemtulla A, Lawrence TS. Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target for cancer therapy. Clin Cancer Res. 2010;16(12):3205–3214. doi: 10.1158/1078-0432.CCR-09-3331. PubMed DOI PMC
Goytain A, Quamme GA. Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genomics. 2005;1:48. doi: 10.1186/1471-2164-6-48. PubMed DOI PMC
Zhou H, Clapham DE. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci USA. 2009;106:15750–15755. doi: 10.1073/pnas.0908332106. PubMed DOI PMC
Pak BJ, Park H, Chang ER, Pang SC, Graham CH. Differential expression display in first analysis trimester of oxygen-mediated human trophoblast changes cells in gene. Placenta. 1998;19:483–488. doi: 10.1016/S0143-4004(98)91041-4. PubMed DOI
Soleymanlou N, Jurisica I, Nevo O, et al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab. 2005;90(7):4299–4308. doi: 10.1210/jc.2005-0078. PubMed DOI PMC
Yuen RKC, Avila L, Peñaherrera MS, et al. Human placental-specific epipolymorphism and its association with adverse pregnancy outcomes. PLoS ONE. 2009;4:1–11. doi: 10.1371/journal.pone.0007389. PubMed DOI PMC
Garshasbi M, Hadavi V, Habibi H, et al. Report a defect in the TUSC3 gene is associated with autosomal recessive mental retardation. Am J Hum Genet. 2008;2008:1158–1164. doi: 10.1016/j.ajhg.2008.03.018. PubMed DOI PMC
Garshasbi M, Kahrizi K, Hosseini M, et al. Clinical report a novel nonsense mutation in TUSC3 is responsible for non-syndromic autosomal recessive mental retardation in a consanguineous Iranian family. Am J Med Genet. 2011;2011:1976–1980. doi: 10.1002/ajmg.a.34077. PubMed DOI
Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies: Research in developmental disabilities. Res Dev Dis. 2011;32(2):419–436. doi: 10.1016/j.ridd.2010.12.018. PubMed DOI
Hill WD, Davies G, Liewald DC, et al. Examining non-syndromic autosomal recessive intellectual disability (NS-ARID) genes for an enriched association with intelligence differences. Intelligence. 2016;54:80–89. doi: 10.1016/j.intell.2015.11.005. PubMed DOI PMC
Khan MA, Rafiq MA, Noor A, et al. A novel deletion mutation in the TUSC3 gene in a consanguineous Pakistani family with autosomal recessive nonsyndromic intellectual disability. BMC Med Genet. 2011;12:56. doi: 10.1186/1471-2350-12-56. PubMed DOI PMC
Al-Amri A, Saegh AA, Al-Mamari W, et al. Homozygous single base deletion in TUSC3 causes intellectual disability with developmental delay in an Omani family. Am J Med Genet. 2016;170:1826–1831. doi: 10.1002/ajmg.a.37690. PubMed DOI
Loddo S, Parisi V, Doccini V, et al. Homozygous deletion in TUSC3 causing syndromic intellectual disability: a new patient. Am J Med Genet. 2013;161:2084–2087. doi: 10.1002/ajmg.a.36028. PubMed DOI
Mosrati MA, Schrauwen I, Kamoun H, et al. Genome wide analysis in a family with sensorineural hearing loss, autism and mental retardation. Gene. 2012;510(2):102–106. doi: 10.1016/j.gene.2012.09.006. PubMed DOI
Piovani G, Savio G, Traversa M, et al. De novo 1 Mb interstitial deletion of 8p22 in a patient with slight mental retardation and speech delay. Mol Cytogenet. 2014;7:25. doi: 10.1186/1755-8166-7-25. PubMed DOI PMC
Zhang Y, Su HJ, Pan KF, et al. Methylation status of blood leukocyte DNA and risk of gastric cancer in a high-risk Chinese population. Cancer Epidemiol Biomark Prev. 2014;23:2019–2026. doi: 10.1158/1055-9965.EPI-13-0994. PubMed DOI
Ahuja N, Li Q, Mohan AL, Baylin SB. Issa J-PJ. Aging and DNA methylation in colorectal mucose and cancer. Cancer Res. 1998;58:5489–5494. PubMed
Hanks J, Ayed I, Kukreja N, et al. The association between mthfr 677C>T genotype and folate status and genomic and gene-specific dna methylation in the colon of individuals without colorectal neoplasia. Am J Clin Nutr. 2013;98:1564–1574. doi: 10.3945/ajcn.113.061432. PubMed DOI PMC
Xu XL, Yu J, Zhang HY, et al. Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol. 2004;10:3441–3454. doi: 10.3748/wjg.v10.i23.3441. PubMed DOI PMC
Li Q, Jedlicka A, Ahuja N, et al. Concordant methylation of the ER and N33 genes in glioblastoma multiforme. Oncogene. 1998;16:3197–3202. doi: 10.1038/sj.onc.1201831. PubMed DOI
