TUSC3: functional duality of a cancer gene

. 2018 Mar ; 75 (5) : 849-857. [epub] 20170919

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28929175

Grantová podpora
MUNI/A/1369/2016 Grant Agency of Masaryk University - International
CZ.1.07/2.3.00/20.0185 European Regional Development Fund - International
LQ1605 National Program of Sustainability II - International

Odkazy

PubMed 28929175
PubMed Central PMC11105401
DOI 10.1007/s00018-017-2660-4
PII: 10.1007/s00018-017-2660-4
Knihovny.cz E-zdroje

Two decades ago, following a systematic screening of LOH regions on chromosome 8p22, TUSC3 has been identified as a candidate tumor suppressor gene in ovarian, prostate and pancreatic cancers. Since then, a growing body of evidence documented its clinical importance in various other types of cancers, and first initial insights into its molecular function and phenotypic effects have been gained, though the precise role of TUSC3 in different cancers remains unclear. As a part of the oligosaccharyltransferase complex, TUSC3 localizes to the endoplasmic reticulum and functions in final steps of N-glycosylation of proteins, while its loss evokes the unfolded protein response. We are still trying to figure out how this mechanistic function is reconcilable with its varied effects on cancer promotion. In this review, we focus on cancer-related effects of TUSC3 and envisage a possible role of TUSC3 beyond endoplasmic reticulum.

Zobrazit více v PubMed

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

He Q, He Q, Liu X, et al. Genome-wide prediction of cancer driver genes based on SNP and cancer SNV data. Am J Cancer Res. 2014;4(4):394–410. PubMed PMC

MacGrogan D, Levy A, Bova GS, Isaacs WB, Bookstein R. Structure and methylation-associated silencing of a gene within a homozygously deleted region of human chromosome band 8p22. Genomics. 1996;35:55–65. doi: 10.1006/geno.1996.0322. PubMed DOI

Khalid AM, Asano A, Hosaka YZ, Takeuchi T, Yamano Y. Tumor suppressor candidate TUSC3 expression during rat testis maturation. Biosci Biotechnol Biochem. 2013;77:2019–2024. doi: 10.1271/bbb.130327. PubMed DOI

Aken BL, Ayling S, Barrell D, et al. The Ensembl gene annotation system. Database (Oxford) 2016;2016:baw093. doi: 10.1093/database/baw093. PubMed DOI PMC

Kelleher DJ, Gilmore R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology. 2006;16:47–62. doi: 10.1093/glycob/cwj066. PubMed DOI

Mohorko E, Owen RL, Malojčić G, Brozzo MS, Aebi M, Glockshuber R. Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure. 2014;22:590–601. doi: 10.1016/j.str.2014.02.013. PubMed DOI

Shrimal S, Cherepanova NA, Gilmore R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol. 2015;41:71–78. doi: 10.1016/j.semcdb.2014.11.005. PubMed DOI PMC

Horak P, Tomasich E, Vaňhara P, et al. TUSC3 loss alters the ER stress response and accelerates prostate cancer growth in vivo. Sci Rep. 2014;4:3739. doi: 10.1038/srep03739. PubMed DOI PMC

Vaňhara P, Horak P, Pils D, et al. Loss of the oligosaccharyl transferase subunit TUSC3 promotes proliferation and migration of ovarian cancer cells. Int J Oncol. 2013;42:1383–1389. doi: 10.3892/ijo.2013.1824. PubMed DOI

Cherepanova N, Shrimal S, Gilmore R. N-Linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol. 2016;41:57–65. doi: 10.1016/j.ceb.2016.03.021. PubMed DOI PMC

Cherepanova NA, Shrimal S, Gilmore R. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. J Cell Biol. 2014;206:525–539. doi: 10.1083/jcb.201404083. PubMed DOI PMC

Schwarz M, Knauer R, Lehle L. Yeast oligosaccharyltransferase consists of two functionally distinct sub-complexes, specified by either the Ost3p or Ost6p subunit. FEBS Lett. 2005;579:6564–6568. doi: 10.1016/j.febslet.2005.10.063. PubMed DOI

Cherepanova NA, Gilmore R. Mammalian cells lacking either the cotranslational or posttranslocational oligosaccharyltransferase complex display substrate-dependent defects in asparagine linked glycosylation. Sci Rep. 2016;6:20946. doi: 10.1038/srep20946. PubMed DOI PMC

Molinari F, Foulquier F, Tarpey PS, et al. Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Gen. 2015;82:1150–1157. doi: 10.1016/j.ajhg.2008.03.021. PubMed DOI PMC

Contessa JN, Bhojani MS, Freeze HH, Ross BD, Rehemtulla A, Lawrence TS. Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target for cancer therapy. Clin Cancer Res. 2010;16(12):3205–3214. doi: 10.1158/1078-0432.CCR-09-3331. PubMed DOI PMC

Goytain A, Quamme GA. Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genomics. 2005;1:48. doi: 10.1186/1471-2164-6-48. PubMed DOI PMC

Zhou H, Clapham DE. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci USA. 2009;106:15750–15755. doi: 10.1073/pnas.0908332106. PubMed DOI PMC

Pak BJ, Park H, Chang ER, Pang SC, Graham CH. Differential expression display in first analysis trimester of oxygen-mediated human trophoblast changes cells in gene. Placenta. 1998;19:483–488. doi: 10.1016/S0143-4004(98)91041-4. PubMed DOI

Soleymanlou N, Jurisica I, Nevo O, et al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab. 2005;90(7):4299–4308. doi: 10.1210/jc.2005-0078. PubMed DOI PMC

Yuen RKC, Avila L, Peñaherrera MS, et al. Human placental-specific epipolymorphism and its association with adverse pregnancy outcomes. PLoS ONE. 2009;4:1–11. doi: 10.1371/journal.pone.0007389. PubMed DOI PMC

Garshasbi M, Hadavi V, Habibi H, et al. Report a defect in the TUSC3 gene is associated with autosomal recessive mental retardation. Am J Hum Genet. 2008;2008:1158–1164. doi: 10.1016/j.ajhg.2008.03.018. PubMed DOI PMC

Garshasbi M, Kahrizi K, Hosseini M, et al. Clinical report a novel nonsense mutation in TUSC3 is responsible for non-syndromic autosomal recessive mental retardation in a consanguineous Iranian family. Am J Med Genet. 2011;2011:1976–1980. doi: 10.1002/ajmg.a.34077. PubMed DOI

Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies: Research in developmental disabilities. Res Dev Dis. 2011;32(2):419–436. doi: 10.1016/j.ridd.2010.12.018. PubMed DOI

Hill WD, Davies G, Liewald DC, et al. Examining non-syndromic autosomal recessive intellectual disability (NS-ARID) genes for an enriched association with intelligence differences. Intelligence. 2016;54:80–89. doi: 10.1016/j.intell.2015.11.005. PubMed DOI PMC

Khan MA, Rafiq MA, Noor A, et al. A novel deletion mutation in the TUSC3 gene in a consanguineous Pakistani family with autosomal recessive nonsyndromic intellectual disability. BMC Med Genet. 2011;12:56. doi: 10.1186/1471-2350-12-56. PubMed DOI PMC

Al-Amri A, Saegh AA, Al-Mamari W, et al. Homozygous single base deletion in TUSC3 causes intellectual disability with developmental delay in an Omani family. Am J Med Genet. 2016;170:1826–1831. doi: 10.1002/ajmg.a.37690. PubMed DOI

Loddo S, Parisi V, Doccini V, et al. Homozygous deletion in TUSC3 causing syndromic intellectual disability: a new patient. Am J Med Genet. 2013;161:2084–2087. doi: 10.1002/ajmg.a.36028. PubMed DOI

Mosrati MA, Schrauwen I, Kamoun H, et al. Genome wide analysis in a family with sensorineural hearing loss, autism and mental retardation. Gene. 2012;510(2):102–106. doi: 10.1016/j.gene.2012.09.006. PubMed DOI