Zemlyakova VV, Zhevlova AI, Zborovskaya IB, et al. Methylation profile of several tumor suppressor genes in non-small-cell lung cancer. Mol Biol. 2003;37:836–840. doi: 10.1023/B:MBIL.0000008351.36435.d6. DOI
Duppel U, Woenckhaus M, Schulz C, Merk J, Dietmaier W. Quantitative detection of TUSC3 promoter methylation—a potential biomarker for prognosis in lung cancer. Oncol Lett. 2016;2016:3004–3012. doi: 10.3892/ol.2016.4927. PubMed DOI PMC
Pils D, Horak P, Vanhara P, et al. Methylation status of TUSC3 is a prognostic factor in ovarian cancer. Cancer. 2013;119(5):946–954. doi: 10.1002/cncr.27850. PubMed DOI
Belshaw NJ, Elliott GO, Foxall RJ, et al. Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br J Cancer. 2008;99:136–142. doi: 10.1038/sj.bjc.6604432. PubMed DOI PMC
Arasaradnam RP, Khoo K, Bradburn M, Mathers J, Kelly S. DNA methylation of ESR-1 and N-33 in colorectal mucosa of patients with ulcerative colitis (UC) Epigenetics. 2010;5:422–426. doi: 10.4161/epi.5.5.11959. PubMed DOI
Yuasa Y, Nagasaki H, Oze I, et al. Insulin-like growth factor 2 hypomethylation of blood leukocyte DNA is associated with gastric cancer risk. Int J Cancer. 2012;131:2596–2603. doi: 10.1002/ijc.27554. PubMed DOI
Zhang Y, He RQ, Dang YW, et al. Comprehensive analysis of the long noncoding RNA HOXA11-AS gene interaction regulatory network in NSCLC cells. Cancer Cell Int. 2016;16:89. doi: 10.1186/s12935-016-0366-6. PubMed DOI PMC
Scholz C, Nimmrich I, Burger M, et al. Distinction of acute lymphoblastic leukemia from acute myeloid leukemia through microarray-based DNA methylation analysis. Ann Hematol. 2005;84:236–244. doi: 10.1007/s00277-004-0969-1. PubMed DOI
Conway K, Edmiston SN, Tse C-K, et al. Racial variation in breast tumor promoter methylation in the Carolina Breast Cancer Study. Cancer Epidemiol Biomark Prev. 2015;24:921–930. doi: 10.1158/1055-9965.EPI-14-1228. PubMed DOI PMC
Bova GS, Carter BS, Bussemakers MJG, et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res. 1993;1993:3869–3873. PubMed
Emi M, Fujiwara Y, Nakajima T, Cancer C, Cancer L. Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res. 1992;2:5368–5372. PubMed
Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP. Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosome Cancer. 1998;21(3):177–184. doi: 10.1002/(SICI)1098-2264(199803)21:3<177::AID-GCC1>3.0.CO;2-X. PubMed DOI
Bashyam MD, Bair R, Kim YH, et al. Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia. 2005;7:556–562. doi: 10.1593/neo.04586. PubMed DOI PMC
Takle LA, Knowles MA. Deletion mapping implicates two tumor suppressor genes on chromosome 8p in the development of bladder cancer. Oncogene. 1996;12(5):1083–1087. PubMed
Fujiwara Y, Emi M, Ohata H, et al. Evidence for the presence of two tumor suppressor genes on chromosome 8p for colorectal carcinoma. Cancer Res. 1993;53(5):1172–1174. PubMed
Ahmed MN, Kim K, Haddad B, Berchuck A, Qumsiyeh MB. Comparative genomic hybridization studies in hydatidiform moles and choriocarcinoma: amplification of 7q21–q31 and loss of 8p12–p21 in choriocarcinoma. Cancer Genet Cytogenet. 2000;116:10–15. doi: 10.1016/S0165-4608(99)00103-X. PubMed DOI
Cunningham JM, Shan A, Wick MJ, et al. Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res. 1996;56(19):4475–4482. PubMed
Arbieva ZH, Banerjee K, Kim SY, et al. High-resolution physical map and transcript identification of a prostate cancer deletion interval on 8p22. Genome Res. 2000;10:244–257. doi: 10.1101/gr.10.2.244. PubMed DOI PMC
Pils D, Horak P, Gleiss A, et al. Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma: N33 and EFA6R have a potential impact on overall survival. Cancer. 2005;104(11):2417–2429. doi: 10.1002/cncr.21538. PubMed DOI
Cooke SL, Pole JCM, Chin S-F, Ellis IO, Caldas C, Edwards PAW. High-resolution array CGH clarifies events occurring on 8p in carcinogenesis. BMC Cancer. 2008;8:288. doi: 10.1186/1471-2407-8-288. PubMed DOI PMC
Angstadt AY, Motsinger-Reif A, Thomas R, et al. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart. Genes Chromosome Cancer. 2011;50:859–874. doi: 10.1002/gcc.20908. PubMed DOI
Griffith OL, Melck A, Jones SJ, Wiseman SM. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol. 2006;24(31):5043–5051. doi: 10.1200/JCO.2006.06.7330. PubMed DOI