Piovani G, Savio G, Traversa M, et al. De novo 1 Mb interstitial deletion of 8p22 in a patient with slight mental retardation and speech delay. Mol Cytogenet. 2014;7:25. doi: 10.1186/1755-8166-7-25. PubMed DOI PMC

Zhang Y, Su HJ, Pan KF, et al. Methylation status of blood leukocyte DNA and risk of gastric cancer in a high-risk Chinese population. Cancer Epidemiol Biomark Prev. 2014;23:2019–2026. doi: 10.1158/1055-9965.EPI-13-0994. PubMed DOI

Ahuja N, Li Q, Mohan AL, Baylin SB. Issa J-PJ. Aging and DNA methylation in colorectal mucose and cancer. Cancer Res. 1998;58:5489–5494. PubMed

Hanks J, Ayed I, Kukreja N, et al. The association between mthfr 677C>T genotype and folate status and genomic and gene-specific dna methylation in the colon of individuals without colorectal neoplasia. Am J Clin Nutr. 2013;98:1564–1574. doi: 10.3945/ajcn.113.061432. PubMed DOI PMC

Xu XL, Yu J, Zhang HY, et al. Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol. 2004;10:3441–3454. doi: 10.3748/wjg.v10.i23.3441. PubMed DOI PMC

Li Q, Jedlicka A, Ahuja N, et al. Concordant methylation of the ER and N33 genes in glioblastoma multiforme. Oncogene. 1998;16:3197–3202. doi: 10.1038/sj.onc.1201831. PubMed DOI

Zemlyakova VV, Zhevlova AI, Zborovskaya IB, et al. Methylation profile of several tumor suppressor genes in non-small-cell lung cancer. Mol Biol. 2003;37:836–840. doi: 10.1023/B:MBIL.0000008351.36435.d6. DOI

Duppel U, Woenckhaus M, Schulz C, Merk J, Dietmaier W. Quantitative detection of TUSC3 promoter methylation—a potential biomarker for prognosis in lung cancer. Oncol Lett. 2016;2016:3004–3012. doi: 10.3892/ol.2016.4927. PubMed DOI PMC

Pils D, Horak P, Vanhara P, et al. Methylation status of TUSC3 is a prognostic factor in ovarian cancer. Cancer. 2013;119(5):946–954. doi: 10.1002/cncr.27850. PubMed DOI

Belshaw NJ, Elliott GO, Foxall RJ, et al. Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br J Cancer. 2008;99:136–142. doi: 10.1038/sj.bjc.6604432. PubMed DOI PMC

Arasaradnam RP, Khoo K, Bradburn M, Mathers J, Kelly S. DNA methylation of ESR-1 and N-33 in colorectal mucosa of patients with ulcerative colitis (UC) Epigenetics. 2010;5:422–426. doi: 10.4161/epi.5.5.11959. PubMed DOI

Yuasa Y, Nagasaki H, Oze I, et al. Insulin-like growth factor 2 hypomethylation of blood leukocyte DNA is associated with gastric cancer risk. Int J Cancer. 2012;131:2596–2603. doi: 10.1002/ijc.27554. PubMed DOI

Zhang Y, He RQ, Dang YW, et al. Comprehensive analysis of the long noncoding RNA HOXA11-AS gene interaction regulatory network in NSCLC cells. Cancer Cell Int. 2016;16:89. doi: 10.1186/s12935-016-0366-6. PubMed DOI PMC

Scholz C, Nimmrich I, Burger M, et al. Distinction of acute lymphoblastic leukemia from acute myeloid leukemia through microarray-based DNA methylation analysis. Ann Hematol. 2005;84:236–244. doi: 10.1007/s00277-004-0969-1. PubMed DOI

Conway K, Edmiston SN, Tse C-K, et al. Racial variation in breast tumor promoter methylation in the Carolina Breast Cancer Study. Cancer Epidemiol Biomark Prev. 2015;24:921–930. doi: 10.1158/1055-9965.EPI-14-1228. PubMed DOI PMC

Bova GS, Carter BS, Bussemakers MJG, et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res. 1993;1993:3869–3873. PubMed

Emi M, Fujiwara Y, Nakajima T, Cancer C, Cancer L. Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res. 1992;2:5368–5372. PubMed

Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP. Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosome Cancer. 1998;21(3):177–184. doi: 10.1002/(SICI)1098-2264(199803)21:3<177::AID-GCC1>3.0.CO;2-X. PubMed DOI

Bashyam MD, Bair R, Kim YH, et al. Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia. 2005;7:556–562. doi: 10.1593/neo.04586. PubMed DOI PMC

Takle LA, Knowles MA. Deletion mapping implicates two tumor suppressor genes on chromosome 8p in the development of bladder cancer. Oncogene. 1996;12(5):1083–1087. PubMed

Fujiwara Y, Emi M, Ohata H, et al. Evidence for the presence of two tumor suppressor genes on chromosome 8p for colorectal carcinoma. Cancer Res. 1993;53(5):1172–1174. PubMed

Ahmed MN, Kim K, Haddad B, Berchuck A, Qumsiyeh MB. Comparative genomic hybridization studies in hydatidiform moles and choriocarcinoma: amplification of 7q21–q31 and loss of 8p12–p21 in choriocarcinoma. Cancer Genet Cytogenet. 2000;116:10–15. doi: 10.1016/S0165-4608(99)00103-X. PubMed DOI

Cunningham JM, Shan A, Wick MJ, et al. Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res. 1996;56(19):4475–4482. PubMed

Arbieva ZH, Banerjee K, Kim SY, et al. High-resolution physical map and transcript identification of a prostate cancer deletion interval on 8p22. Genome Res. 2000;10:244–257. doi: 10.1101/gr.10.2.244. PubMed DOI PMC

Pils D, Horak P, Gleiss A, et al. Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma: N33 and EFA6R have a potential impact on overall survival. Cancer. 2005;104(11):2417–2429. doi: 10.1002/cncr.21538. PubMed DOI

Cooke SL, Pole JCM, Chin S-F, Ellis IO, Caldas C, Edwards PAW. High-resolution array CGH clarifies events occurring on 8p in carcinogenesis. BMC Cancer. 2008;8:288. doi: 10.1186/1471-2407-8-288. PubMed DOI PMC

Angstadt AY, Motsinger-Reif A, Thomas R, et al. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart. Genes Chromosome Cancer. 2011;50:859–874. doi: 10.1002/gcc.20908. PubMed DOI

Griffith OL, Melck A, Jones SJ, Wiseman SM. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol. 2006;24(31):5043–5051. doi: 10.1200/JCO.2006.06.7330. PubMed DOI

Chung K-W, Kim SW, Kim SW. Gene expression profiling of papillary thyroid carcinomas in Korean patients by oligonucleotide microarrays. J Korean Surg Soc. 2012;82:271–280. doi: 10.4174/jkss.2012.82.5.271. PubMed DOI PMC

Gutierrez VF, Marcos CA, Llorente JL, et al. Genetic profile of second primary tumors and recurrences in head and neck squamous cell carcinomas. Head Neck. 2012;34(6):830–839. doi: 10.1002/hed.21824. PubMed DOI

Gu Y, Wang Q, Guo K, et al. TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/beta-catenin and MAPK signalling. J Pathol. 2016;239:60–71. doi: 10.1002/path.4697. PubMed DOI

Kratochvílová K, Horak P, Ešner M, et al. Tumor suppressor candidate 3 (TUSC3) prevents the epithelial-to-mesenchymal transition and inhibits tumor growth by modulating the endoplasmic reticulum stress response in ovarian cancer cells. Int J Cancer. 2015;137(6):1330–1340. doi: 10.1002/ijc.29502. PubMed DOI