Chung K-W, Kim SW, Kim SW. Gene expression profiling of papillary thyroid carcinomas in Korean patients by oligonucleotide microarrays. J Korean Surg Soc. 2012;82:271–280. doi: 10.4174/jkss.2012.82.5.271. PubMed DOI PMC
Gutierrez VF, Marcos CA, Llorente JL, et al. Genetic profile of second primary tumors and recurrences in head and neck squamous cell carcinomas. Head Neck. 2012;34(6):830–839. doi: 10.1002/hed.21824. PubMed DOI
Gu Y, Wang Q, Guo K, et al. TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/beta-catenin and MAPK signalling. J Pathol. 2016;239:60–71. doi: 10.1002/path.4697. PubMed DOI
Kratochvílová K, Horak P, Ešner M, et al. Tumor suppressor candidate 3 (TUSC3) prevents the epithelial-to-mesenchymal transition and inhibits tumor growth by modulating the endoplasmic reticulum stress response in ovarian cancer cells. Int J Cancer. 2015;137(6):1330–1340. doi: 10.1002/ijc.29502. PubMed DOI
Fan X, Zhang X, Shen J, et al. Decreased TUSC3 promotes pancreatic cancer proliferation, invasion and metastasis. PLoS ONE. 2016;11(2):e0149028. doi: 10.1371/journal.pone.0149028. PubMed DOI PMC
Jiang Z, Guo M, Zhang X, et al. TUSC3 suppresses glioblastoma development by inhibiting Akt signaling. Tumor Biol. 2016;37:12039–12047. doi: 10.1007/s13277-016-5072-4. PubMed DOI
Gu Y, Pei X, Ren Y, et al. Oncogenic function of TUSC3 in non-small cell lung cancer is associated with Hedgehog signalling pathway. Biochim Biophys Acta. 2017;1863(7):1749–1760. doi: 10.1016/j.bbadis.2017.05.005. PubMed DOI
Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471(7337):235–239. doi: 10.1038/nature09727. PubMed DOI PMC
Khan MM, Nomura T, Chiba T, et al. The fusion oncoprotein PML-RARalpha induces endoplasmic reticulum (ER)-associated degradation of N-CoR and ER stress. J Biol Chem. 2004;279(12):11814–11824. doi: 10.1074/jbc.M312121200. PubMed DOI
Schardt JA, Eyholzer M, Timchenko NA, Mueller BU, Pabst T. Unfolded protein response suppresses CEBPA by induction of calreticulin in acute myeloid leukaemia. J Cell Mol Med. 2010;14(6B):1509–1519. doi: 10.1111/j.1582-4934.2009.00870.x. PubMed DOI PMC
Kharabi Masouleh B, Geng H, Hurtz C, et al. Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proc Nat Acad Sci USA. 2014;111(21):E2219–E2228. doi: 10.1073/pnas.1400958111. PubMed DOI PMC
Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. 2011;1:90. doi: 10.1038/srep00090. PubMed DOI PMC
Li CW, Lim SO, Xia W, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632. doi: 10.1038/ncomms12632. PubMed DOI PMC
Lauc G, Huffman JE, Pucic M, et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 2013;9(1):e1003225. doi: 10.1371/journal.pgen.1003225. PubMed DOI PMC
Liu K, Xie F, Gao A, et al. SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30e-5p/TUSC3 axis. Mol Cancer. 2017;16(1):62. doi: 10.1186/s12943-017-0632-9. PubMed DOI PMC
Pole JCM, Courtay-Cahen C, Garcia MJ, et al. High-resolution analysis of chromosome rearrangements on 8p in breast, colon and pancreatic cancer reveals a complex pattern of loss, gain and translocation. Oncogene. 2006;25:5693–5706. doi: 10.1038/sj.onc.1209570. PubMed DOI
Ribeiro IP, Marques F, Caramelo F, et al. Genetic gains and losses in oral squamous cell carcinoma: impact on clinical management. Cell Oncol. 2014;37:29–39. doi: 10.1007/s13402-013-0161-5. PubMed DOI
Yu X, Zhang K, Liu F, et al. Tumor suppressor candidate 3 as a novel predictor for lymph node metastasis in lung cancer patients. Oncol Lett. 2016;2016:5099–5105. doi: 10.3892/ol.2016.5333. PubMed DOI PMC
Guervos MA, Marcos CA, Hermsen M, Nuno AS, Suarez C, Llorente JL. Deletions of N33, STK11 and TP53 are involved in the development of lymph node metastasis in larynx and pharynx carcinomas. Cell Oncol. 2007;29(4):327–334. PubMed PMC
Yu X, Zhang J, Zhong H, et al. Decreased tumor suppressor candidate 3 predicts poor prognosis of patients with esophageal squamous cell carcinoma. Int J Med Sci. 2016;13:963–969. doi: 10.7150/ijms.16381. PubMed DOI PMC
Peng Y, Cao J, Yao XY, Wang JX, Zhong MZ, Gan PP, Li JH. TUSC3 induces autophagy in human non-small cell lung cancer cells through Wnt/β-catenin signaling. Oncotarget. 2017;8:52960–52974. PubMed PMC