Fan X, Zhang X, Shen J, et al. Decreased TUSC3 promotes pancreatic cancer proliferation, invasion and metastasis. PLoS ONE. 2016;11(2):e0149028. doi: 10.1371/journal.pone.0149028. PubMed DOI PMC

Jiang Z, Guo M, Zhang X, et al. TUSC3 suppresses glioblastoma development by inhibiting Akt signaling. Tumor Biol. 2016;37:12039–12047. doi: 10.1007/s13277-016-5072-4. PubMed DOI

Gu Y, Pei X, Ren Y, et al. Oncogenic function of TUSC3 in non-small cell lung cancer is associated with Hedgehog signalling pathway. Biochim Biophys Acta. 2017;1863(7):1749–1760. doi: 10.1016/j.bbadis.2017.05.005. PubMed DOI

Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471(7337):235–239. doi: 10.1038/nature09727. PubMed DOI PMC

Khan MM, Nomura T, Chiba T, et al. The fusion oncoprotein PML-RARalpha induces endoplasmic reticulum (ER)-associated degradation of N-CoR and ER stress. J Biol Chem. 2004;279(12):11814–11824. doi: 10.1074/jbc.M312121200. PubMed DOI

Schardt JA, Eyholzer M, Timchenko NA, Mueller BU, Pabst T. Unfolded protein response suppresses CEBPA by induction of calreticulin in acute myeloid leukaemia. J Cell Mol Med. 2010;14(6B):1509–1519. doi: 10.1111/j.1582-4934.2009.00870.x. PubMed DOI PMC

Kharabi Masouleh B, Geng H, Hurtz C, et al. Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proc Nat Acad Sci USA. 2014;111(21):E2219–E2228. doi: 10.1073/pnas.1400958111. PubMed DOI PMC

Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. 2011;1:90. doi: 10.1038/srep00090. PubMed DOI PMC

Li CW, Lim SO, Xia W, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632. doi: 10.1038/ncomms12632. PubMed DOI PMC

Lauc G, Huffman JE, Pucic M, et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 2013;9(1):e1003225. doi: 10.1371/journal.pgen.1003225. PubMed DOI PMC

Liu K, Xie F, Gao A, et al. SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30e-5p/TUSC3 axis. Mol Cancer. 2017;16(1):62. doi: 10.1186/s12943-017-0632-9. PubMed DOI PMC

Pole JCM, Courtay-Cahen C, Garcia MJ, et al. High-resolution analysis of chromosome rearrangements on 8p in breast, colon and pancreatic cancer reveals a complex pattern of loss, gain and translocation. Oncogene. 2006;25:5693–5706. doi: 10.1038/sj.onc.1209570. PubMed DOI

Ribeiro IP, Marques F, Caramelo F, et al. Genetic gains and losses in oral squamous cell carcinoma: impact on clinical management. Cell Oncol. 2014;37:29–39. doi: 10.1007/s13402-013-0161-5. PubMed DOI

Yu X, Zhang K, Liu F, et al. Tumor suppressor candidate 3 as a novel predictor for lymph node metastasis in lung cancer patients. Oncol Lett. 2016;2016:5099–5105. doi: 10.3892/ol.2016.5333. PubMed DOI PMC

Guervos MA, Marcos CA, Hermsen M, Nuno AS, Suarez C, Llorente JL. Deletions of N33, STK11 and TP53 are involved in the development of lymph node metastasis in larynx and pharynx carcinomas. Cell Oncol. 2007;29(4):327–334. PubMed PMC

Yu X, Zhang J, Zhong H, et al. Decreased tumor suppressor candidate 3 predicts poor prognosis of patients with esophageal squamous cell carcinoma. Int J Med Sci. 2016;13:963–969. doi: 10.7150/ijms.16381. PubMed DOI PMC

Peng Y, Cao J, Yao XY, Wang JX, Zhong MZ, Gan PP, Li JH. TUSC3 induces autophagy in human non-small cell lung cancer cells through Wnt/β-catenin signaling. Oncotarget. 2017;8:52960–52974. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...